/* * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/audio_processing/aec3/erle_estimator.h" #include #include "api/array_view.h" #include "modules/audio_processing/aec3/render_delay_buffer.h" #include "modules/audio_processing/aec3/spectrum_buffer.h" #include "rtc_base/random.h" #include "test/gtest.h" namespace webrtc { namespace { constexpr int kLowFrequencyLimit = kFftLengthBy2 / 2; constexpr float kTrueErle = 10.f; constexpr float kTrueErleOnsets = 1.0f; constexpr float kEchoPathGain = 3.f; void VerifyErleBands(rtc::ArrayView erle, float reference_lf, float reference_hf) { std::for_each( erle.begin(), erle.begin() + kLowFrequencyLimit, [reference_lf](float a) { EXPECT_NEAR(reference_lf, a, 0.001); }); std::for_each( erle.begin() + kLowFrequencyLimit, erle.end(), [reference_hf](float a) { EXPECT_NEAR(reference_hf, a, 0.001); }); } void VerifyErle(rtc::ArrayView erle, float erle_time_domain, float reference_lf, float reference_hf) { VerifyErleBands(erle, reference_lf, reference_hf); EXPECT_NEAR(reference_lf, erle_time_domain, 0.5); } void FormFarendTimeFrame(std::vector>>* x) { const std::array frame = { 7459.88, 17209.6, 17383, 20768.9, 16816.7, 18386.3, 4492.83, 9675.85, 6665.52, 14808.6, 9342.3, 7483.28, 19261.7, 4145.98, 1622.18, 13475.2, 7166.32, 6856.61, 21937, 7263.14, 9569.07, 14919, 8413.32, 7551.89, 7848.65, 6011.27, 13080.6, 15865.2, 12656, 17459.6, 4263.93, 4503.03, 9311.79, 21095.8, 12657.9, 13906.6, 19267.2, 11338.1, 16828.9, 11501.6, 11405, 15031.4, 14541.6, 19765.5, 18346.3, 19350.2, 3157.47, 18095.8, 1743.68, 21328.2, 19727.5, 7295.16, 10332.4, 11055.5, 20107.4, 14708.4, 12416.2, 16434, 2454.69, 9840.8, 6867.23, 1615.75, 6059.9, 8394.19}; for (size_t band = 0; band < x->size(); ++band) { for (size_t channel = 0; channel < (*x)[band].size(); ++channel) { RTC_DCHECK_GE((*x)[band][channel].size(), frame.size()); std::copy(frame.begin(), frame.end(), (*x)[band][channel].begin()); } } } void FormFarendFrame(const RenderBuffer& render_buffer, std::array* X2, std::array* E2, std::array* Y2, float erle) { const auto& spectrum_buffer = render_buffer.GetSpectrumBuffer(); const auto& X2_from_buffer = spectrum_buffer.buffer[spectrum_buffer.write][/*channel=*/0]; std::copy(X2_from_buffer.begin(), X2_from_buffer.end(), X2->begin()); std::transform(X2->begin(), X2->end(), Y2->begin(), [](float a) { return a * kEchoPathGain * kEchoPathGain; }); std::transform(Y2->begin(), Y2->end(), E2->begin(), [erle](float a) { return a / erle; }); } // namespace void FormNearendFrame(std::vector>>* x, std::array* X2, std::array* E2, std::array* Y2) { for (size_t band = 0; band < x->size(); ++band) { for (size_t channel = 0; channel < (*x)[band].size(); ++channel) { std::fill((*x)[band][channel].begin(), (*x)[band][channel].end(), 0.f); X2->fill(0.f); Y2->fill(500.f * 1000.f * 1000.f); E2->fill((*Y2)[0]); } } } void GetFilterFreq(std::vector>& filter_frequency_response, size_t delay_headroom_samples) { const size_t delay_headroom_blocks = delay_headroom_samples / kBlockSize; for (auto& block_freq_resp : filter_frequency_response) { block_freq_resp.fill(0.f); } for (size_t k = 0; k < kFftLengthBy2Plus1; ++k) { filter_frequency_response[delay_headroom_blocks][k] = kEchoPathGain; } } } // namespace TEST(ErleEstimator, VerifyErleIncreaseAndHold) { std::array X2; std::array E2; std::array Y2; constexpr size_t kNumRenderChannels = 1; constexpr size_t kNumCaptureChannels = 1; constexpr int kSampleRateHz = 48000; constexpr size_t kNumBands = NumBandsForRate(kSampleRateHz); EchoCanceller3Config config; std::vector>> x( kNumBands, std::vector>( kNumRenderChannels, std::vector(kBlockSize, 0.f))); std::vector> filter_frequency_response( config.filter.main.length_blocks); std::unique_ptr render_delay_buffer( RenderDelayBuffer::Create(config, kSampleRateHz, kNumRenderChannels)); GetFilterFreq(filter_frequency_response, config.delay.delay_headroom_samples); ErleEstimator estimator(0, config, kNumCaptureChannels); FormFarendTimeFrame(&x); render_delay_buffer->Insert(x); render_delay_buffer->PrepareCaptureProcessing(); // Verifies that the ERLE estimate is properly increased to higher values. FormFarendFrame(*render_delay_buffer->GetRenderBuffer(), &X2, &E2, &Y2, kTrueErle); for (size_t k = 0; k < 200; ++k) { render_delay_buffer->Insert(x); render_delay_buffer->PrepareCaptureProcessing(); estimator.Update(*render_delay_buffer->GetRenderBuffer(), filter_frequency_response, X2, Y2, E2, true, true); } VerifyErle(estimator.Erle()[0], std::pow(2.f, estimator.FullbandErleLog2()), config.erle.max_l, config.erle.max_h); FormNearendFrame(&x, &X2, &E2, &Y2); // Verifies that the ERLE is not immediately decreased during nearend // activity. for (size_t k = 0; k < 50; ++k) { render_delay_buffer->Insert(x); render_delay_buffer->PrepareCaptureProcessing(); estimator.Update(*render_delay_buffer->GetRenderBuffer(), filter_frequency_response, X2, Y2, E2, true, true); } VerifyErle(estimator.Erle()[0], std::pow(2.f, estimator.FullbandErleLog2()), config.erle.max_l, config.erle.max_h); } TEST(ErleEstimator, VerifyErleTrackingOnOnsets) { constexpr size_t kNumRenderChannels = 1; constexpr size_t kNumCaptureChannels = 1; constexpr int kSampleRateHz = 48000; constexpr size_t kNumBands = NumBandsForRate(kSampleRateHz); std::array X2; std::array E2; std::array Y2; EchoCanceller3Config config; std::vector>> x( kNumBands, std::vector>( kNumRenderChannels, std::vector(kBlockSize, 0.f))); std::vector> filter_frequency_response( config.filter.main.length_blocks); std::unique_ptr render_delay_buffer( RenderDelayBuffer::Create(config, kSampleRateHz, kNumRenderChannels)); GetFilterFreq(filter_frequency_response, config.delay.delay_headroom_samples); ErleEstimator estimator(0, config, kNumCaptureChannels); FormFarendTimeFrame(&x); render_delay_buffer->Insert(x); render_delay_buffer->PrepareCaptureProcessing(); for (size_t burst = 0; burst < 20; ++burst) { FormFarendFrame(*render_delay_buffer->GetRenderBuffer(), &X2, &E2, &Y2, kTrueErleOnsets); for (size_t k = 0; k < 10; ++k) { render_delay_buffer->Insert(x); render_delay_buffer->PrepareCaptureProcessing(); estimator.Update(*render_delay_buffer->GetRenderBuffer(), filter_frequency_response, X2, Y2, E2, true, true); } FormFarendFrame(*render_delay_buffer->GetRenderBuffer(), &X2, &E2, &Y2, kTrueErle); for (size_t k = 0; k < 200; ++k) { render_delay_buffer->Insert(x); render_delay_buffer->PrepareCaptureProcessing(); estimator.Update(*render_delay_buffer->GetRenderBuffer(), filter_frequency_response, X2, Y2, E2, true, true); } FormNearendFrame(&x, &X2, &E2, &Y2); for (size_t k = 0; k < 300; ++k) { render_delay_buffer->Insert(x); render_delay_buffer->PrepareCaptureProcessing(); estimator.Update(*render_delay_buffer->GetRenderBuffer(), filter_frequency_response, X2, Y2, E2, true, true); } } VerifyErleBands(estimator.ErleOnsets(), config.erle.min, config.erle.min); FormNearendFrame(&x, &X2, &E2, &Y2); for (size_t k = 0; k < 1000; k++) { estimator.Update(*render_delay_buffer->GetRenderBuffer(), filter_frequency_response, X2, Y2, E2, true, true); } // Verifies that during ne activity, Erle converges to the Erle for onsets. VerifyErle(estimator.Erle()[0], std::pow(2.f, estimator.FullbandErleLog2()), config.erle.min, config.erle.min); } } // namespace webrtc