/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ /* * The core AEC algorithm, which is presented with time-aligned signals. */ #include "modules/audio_processing/aec/aec_core.h" #include #include #include // size_t #include #include #include "rtc_base/checks.h" extern "C" { #include "common_audio/ring_buffer.h" } #include "common_audio/signal_processing/include/signal_processing_library.h" #include "modules/audio_processing/aec/aec_common.h" #include "modules/audio_processing/aec/aec_core_optimized_methods.h" #include "modules/audio_processing/logging/apm_data_dumper.h" #include "modules/audio_processing/utility/delay_estimator_wrapper.h" #include "rtc_base/checks.h" #include "system_wrappers/include/cpu_features_wrapper.h" #include "system_wrappers/include/metrics.h" #include "typedefs.h" // NOLINT(build/include) namespace webrtc { namespace { enum class DelaySource { kSystemDelay, // The delay values come from the OS. kDelayAgnostic, // The delay values come from the DA-AEC. }; constexpr int kMinDelayLogValue = -200; constexpr int kMaxDelayLogValue = 200; constexpr int kNumDelayLogBuckets = 100; void MaybeLogDelayAdjustment(int moved_ms, DelaySource source) { if (moved_ms == 0) return; switch (source) { case DelaySource::kSystemDelay: RTC_HISTOGRAM_COUNTS("WebRTC.Audio.AecDelayAdjustmentMsSystemValue", moved_ms, kMinDelayLogValue, kMaxDelayLogValue, kNumDelayLogBuckets); return; case DelaySource::kDelayAgnostic: RTC_HISTOGRAM_COUNTS("WebRTC.Audio.AecDelayAdjustmentMsAgnosticValue", moved_ms, kMinDelayLogValue, kMaxDelayLogValue, kNumDelayLogBuckets); return; } } } // namespace // Buffer size (samples) static const size_t kBufferSizeBlocks = 250; // 1 second of audio in 16 kHz. // Metrics static const size_t kSubCountLen = 4; static const size_t kCountLen = 50; static const int kDelayMetricsAggregationWindow = 1250; // 5 seconds at 16 kHz. // Divergence metric is based on audio level, which gets updated every // |kSubCountLen + 1| * PART_LEN samples. Divergence metric takes the statistics // of |kDivergentFilterFractionAggregationWindowSize| audio levels. The // following value corresponds to 1 second at 16 kHz. static const int kDivergentFilterFractionAggregationWindowSize = 50; // Quantities to control H band scaling for SWB input static const float cnScaleHband = 0.4f; // scale for comfort noise in H band. // Initial bin for averaging nlp gain in low band static const int freqAvgIc = PART_LEN / 2; // Matlab code to produce table: // win = sqrt(hanning(63)); win = [0 ; win(1:32)]; // fprintf(1, '\t%.14f, %.14f, %.14f,\n', win); ALIGN16_BEG const float ALIGN16_END WebRtcAec_sqrtHanning[65] = { 0.00000000000000f, 0.02454122852291f, 0.04906767432742f, 0.07356456359967f, 0.09801714032956f, 0.12241067519922f, 0.14673047445536f, 0.17096188876030f, 0.19509032201613f, 0.21910124015687f, 0.24298017990326f, 0.26671275747490f, 0.29028467725446f, 0.31368174039889f, 0.33688985339222f, 0.35989503653499f, 0.38268343236509f, 0.40524131400499f, 0.42755509343028f, 0.44961132965461f, 0.47139673682600f, 0.49289819222978f, 0.51410274419322f, 0.53499761988710f, 0.55557023301960f, 0.57580819141785f, 0.59569930449243f, 0.61523159058063f, 0.63439328416365f, 0.65317284295378f, 0.67155895484702f, 0.68954054473707f, 0.70710678118655f, 0.72424708295147f, 0.74095112535496f, 0.75720884650648f, 0.77301045336274f, 0.78834642762661f, 0.80320753148064f, 0.81758481315158f, 0.83146961230255f, 0.84485356524971f, 0.85772861000027f, 0.87008699110871f, 0.88192126434835f, 0.89322430119552f, 0.90398929312344f, 0.91420975570353f, 0.92387953251129f, 0.93299279883474f, 0.94154406518302f, 0.94952818059304f, 0.95694033573221f, 0.96377606579544f, 0.97003125319454f, 0.97570213003853f, 0.98078528040323f, 0.98527764238894f, 0.98917650996478f, 0.99247953459871f, 0.99518472667220f, 0.99729045667869f, 0.99879545620517f, 0.99969881869620f, 1.00000000000000f}; // Matlab code to produce table: // weightCurve = [0 ; 0.3 * sqrt(linspace(0,1,64))' + 0.1]; // fprintf(1, '\t%.4f, %.4f, %.4f, %.4f, %.4f, %.4f,\n', weightCurve); ALIGN16_BEG const float ALIGN16_END WebRtcAec_weightCurve[65] = { 0.0000f, 0.1000f, 0.1378f, 0.1535f, 0.1655f, 0.1756f, 0.1845f, 0.1926f, 0.2000f, 0.2069f, 0.2134f, 0.2195f, 0.2254f, 0.2309f, 0.2363f, 0.2414f, 0.2464f, 0.2512f, 0.2558f, 0.2604f, 0.2648f, 0.2690f, 0.2732f, 0.2773f, 0.2813f, 0.2852f, 0.2890f, 0.2927f, 0.2964f, 0.3000f, 0.3035f, 0.3070f, 0.3104f, 0.3138f, 0.3171f, 0.3204f, 0.3236f, 0.3268f, 0.3299f, 0.3330f, 0.3360f, 0.3390f, 0.3420f, 0.3449f, 0.3478f, 0.3507f, 0.3535f, 0.3563f, 0.3591f, 0.3619f, 0.3646f, 0.3673f, 0.3699f, 0.3726f, 0.3752f, 0.3777f, 0.3803f, 0.3828f, 0.3854f, 0.3878f, 0.3903f, 0.3928f, 0.3952f, 0.3976f, 0.4000f}; // Matlab code to produce table: // overDriveCurve = [sqrt(linspace(0,1,65))' + 1]; // fprintf(1, '\t%.4f, %.4f, %.4f, %.4f, %.4f, %.4f,\n', overDriveCurve); ALIGN16_BEG const float ALIGN16_END WebRtcAec_overDriveCurve[65] = { 1.0000f, 1.1250f, 1.1768f, 1.2165f, 1.2500f, 1.2795f, 1.3062f, 1.3307f, 1.3536f, 1.3750f, 1.3953f, 1.4146f, 1.4330f, 1.4507f, 1.4677f, 1.4841f, 1.5000f, 1.5154f, 1.5303f, 1.5449f, 1.5590f, 1.5728f, 1.5863f, 1.5995f, 1.6124f, 1.6250f, 1.6374f, 1.6495f, 1.6614f, 1.6731f, 1.6847f, 1.6960f, 1.7071f, 1.7181f, 1.7289f, 1.7395f, 1.7500f, 1.7603f, 1.7706f, 1.7806f, 1.7906f, 1.8004f, 1.8101f, 1.8197f, 1.8292f, 1.8385f, 1.8478f, 1.8570f, 1.8660f, 1.8750f, 1.8839f, 1.8927f, 1.9014f, 1.9100f, 1.9186f, 1.9270f, 1.9354f, 1.9437f, 1.9520f, 1.9601f, 1.9682f, 1.9763f, 1.9843f, 1.9922f, 2.0000f}; // Delay Agnostic AEC parameters, still under development and may change. static const float kDelayQualityThresholdMax = 0.07f; static const float kDelayQualityThresholdMin = 0.01f; static const int kInitialShiftOffset = 5; #if !defined(WEBRTC_ANDROID) static const int kDelayCorrectionStart = 1500; // 10 ms chunks #endif // Target suppression levels for nlp modes. // log{0.001, 0.00001, 0.00000001} static const float kTargetSupp[3] = {-6.9f, -11.5f, -18.4f}; // Two sets of parameters, one for the extended filter mode. static const float kExtendedMinOverDrive[3] = {3.0f, 6.0f, 15.0f}; static const float kNormalMinOverDrive[3] = {1.0f, 2.0f, 5.0f}; const float WebRtcAec_kExtendedSmoothingCoefficients[2][2] = {{0.9f, 0.1f}, {0.92f, 0.08f}}; const float WebRtcAec_kNormalSmoothingCoefficients[2][2] = {{0.9f, 0.1f}, {0.93f, 0.07f}}; // Number of partitions forming the NLP's "preferred" bands. enum { kPrefBandSize = 24 }; WebRtcAecFilterFar WebRtcAec_FilterFar; WebRtcAecScaleErrorSignal WebRtcAec_ScaleErrorSignal; WebRtcAecFilterAdaptation WebRtcAec_FilterAdaptation; WebRtcAecOverdrive WebRtcAec_Overdrive; WebRtcAecSuppress WebRtcAec_Suppress; WebRtcAecComputeCoherence WebRtcAec_ComputeCoherence; WebRtcAecUpdateCoherenceSpectra WebRtcAec_UpdateCoherenceSpectra; WebRtcAecStoreAsComplex WebRtcAec_StoreAsComplex; WebRtcAecPartitionDelay WebRtcAec_PartitionDelay; WebRtcAecWindowData WebRtcAec_WindowData; __inline static float MulRe(float aRe, float aIm, float bRe, float bIm) { return aRe * bRe - aIm * bIm; } __inline static float MulIm(float aRe, float aIm, float bRe, float bIm) { return aRe * bIm + aIm * bRe; } // TODO(minyue): Due to a legacy bug, |framelevel| and |averagelevel| use a // window, of which the length is 1 unit longer than indicated. Remove "+1" when // the code is refactored. PowerLevel::PowerLevel() : framelevel(kSubCountLen + 1), averagelevel(kCountLen + 1) { } BlockBuffer::BlockBuffer() { buffer_ = WebRtc_CreateBuffer(kBufferSizeBlocks, sizeof(float) * PART_LEN); RTC_CHECK(buffer_); ReInit(); } BlockBuffer::~BlockBuffer() { WebRtc_FreeBuffer(buffer_); } void BlockBuffer::ReInit() { WebRtc_InitBuffer(buffer_); } void BlockBuffer::Insert(const float block[PART_LEN]) { WebRtc_WriteBuffer(buffer_, block, 1); } void BlockBuffer::ExtractExtendedBlock(float extended_block[PART_LEN2]) { float* block_ptr = NULL; RTC_DCHECK_LT(0, AvaliableSpace()); // Extract the previous block. WebRtc_MoveReadPtr(buffer_, -1); size_t read_elements = WebRtc_ReadBuffer( buffer_, reinterpret_cast(&block_ptr), &extended_block[0], 1); if (read_elements == 0u) { std::fill_n(&extended_block[0], PART_LEN, 0.0f); } else if (block_ptr != &extended_block[0]) { memcpy(&extended_block[0], block_ptr, PART_LEN * sizeof(float)); } // Extract the current block. read_elements = WebRtc_ReadBuffer(buffer_, reinterpret_cast(&block_ptr), &extended_block[PART_LEN], 1); if (read_elements == 0u) { std::fill_n(&extended_block[PART_LEN], PART_LEN, 0.0f); } else if (block_ptr != &extended_block[PART_LEN]) { memcpy(&extended_block[PART_LEN], block_ptr, PART_LEN * sizeof(float)); } } int BlockBuffer::AdjustSize(int buffer_size_decrease) { return WebRtc_MoveReadPtr(buffer_, buffer_size_decrease); } size_t BlockBuffer::Size() { return static_cast(WebRtc_available_read(buffer_)); } size_t BlockBuffer::AvaliableSpace() { return WebRtc_available_write(buffer_); } DivergentFilterFraction::DivergentFilterFraction() : count_(0), occurrence_(0), fraction_(-1.0) { } void DivergentFilterFraction::Reset() { Clear(); fraction_ = -1.0; } void DivergentFilterFraction::AddObservation(const PowerLevel& nearlevel, const PowerLevel& linoutlevel, const PowerLevel& nlpoutlevel) { const float near_level = nearlevel.framelevel.GetLatestMean(); const float level_increase = linoutlevel.framelevel.GetLatestMean() - near_level; const bool output_signal_active = nlpoutlevel.framelevel.GetLatestMean() > 40.0 * nlpoutlevel.minlevel; // Level increase should be, in principle, negative, when the filter // does not diverge. Here we allow some margin (0.01 * near end level) and // numerical error (1.0). We count divergence only when the AEC output // signal is active. if (output_signal_active && level_increase > std::max(0.01 * near_level, 1.0)) occurrence_++; ++count_; if (count_ == kDivergentFilterFractionAggregationWindowSize) { fraction_ = static_cast(occurrence_) / kDivergentFilterFractionAggregationWindowSize; Clear(); } } float DivergentFilterFraction::GetLatestFraction() const { return fraction_; } void DivergentFilterFraction::Clear() { count_ = 0; occurrence_ = 0; } // TODO(minyue): Moving some initialization from WebRtcAec_CreateAec() to ctor. AecCore::AecCore(int instance_index) : data_dumper(new ApmDataDumper(instance_index)) {} AecCore::~AecCore() {} static int CmpFloat(const void* a, const void* b) { const float* da = (const float*)a; const float* db = (const float*)b; return (*da > *db) - (*da < *db); } static void FilterFar(int num_partitions, int x_fft_buf_block_pos, float x_fft_buf[2][kExtendedNumPartitions * PART_LEN1], float h_fft_buf[2][kExtendedNumPartitions * PART_LEN1], float y_fft[2][PART_LEN1]) { int i; for (i = 0; i < num_partitions; i++) { int j; int xPos = (i + x_fft_buf_block_pos) * PART_LEN1; int pos = i * PART_LEN1; // Check for wrap if (i + x_fft_buf_block_pos >= num_partitions) { xPos -= num_partitions * (PART_LEN1); } for (j = 0; j < PART_LEN1; j++) { y_fft[0][j] += MulRe(x_fft_buf[0][xPos + j], x_fft_buf[1][xPos + j], h_fft_buf[0][pos + j], h_fft_buf[1][pos + j]); y_fft[1][j] += MulIm(x_fft_buf[0][xPos + j], x_fft_buf[1][xPos + j], h_fft_buf[0][pos + j], h_fft_buf[1][pos + j]); } } } static void ScaleErrorSignal(float mu, float error_threshold, float x_pow[PART_LEN1], float ef[2][PART_LEN1]) { int i; float abs_ef; for (i = 0; i < (PART_LEN1); i++) { ef[0][i] /= (x_pow[i] + 1e-10f); ef[1][i] /= (x_pow[i] + 1e-10f); abs_ef = sqrtf(ef[0][i] * ef[0][i] + ef[1][i] * ef[1][i]); if (abs_ef > error_threshold) { abs_ef = error_threshold / (abs_ef + 1e-10f); ef[0][i] *= abs_ef; ef[1][i] *= abs_ef; } // Stepsize factor ef[0][i] *= mu; ef[1][i] *= mu; } } static void FilterAdaptation( const OouraFft& ooura_fft, int num_partitions, int x_fft_buf_block_pos, float x_fft_buf[2][kExtendedNumPartitions * PART_LEN1], float e_fft[2][PART_LEN1], float h_fft_buf[2][kExtendedNumPartitions * PART_LEN1]) { int i, j; float fft[PART_LEN2]; for (i = 0; i < num_partitions; i++) { int xPos = (i + x_fft_buf_block_pos) * (PART_LEN1); int pos; // Check for wrap if (i + x_fft_buf_block_pos >= num_partitions) { xPos -= num_partitions * PART_LEN1; } pos = i * PART_LEN1; for (j = 0; j < PART_LEN; j++) { fft[2 * j] = MulRe(x_fft_buf[0][xPos + j], -x_fft_buf[1][xPos + j], e_fft[0][j], e_fft[1][j]); fft[2 * j + 1] = MulIm(x_fft_buf[0][xPos + j], -x_fft_buf[1][xPos + j], e_fft[0][j], e_fft[1][j]); } fft[1] = MulRe(x_fft_buf[0][xPos + PART_LEN], -x_fft_buf[1][xPos + PART_LEN], e_fft[0][PART_LEN], e_fft[1][PART_LEN]); ooura_fft.InverseFft(fft); memset(fft + PART_LEN, 0, sizeof(float) * PART_LEN); // fft scaling { float scale = 2.0f / PART_LEN2; for (j = 0; j < PART_LEN; j++) { fft[j] *= scale; } } ooura_fft.Fft(fft); h_fft_buf[0][pos] += fft[0]; h_fft_buf[0][pos + PART_LEN] += fft[1]; for (j = 1; j < PART_LEN; j++) { h_fft_buf[0][pos + j] += fft[2 * j]; h_fft_buf[1][pos + j] += fft[2 * j + 1]; } } } static void Overdrive(float overdrive_scaling, const float hNlFb, float hNl[PART_LEN1]) { for (int i = 0; i < PART_LEN1; ++i) { // Weight subbands if (hNl[i] > hNlFb) { hNl[i] = WebRtcAec_weightCurve[i] * hNlFb + (1 - WebRtcAec_weightCurve[i]) * hNl[i]; } hNl[i] = powf(hNl[i], overdrive_scaling * WebRtcAec_overDriveCurve[i]); } } static void Suppress(const float hNl[PART_LEN1], float efw[2][PART_LEN1]) { for (int i = 0; i < PART_LEN1; ++i) { // Suppress error signal efw[0][i] *= hNl[i]; efw[1][i] *= hNl[i]; // Ooura fft returns incorrect sign on imaginary component. It matters here // because we are making an additive change with comfort noise. efw[1][i] *= -1; } } static int PartitionDelay(int num_partitions, float h_fft_buf[2] [kExtendedNumPartitions * PART_LEN1]) { // Measures the energy in each filter partition and returns the partition with // highest energy. // TODO(bjornv): Spread computational cost by computing one partition per // block? float wfEnMax = 0; int i; int delay = 0; for (i = 0; i < num_partitions; i++) { int j; int pos = i * PART_LEN1; float wfEn = 0; for (j = 0; j < PART_LEN1; j++) { wfEn += h_fft_buf[0][pos + j] * h_fft_buf[0][pos + j] + h_fft_buf[1][pos + j] * h_fft_buf[1][pos + j]; } if (wfEn > wfEnMax) { wfEnMax = wfEn; delay = i; } } return delay; } // Update metric with 10 * log10(numerator / denominator). static void UpdateLogRatioMetric(Stats* metric, float numerator, float denominator) { RTC_DCHECK(metric); RTC_CHECK(numerator >= 0); RTC_CHECK(denominator >= 0); const float log_numerator = log10(numerator + 1e-10f); const float log_denominator = log10(denominator + 1e-10f); metric->instant = 10.0f * (log_numerator - log_denominator); // Max. if (metric->instant > metric->max) metric->max = metric->instant; // Min. if (metric->instant < metric->min) metric->min = metric->instant; // Average. metric->counter++; // This is to protect overflow, which should almost never happen. RTC_CHECK_NE(0, metric->counter); metric->sum += metric->instant; metric->average = metric->sum / metric->counter; // Upper mean. if (metric->instant > metric->average) { metric->hicounter++; // This is to protect overflow, which should almost never happen. RTC_CHECK_NE(0, metric->hicounter); metric->hisum += metric->instant; metric->himean = metric->hisum / metric->hicounter; } } // Threshold to protect against the ill-effects of a zero far-end. const float WebRtcAec_kMinFarendPSD = 15; // Updates the following smoothed Power Spectral Densities (PSD): // - sd : near-end // - se : residual echo // - sx : far-end // - sde : cross-PSD of near-end and residual echo // - sxd : cross-PSD of near-end and far-end // // In addition to updating the PSDs, also the filter diverge state is // determined. static void UpdateCoherenceSpectra(int mult, bool extended_filter_enabled, float efw[2][PART_LEN1], float dfw[2][PART_LEN1], float xfw[2][PART_LEN1], CoherenceState* coherence_state, short* filter_divergence_state, int* extreme_filter_divergence) { // Power estimate smoothing coefficients. const float* ptrGCoh = extended_filter_enabled ? WebRtcAec_kExtendedSmoothingCoefficients[mult - 1] : WebRtcAec_kNormalSmoothingCoefficients[mult - 1]; int i; float sdSum = 0, seSum = 0; for (i = 0; i < PART_LEN1; i++) { coherence_state->sd[i] = ptrGCoh[0] * coherence_state->sd[i] + ptrGCoh[1] * (dfw[0][i] * dfw[0][i] + dfw[1][i] * dfw[1][i]); coherence_state->se[i] = ptrGCoh[0] * coherence_state->se[i] + ptrGCoh[1] * (efw[0][i] * efw[0][i] + efw[1][i] * efw[1][i]); // We threshold here to protect against the ill-effects of a zero farend. // The threshold is not arbitrarily chosen, but balances protection and // adverse interaction with the algorithm's tuning. // TODO(bjornv): investigate further why this is so sensitive. coherence_state->sx[i] = ptrGCoh[0] * coherence_state->sx[i] + ptrGCoh[1] * WEBRTC_SPL_MAX(xfw[0][i] * xfw[0][i] + xfw[1][i] * xfw[1][i], WebRtcAec_kMinFarendPSD); coherence_state->sde[i][0] = ptrGCoh[0] * coherence_state->sde[i][0] + ptrGCoh[1] * (dfw[0][i] * efw[0][i] + dfw[1][i] * efw[1][i]); coherence_state->sde[i][1] = ptrGCoh[0] * coherence_state->sde[i][1] + ptrGCoh[1] * (dfw[0][i] * efw[1][i] - dfw[1][i] * efw[0][i]); coherence_state->sxd[i][0] = ptrGCoh[0] * coherence_state->sxd[i][0] + ptrGCoh[1] * (dfw[0][i] * xfw[0][i] + dfw[1][i] * xfw[1][i]); coherence_state->sxd[i][1] = ptrGCoh[0] * coherence_state->sxd[i][1] + ptrGCoh[1] * (dfw[0][i] * xfw[1][i] - dfw[1][i] * xfw[0][i]); sdSum += coherence_state->sd[i]; seSum += coherence_state->se[i]; } // Divergent filter safeguard update. *filter_divergence_state = (*filter_divergence_state ? 1.05f : 1.0f) * seSum > sdSum; // Signal extreme filter divergence if the error is significantly larger // than the nearend (13 dB). *extreme_filter_divergence = (seSum > (19.95f * sdSum)); } // Window time domain data to be used by the fft. __inline static void WindowData(float* x_windowed, const float* x) { int i; for (i = 0; i < PART_LEN; i++) { x_windowed[i] = x[i] * WebRtcAec_sqrtHanning[i]; x_windowed[PART_LEN + i] = x[PART_LEN + i] * WebRtcAec_sqrtHanning[PART_LEN - i]; } } // Puts fft output data into a complex valued array. __inline static void StoreAsComplex(const float* data, float data_complex[2][PART_LEN1]) { int i; data_complex[0][0] = data[0]; data_complex[1][0] = 0; for (i = 1; i < PART_LEN; i++) { data_complex[0][i] = data[2 * i]; data_complex[1][i] = data[2 * i + 1]; } data_complex[0][PART_LEN] = data[1]; data_complex[1][PART_LEN] = 0; } static void ComputeCoherence(const CoherenceState* coherence_state, float* cohde, float* cohxd) { // Subband coherence for (int i = 0; i < PART_LEN1; i++) { cohde[i] = (coherence_state->sde[i][0] * coherence_state->sde[i][0] + coherence_state->sde[i][1] * coherence_state->sde[i][1]) / (coherence_state->sd[i] * coherence_state->se[i] + 1e-10f); cohxd[i] = (coherence_state->sxd[i][0] * coherence_state->sxd[i][0] + coherence_state->sxd[i][1] * coherence_state->sxd[i][1]) / (coherence_state->sx[i] * coherence_state->sd[i] + 1e-10f); } } static void GetHighbandGain(const float* lambda, float* nlpGainHband) { int i; *nlpGainHband = 0.0f; for (i = freqAvgIc; i < PART_LEN1 - 1; i++) { *nlpGainHband += lambda[i]; } *nlpGainHband /= static_cast(PART_LEN1 - 1 - freqAvgIc); } static void GenerateComplexNoise(uint32_t* seed, float noise[2][PART_LEN1]) { const float kPi2 = 6.28318530717959f; int16_t randW16[PART_LEN]; WebRtcSpl_RandUArray(randW16, PART_LEN, seed); noise[0][0] = 0; noise[1][0] = 0; for (size_t i = 1; i < PART_LEN1; i++) { float tmp = kPi2 * randW16[i - 1] / 32768.f; noise[0][i] = cosf(tmp); noise[1][i] = -sinf(tmp); } noise[1][PART_LEN] = 0; } static void ComfortNoise(bool generate_high_frequency_noise, uint32_t* seed, float e_fft[2][PART_LEN1], float high_frequency_comfort_noise[2][PART_LEN1], const float* noise_spectrum, const float* suppressor_gain) { float complex_noise[2][PART_LEN1]; GenerateComplexNoise(seed, complex_noise); // Shape, scale and add comfort noise. for (int i = 1; i < PART_LEN1; ++i) { float noise_scaling = sqrtf(WEBRTC_SPL_MAX(1 - suppressor_gain[i] * suppressor_gain[i], 0)) * sqrtf(noise_spectrum[i]); e_fft[0][i] += noise_scaling * complex_noise[0][i]; e_fft[1][i] += noise_scaling * complex_noise[1][i]; } // Form comfort noise for higher frequencies. if (generate_high_frequency_noise) { // Compute average noise power and nlp gain over the second half of freq // spectrum (i.e., 4->8khz). int start_avg_band = PART_LEN1 / 2; float upper_bands_noise_power = 0.f; float upper_bands_suppressor_gain = 0.f; for (int i = start_avg_band; i < PART_LEN1; ++i) { upper_bands_noise_power += sqrtf(noise_spectrum[i]); upper_bands_suppressor_gain += sqrtf(WEBRTC_SPL_MAX(1 - suppressor_gain[i] * suppressor_gain[i], 0)); } upper_bands_noise_power /= (PART_LEN1 - start_avg_band); upper_bands_suppressor_gain /= (PART_LEN1 - start_avg_band); // Shape, scale and add comfort noise. float noise_scaling = upper_bands_suppressor_gain * upper_bands_noise_power; high_frequency_comfort_noise[0][0] = 0; high_frequency_comfort_noise[1][0] = 0; for (int i = 1; i < PART_LEN1; ++i) { high_frequency_comfort_noise[0][i] = noise_scaling * complex_noise[0][i]; high_frequency_comfort_noise[1][i] = noise_scaling * complex_noise[1][i]; } high_frequency_comfort_noise[1][PART_LEN] = 0; } else { memset(high_frequency_comfort_noise, 0, 2 * PART_LEN1 * sizeof(high_frequency_comfort_noise[0][0])); } } static void InitLevel(PowerLevel* level) { const float kBigFloat = 1E17f; level->averagelevel.Reset(); level->framelevel.Reset(); level->minlevel = kBigFloat; } static void InitStats(Stats* stats) { stats->instant = kOffsetLevel; stats->average = kOffsetLevel; stats->max = kOffsetLevel; stats->min = kOffsetLevel * (-1); stats->sum = 0; stats->hisum = 0; stats->himean = kOffsetLevel; stats->counter = 0; stats->hicounter = 0; } static void InitMetrics(AecCore* self) { self->stateCounter = 0; InitLevel(&self->farlevel); InitLevel(&self->nearlevel); InitLevel(&self->linoutlevel); InitLevel(&self->nlpoutlevel); InitStats(&self->erl); InitStats(&self->erle); InitStats(&self->aNlp); InitStats(&self->rerl); self->divergent_filter_fraction.Reset(); } static float CalculatePower(const float* in, size_t num_samples) { size_t k; float energy = 0.0f; for (k = 0; k < num_samples; ++k) { energy += in[k] * in[k]; } return energy / num_samples; } static void UpdateLevel(PowerLevel* level, float power) { level->framelevel.AddValue(power); if (level->framelevel.EndOfBlock()) { const float new_frame_level = level->framelevel.GetLatestMean(); if (new_frame_level > 0) { if (new_frame_level < level->minlevel) { level->minlevel = new_frame_level; // New minimum. } else { level->minlevel *= (1 + 0.001f); // Small increase. } } level->averagelevel.AddValue(new_frame_level); } } static void UpdateMetrics(AecCore* aec) { const float actThresholdNoisy = 8.0f; const float actThresholdClean = 40.0f; const float noisyPower = 300000.0f; float actThreshold; if (aec->echoState) { // Check if echo is likely present aec->stateCounter++; } if (aec->linoutlevel.framelevel.EndOfBlock()) { aec->divergent_filter_fraction.AddObservation(aec->nearlevel, aec->linoutlevel, aec->nlpoutlevel); } if (aec->farlevel.averagelevel.EndOfBlock()) { if (aec->farlevel.minlevel < noisyPower) { actThreshold = actThresholdClean; } else { actThreshold = actThresholdNoisy; } const float far_average_level = aec->farlevel.averagelevel.GetLatestMean(); // The last condition is to let estimation be made in active far-end // segments only. if ((aec->stateCounter > (0.5f * kCountLen * kSubCountLen)) && (aec->farlevel.framelevel.EndOfBlock()) && (far_average_level > (actThreshold * aec->farlevel.minlevel))) { // ERL: error return loss. const float near_average_level = aec->nearlevel.averagelevel.GetLatestMean(); UpdateLogRatioMetric(&aec->erl, far_average_level, near_average_level); // A_NLP: error return loss enhanced before the nonlinear suppression. const float linout_average_level = aec->linoutlevel.averagelevel.GetLatestMean(); UpdateLogRatioMetric(&aec->aNlp, near_average_level, linout_average_level); // ERLE: error return loss enhanced. const float nlpout_average_level = aec->nlpoutlevel.averagelevel.GetLatestMean(); UpdateLogRatioMetric(&aec->erle, near_average_level, nlpout_average_level); } aec->stateCounter = 0; } } static void UpdateDelayMetrics(AecCore* self) { int i = 0; int delay_values = 0; int median = 0; int lookahead = WebRtc_lookahead(self->delay_estimator); const int kMsPerBlock = PART_LEN / (self->mult * 8); int64_t l1_norm = 0; if (self->num_delay_values == 0) { // We have no new delay value data. Even though -1 is a valid |median| in // the sense that we allow negative values, it will practically never be // used since multiples of |kMsPerBlock| will always be returned. // We therefore use -1 to indicate in the logs that the delay estimator was // not able to estimate the delay. self->delay_median = -1; self->delay_std = -1; self->fraction_poor_delays = -1; return; } // Start value for median count down. delay_values = self->num_delay_values >> 1; // Get median of delay values since last update. for (i = 0; i < kHistorySizeBlocks; i++) { delay_values -= self->delay_histogram[i]; if (delay_values < 0) { median = i; break; } } // Account for lookahead. self->delay_median = (median - lookahead) * kMsPerBlock; // Calculate the L1 norm, with median value as central moment. for (i = 0; i < kHistorySizeBlocks; i++) { l1_norm += abs(i - median) * self->delay_histogram[i]; } self->delay_std = static_cast((l1_norm + self->num_delay_values / 2) / self->num_delay_values) * kMsPerBlock; // Determine fraction of delays that are out of bounds, that is, either // negative (anti-causal system) or larger than the AEC filter length. { int num_delays_out_of_bounds = self->num_delay_values; const int histogram_length = sizeof(self->delay_histogram) / sizeof(self->delay_histogram[0]); for (i = lookahead; i < lookahead + self->num_partitions; ++i) { if (i < histogram_length) num_delays_out_of_bounds -= self->delay_histogram[i]; } self->fraction_poor_delays = static_cast(num_delays_out_of_bounds) / self->num_delay_values; } // Reset histogram. memset(self->delay_histogram, 0, sizeof(self->delay_histogram)); self->num_delay_values = 0; } static void ScaledInverseFft(const OouraFft& ooura_fft, float freq_data[2][PART_LEN1], float time_data[PART_LEN2], float scale, int conjugate) { int i; const float normalization = scale / static_cast(PART_LEN2); const float sign = (conjugate ? -1 : 1); time_data[0] = freq_data[0][0] * normalization; time_data[1] = freq_data[0][PART_LEN] * normalization; for (i = 1; i < PART_LEN; i++) { time_data[2 * i] = freq_data[0][i] * normalization; time_data[2 * i + 1] = sign * freq_data[1][i] * normalization; } ooura_fft.InverseFft(time_data); } static void Fft(const OouraFft& ooura_fft, float time_data[PART_LEN2], float freq_data[2][PART_LEN1]) { int i; ooura_fft.Fft(time_data); // Reorder fft output data. freq_data[1][0] = 0; freq_data[1][PART_LEN] = 0; freq_data[0][0] = time_data[0]; freq_data[0][PART_LEN] = time_data[1]; for (i = 1; i < PART_LEN; i++) { freq_data[0][i] = time_data[2 * i]; freq_data[1][i] = time_data[2 * i + 1]; } } static int SignalBasedDelayCorrection(AecCore* self) { int delay_correction = 0; int last_delay = -2; RTC_DCHECK(self); #if !defined(WEBRTC_ANDROID) // On desktops, turn on correction after |kDelayCorrectionStart| frames. This // is to let the delay estimation get a chance to converge. Also, if the // playout audio volume is low (or even muted) the delay estimation can return // a very large delay, which will break the AEC if it is applied. if (self->frame_count < kDelayCorrectionStart) { self->data_dumper->DumpRaw("aec_da_reported_delay", 1, &last_delay); return 0; } #endif // 1. Check for non-negative delay estimate. Note that the estimates we get // from the delay estimation are not compensated for lookahead. Hence, a // negative |last_delay| is an invalid one. // 2. Verify that there is a delay change. In addition, only allow a change // if the delay is outside a certain region taking the AEC filter length // into account. // TODO(bjornv): Investigate if we can remove the non-zero delay change check. // 3. Only allow delay correction if the delay estimation quality exceeds // |delay_quality_threshold|. // 4. Finally, verify that the proposed |delay_correction| is feasible by // comparing with the size of the far-end buffer. last_delay = WebRtc_last_delay(self->delay_estimator); self->data_dumper->DumpRaw("aec_da_reported_delay", 1, &last_delay); if ((last_delay >= 0) && (last_delay != self->previous_delay) && (WebRtc_last_delay_quality(self->delay_estimator) > self->delay_quality_threshold)) { int delay = last_delay - WebRtc_lookahead(self->delay_estimator); // Allow for a slack in the actual delay, defined by a |lower_bound| and an // |upper_bound|. The adaptive echo cancellation filter is currently // |num_partitions| (of 64 samples) long. If the delay estimate is negative // or at least 3/4 of the filter length we open up for correction. const int lower_bound = 0; const int upper_bound = self->num_partitions * 3 / 4; const int do_correction = delay <= lower_bound || delay > upper_bound; if (do_correction == 1) { int available_read = self->farend_block_buffer_.Size(); // With |shift_offset| we gradually rely on the delay estimates. For // positive delays we reduce the correction by |shift_offset| to lower the // risk of pushing the AEC into a non causal state. For negative delays // we rely on the values up to a rounding error, hence compensate by 1 // element to make sure to push the delay into the causal region. delay_correction = -delay; delay_correction += delay > self->shift_offset ? self->shift_offset : 1; self->shift_offset--; self->shift_offset = (self->shift_offset <= 1 ? 1 : self->shift_offset); if (delay_correction > available_read - self->mult - 1) { // There is not enough data in the buffer to perform this shift. Hence, // we do not rely on the delay estimate and do nothing. delay_correction = 0; } else { self->previous_delay = last_delay; ++self->delay_correction_count; } } } // Update the |delay_quality_threshold| once we have our first delay // correction. if (self->delay_correction_count > 0) { float delay_quality = WebRtc_last_delay_quality(self->delay_estimator); delay_quality = (delay_quality > kDelayQualityThresholdMax ? kDelayQualityThresholdMax : delay_quality); self->delay_quality_threshold = (delay_quality > self->delay_quality_threshold ? delay_quality : self->delay_quality_threshold); } self->data_dumper->DumpRaw("aec_da_delay_correction", 1, &delay_correction); return delay_correction; } static void RegressorPower(int num_partitions, int latest_added_partition, float x_fft_buf[2] [kExtendedNumPartitions * PART_LEN1], float x_pow[PART_LEN1]) { RTC_DCHECK_LT(latest_added_partition, num_partitions); memset(x_pow, 0, PART_LEN1 * sizeof(x_pow[0])); int partition = latest_added_partition; int x_fft_buf_position = partition * PART_LEN1; for (int i = 0; i < num_partitions; ++i) { for (int bin = 0; bin < PART_LEN1; ++bin) { float re = x_fft_buf[0][x_fft_buf_position]; float im = x_fft_buf[1][x_fft_buf_position]; x_pow[bin] += re * re + im * im; ++x_fft_buf_position; } ++partition; if (partition == num_partitions) { partition = 0; RTC_DCHECK_EQ(num_partitions * PART_LEN1, x_fft_buf_position); x_fft_buf_position = 0; } } } static void EchoSubtraction(const OouraFft& ooura_fft, int num_partitions, int extended_filter_enabled, int* extreme_filter_divergence, float filter_step_size, float error_threshold, float* x_fft, int* x_fft_buf_block_pos, float x_fft_buf[2] [kExtendedNumPartitions * PART_LEN1], float* const y, float x_pow[PART_LEN1], float h_fft_buf[2] [kExtendedNumPartitions * PART_LEN1], float echo_subtractor_output[PART_LEN]) { float s_fft[2][PART_LEN1]; float e_extended[PART_LEN2]; float s_extended[PART_LEN2]; float* s; float e[PART_LEN]; float e_fft[2][PART_LEN1]; int i; // Update the x_fft_buf block position. (*x_fft_buf_block_pos)--; if ((*x_fft_buf_block_pos) == -1) { *x_fft_buf_block_pos = num_partitions - 1; } // Buffer x_fft. memcpy(x_fft_buf[0] + (*x_fft_buf_block_pos) * PART_LEN1, x_fft, sizeof(float) * PART_LEN1); memcpy(x_fft_buf[1] + (*x_fft_buf_block_pos) * PART_LEN1, &x_fft[PART_LEN1], sizeof(float) * PART_LEN1); memset(s_fft, 0, sizeof(s_fft)); // Conditionally reset the echo subtraction filter if the filter has diverged // significantly. if (!extended_filter_enabled && *extreme_filter_divergence) { memset(h_fft_buf, 0, 2 * kExtendedNumPartitions * PART_LEN1 * sizeof(h_fft_buf[0][0])); *extreme_filter_divergence = 0; } // Produce echo estimate s_fft. WebRtcAec_FilterFar(num_partitions, *x_fft_buf_block_pos, x_fft_buf, h_fft_buf, s_fft); // Compute the time-domain echo estimate s. ScaledInverseFft(ooura_fft, s_fft, s_extended, 2.0f, 0); s = &s_extended[PART_LEN]; // Compute the time-domain echo prediction error. for (i = 0; i < PART_LEN; ++i) { e[i] = y[i] - s[i]; } // Compute the frequency domain echo prediction error. memset(e_extended, 0, sizeof(float) * PART_LEN); memcpy(e_extended + PART_LEN, e, sizeof(float) * PART_LEN); Fft(ooura_fft, e_extended, e_fft); // Scale error signal inversely with far power. WebRtcAec_ScaleErrorSignal(filter_step_size, error_threshold, x_pow, e_fft); WebRtcAec_FilterAdaptation(ooura_fft, num_partitions, *x_fft_buf_block_pos, x_fft_buf, e_fft, h_fft_buf); memcpy(echo_subtractor_output, e, sizeof(float) * PART_LEN); } static void FormSuppressionGain(AecCore* aec, float cohde[PART_LEN1], float cohxd[PART_LEN1], float hNl[PART_LEN1]) { float hNlDeAvg, hNlXdAvg; float hNlPref[kPrefBandSize]; float hNlFb = 0, hNlFbLow = 0; const int prefBandSize = kPrefBandSize / aec->mult; const float prefBandQuant = 0.75f, prefBandQuantLow = 0.5f; const int minPrefBand = 4 / aec->mult; // Power estimate smoothing coefficients. const float* min_overdrive = aec->extended_filter_enabled ? kExtendedMinOverDrive : kNormalMinOverDrive; hNlXdAvg = 0; for (int i = minPrefBand; i < prefBandSize + minPrefBand; ++i) { hNlXdAvg += cohxd[i]; } hNlXdAvg /= prefBandSize; hNlXdAvg = 1 - hNlXdAvg; hNlDeAvg = 0; for (int i = minPrefBand; i < prefBandSize + minPrefBand; ++i) { hNlDeAvg += cohde[i]; } hNlDeAvg /= prefBandSize; if (hNlXdAvg < 0.75f && hNlXdAvg < aec->hNlXdAvgMin) { aec->hNlXdAvgMin = hNlXdAvg; } if (hNlDeAvg > 0.98f && hNlXdAvg > 0.9f) { aec->stNearState = 1; } else if (hNlDeAvg < 0.95f || hNlXdAvg < 0.8f) { aec->stNearState = 0; } if (aec->hNlXdAvgMin == 1) { aec->echoState = 0; aec->overDrive = min_overdrive[aec->nlp_mode]; if (aec->stNearState == 1) { memcpy(hNl, cohde, sizeof(hNl[0]) * PART_LEN1); hNlFb = hNlDeAvg; hNlFbLow = hNlDeAvg; } else { for (int i = 0; i < PART_LEN1; ++i) { hNl[i] = 1 - cohxd[i]; hNl[i] = std::max(hNl[i], 0.f); } hNlFb = hNlXdAvg; hNlFbLow = hNlXdAvg; } } else { if (aec->stNearState == 1) { aec->echoState = 0; memcpy(hNl, cohde, sizeof(hNl[0]) * PART_LEN1); hNlFb = hNlDeAvg; hNlFbLow = hNlDeAvg; } else { aec->echoState = 1; for (int i = 0; i < PART_LEN1; ++i) { hNl[i] = WEBRTC_SPL_MIN(cohde[i], 1 - cohxd[i]); hNl[i] = std::max(hNl[i], 0.f); } // Select an order statistic from the preferred bands. // TODO(peah): Using quicksort now, but a selection algorithm may be // preferred. memcpy(hNlPref, &hNl[minPrefBand], sizeof(float) * prefBandSize); qsort(hNlPref, prefBandSize, sizeof(float), CmpFloat); hNlFb = hNlPref[static_cast(floor(prefBandQuant * (prefBandSize - 1)))]; hNlFbLow = hNlPref[static_cast(floor(prefBandQuantLow * (prefBandSize - 1)))]; } } // Track the local filter minimum to determine suppression overdrive. if (hNlFbLow < 0.6f && hNlFbLow < aec->hNlFbLocalMin) { aec->hNlFbLocalMin = hNlFbLow; aec->hNlFbMin = hNlFbLow; aec->hNlNewMin = 1; aec->hNlMinCtr = 0; } aec->hNlFbLocalMin = WEBRTC_SPL_MIN(aec->hNlFbLocalMin + 0.0008f / aec->mult, 1); aec->hNlXdAvgMin = WEBRTC_SPL_MIN(aec->hNlXdAvgMin + 0.0006f / aec->mult, 1); if (aec->hNlNewMin == 1) { aec->hNlMinCtr++; } if (aec->hNlMinCtr == 2) { aec->hNlNewMin = 0; aec->hNlMinCtr = 0; aec->overDrive = WEBRTC_SPL_MAX(kTargetSupp[aec->nlp_mode] / static_cast(log(aec->hNlFbMin + 1e-10f) + 1e-10f), min_overdrive[aec->nlp_mode]); } // Smooth the overdrive. if (aec->overDrive < aec->overdrive_scaling) { aec->overdrive_scaling = 0.99f * aec->overdrive_scaling + 0.01f * aec->overDrive; } else { aec->overdrive_scaling = 0.9f * aec->overdrive_scaling + 0.1f * aec->overDrive; } // Apply the overdrive. WebRtcAec_Overdrive(aec->overdrive_scaling, hNlFb, hNl); } static void EchoSuppression(const OouraFft& ooura_fft, AecCore* aec, float* nearend_extended_block_lowest_band, float farend_extended_block[PART_LEN2], float* echo_subtractor_output, float output[NUM_HIGH_BANDS_MAX + 1][PART_LEN]) { float efw[2][PART_LEN1]; float xfw[2][PART_LEN1]; float dfw[2][PART_LEN1]; float comfortNoiseHband[2][PART_LEN1]; float fft[PART_LEN2]; float nlpGainHband; int i; size_t j; // Coherence and non-linear filter float cohde[PART_LEN1], cohxd[PART_LEN1]; float hNl[PART_LEN1]; // Filter energy const int delayEstInterval = 10 * aec->mult; float* xfw_ptr = NULL; // Update eBuf with echo subtractor output. memcpy(aec->eBuf + PART_LEN, echo_subtractor_output, sizeof(float) * PART_LEN); // Analysis filter banks for the echo suppressor. // Windowed near-end ffts. WindowData(fft, nearend_extended_block_lowest_band); ooura_fft.Fft(fft); StoreAsComplex(fft, dfw); // Windowed echo suppressor output ffts. WindowData(fft, aec->eBuf); ooura_fft.Fft(fft); StoreAsComplex(fft, efw); // NLP // Convert far-end partition to the frequency domain with windowing. WindowData(fft, farend_extended_block); Fft(ooura_fft, fft, xfw); xfw_ptr = &xfw[0][0]; // Buffer far. memcpy(aec->xfwBuf, xfw_ptr, sizeof(float) * 2 * PART_LEN1); aec->delayEstCtr++; if (aec->delayEstCtr == delayEstInterval) { aec->delayEstCtr = 0; aec->delayIdx = WebRtcAec_PartitionDelay(aec->num_partitions, aec->wfBuf); } aec->data_dumper->DumpRaw("aec_nlp_delay", 1, &aec->delayIdx); // Use delayed far. memcpy(xfw, aec->xfwBuf + aec->delayIdx * PART_LEN1, sizeof(xfw[0][0]) * 2 * PART_LEN1); WebRtcAec_UpdateCoherenceSpectra(aec->mult, aec->extended_filter_enabled == 1, efw, dfw, xfw, &aec->coherence_state, &aec->divergeState, &aec->extreme_filter_divergence); WebRtcAec_ComputeCoherence(&aec->coherence_state, cohde, cohxd); // Select the microphone signal as output if the filter is deemed to have // diverged. if (aec->divergeState) { memcpy(efw, dfw, sizeof(efw[0][0]) * 2 * PART_LEN1); } FormSuppressionGain(aec, cohde, cohxd, hNl); aec->data_dumper->DumpRaw("aec_nlp_gain", PART_LEN1, hNl); WebRtcAec_Suppress(hNl, efw); // Add comfort noise. ComfortNoise(aec->num_bands > 1, &aec->seed, efw, comfortNoiseHband, aec->noisePow, hNl); // Inverse error fft. ScaledInverseFft(ooura_fft, efw, fft, 2.0f, 1); // Overlap and add to obtain output. for (i = 0; i < PART_LEN; i++) { output[0][i] = (fft[i] * WebRtcAec_sqrtHanning[i] + aec->outBuf[i] * WebRtcAec_sqrtHanning[PART_LEN - i]); // Saturate output to keep it in the allowed range. output[0][i] = WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX, output[0][i], WEBRTC_SPL_WORD16_MIN); } memcpy(aec->outBuf, &fft[PART_LEN], PART_LEN * sizeof(aec->outBuf[0])); // For H band if (aec->num_bands > 1) { // H band gain // average nlp over low band: average over second half of freq spectrum // (4->8khz) GetHighbandGain(hNl, &nlpGainHband); // Inverse comfort_noise ScaledInverseFft(ooura_fft, comfortNoiseHband, fft, 2.0f, 0); // compute gain factor for (j = 1; j < aec->num_bands; ++j) { for (i = 0; i < PART_LEN; i++) { output[j][i] = aec->previous_nearend_block[j][i] * nlpGainHband; } } // Add some comfort noise where Hband is attenuated. for (i = 0; i < PART_LEN; i++) { output[1][i] += cnScaleHband * fft[i]; } // Saturate output to keep it in the allowed range. for (j = 1; j < aec->num_bands; ++j) { for (i = 0; i < PART_LEN; i++) { output[j][i] = WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX, output[j][i], WEBRTC_SPL_WORD16_MIN); } } } // Copy the current block to the old position. memcpy(aec->eBuf, aec->eBuf + PART_LEN, sizeof(float) * PART_LEN); memmove(aec->xfwBuf + PART_LEN1, aec->xfwBuf, sizeof(aec->xfwBuf) - sizeof(complex_t) * PART_LEN1); } static void ProcessNearendBlock( AecCore* aec, float farend_extended_block_lowest_band[PART_LEN2], float nearend_block[NUM_HIGH_BANDS_MAX + 1][PART_LEN], float output_block[NUM_HIGH_BANDS_MAX + 1][PART_LEN]) { size_t i; float fft[PART_LEN2]; float nearend_extended_block_lowest_band[PART_LEN2]; float farend_fft[2][PART_LEN1]; float nearend_fft[2][PART_LEN1]; float far_spectrum = 0.0f; float near_spectrum = 0.0f; float abs_far_spectrum[PART_LEN1]; float abs_near_spectrum[PART_LEN1]; const float gPow[2] = {0.9f, 0.1f}; // Noise estimate constants. const int noiseInitBlocks = 500 * aec->mult; const float step = 0.1f; const float ramp = 1.0002f; const float gInitNoise[2] = {0.999f, 0.001f}; float echo_subtractor_output[PART_LEN]; aec->data_dumper->DumpWav("aec_far", PART_LEN, &farend_extended_block_lowest_band[PART_LEN], std::min(aec->sampFreq, 16000), 1); aec->data_dumper->DumpWav("aec_near", PART_LEN, &nearend_block[0][0], std::min(aec->sampFreq, 16000), 1); if (aec->metricsMode == 1) { // Update power levels UpdateLevel( &aec->farlevel, CalculatePower(&farend_extended_block_lowest_band[PART_LEN], PART_LEN)); UpdateLevel(&aec->nearlevel, CalculatePower(&nearend_block[0][0], PART_LEN)); } // Convert far-end signal to the frequency domain. memcpy(fft, farend_extended_block_lowest_band, sizeof(float) * PART_LEN2); Fft(aec->ooura_fft, fft, farend_fft); // Form extended nearend frame. memcpy(&nearend_extended_block_lowest_band[0], &aec->previous_nearend_block[0][0], sizeof(float) * PART_LEN); memcpy(&nearend_extended_block_lowest_band[PART_LEN], &nearend_block[0][0], sizeof(float) * PART_LEN); // Convert near-end signal to the frequency domain. memcpy(fft, nearend_extended_block_lowest_band, sizeof(float) * PART_LEN2); Fft(aec->ooura_fft, fft, nearend_fft); // Power smoothing. if (aec->refined_adaptive_filter_enabled) { for (i = 0; i < PART_LEN1; ++i) { far_spectrum = farend_fft[0][i] * farend_fft[0][i] + farend_fft[1][i] * farend_fft[1][i]; // Calculate the magnitude spectrum. abs_far_spectrum[i] = sqrtf(far_spectrum); } RegressorPower(aec->num_partitions, aec->xfBufBlockPos, aec->xfBuf, aec->xPow); } else { for (i = 0; i < PART_LEN1; ++i) { far_spectrum = farend_fft[0][i] * farend_fft[0][i] + farend_fft[1][i] * farend_fft[1][i]; aec->xPow[i] = gPow[0] * aec->xPow[i] + gPow[1] * aec->num_partitions * far_spectrum; // Calculate the magnitude spectrum. abs_far_spectrum[i] = sqrtf(far_spectrum); } } for (i = 0; i < PART_LEN1; ++i) { near_spectrum = nearend_fft[0][i] * nearend_fft[0][i] + nearend_fft[1][i] * nearend_fft[1][i]; aec->dPow[i] = gPow[0] * aec->dPow[i] + gPow[1] * near_spectrum; // Calculate the magnitude spectrum. abs_near_spectrum[i] = sqrtf(near_spectrum); } // Estimate noise power. Wait until dPow is more stable. if (aec->noiseEstCtr > 50) { for (i = 0; i < PART_LEN1; i++) { if (aec->dPow[i] < aec->dMinPow[i]) { aec->dMinPow[i] = (aec->dPow[i] + step * (aec->dMinPow[i] - aec->dPow[i])) * ramp; } else { aec->dMinPow[i] *= ramp; } } } // Smooth increasing noise power from zero at the start, // to avoid a sudden burst of comfort noise. if (aec->noiseEstCtr < noiseInitBlocks) { aec->noiseEstCtr++; for (i = 0; i < PART_LEN1; i++) { if (aec->dMinPow[i] > aec->dInitMinPow[i]) { aec->dInitMinPow[i] = gInitNoise[0] * aec->dInitMinPow[i] + gInitNoise[1] * aec->dMinPow[i]; } else { aec->dInitMinPow[i] = aec->dMinPow[i]; } } aec->noisePow = aec->dInitMinPow; } else { aec->noisePow = aec->dMinPow; } // Block wise delay estimation used for logging if (aec->delay_logging_enabled) { if (WebRtc_AddFarSpectrumFloat(aec->delay_estimator_farend, abs_far_spectrum, PART_LEN1) == 0) { int delay_estimate = WebRtc_DelayEstimatorProcessFloat( aec->delay_estimator, abs_near_spectrum, PART_LEN1); if (delay_estimate >= 0) { // Update delay estimate buffer. aec->delay_histogram[delay_estimate]++; aec->num_delay_values++; } if (aec->delay_metrics_delivered == 1 && aec->num_delay_values >= kDelayMetricsAggregationWindow) { UpdateDelayMetrics(aec); } } } // Perform echo subtraction. EchoSubtraction( aec->ooura_fft, aec->num_partitions, aec->extended_filter_enabled, &aec->extreme_filter_divergence, aec->filter_step_size, aec->error_threshold, &farend_fft[0][0], &aec->xfBufBlockPos, aec->xfBuf, &nearend_block[0][0], aec->xPow, aec->wfBuf, echo_subtractor_output); aec->data_dumper->DumpRaw("aec_h_fft", PART_LEN1 * aec->num_partitions, &aec->wfBuf[0][0]); aec->data_dumper->DumpRaw("aec_h_fft", PART_LEN1 * aec->num_partitions, &aec->wfBuf[1][0]); aec->data_dumper->DumpWav("aec_out_linear", PART_LEN, echo_subtractor_output, std::min(aec->sampFreq, 16000), 1); if (aec->metricsMode == 1) { UpdateLevel(&aec->linoutlevel, CalculatePower(echo_subtractor_output, PART_LEN)); } // Perform echo suppression. EchoSuppression(aec->ooura_fft, aec, nearend_extended_block_lowest_band, farend_extended_block_lowest_band, echo_subtractor_output, output_block); if (aec->metricsMode == 1) { UpdateLevel(&aec->nlpoutlevel, CalculatePower(&output_block[0][0], PART_LEN)); UpdateMetrics(aec); } // Store the nearend signal until the next frame. for (i = 0; i < aec->num_bands; ++i) { memcpy(&aec->previous_nearend_block[i][0], &nearend_block[i][0], sizeof(float) * PART_LEN); } aec->data_dumper->DumpWav("aec_out", PART_LEN, &output_block[0][0], std::min(aec->sampFreq, 16000), 1); } AecCore* WebRtcAec_CreateAec(int instance_count) { AecCore* aec = new AecCore(instance_count); if (!aec) { return NULL; } aec->nearend_buffer_size = 0; memset(&aec->nearend_buffer[0], 0, sizeof(aec->nearend_buffer)); // Start the output buffer with zeros to be able to produce // a full output frame in the first frame. aec->output_buffer_size = PART_LEN - (FRAME_LEN - PART_LEN); memset(&aec->output_buffer[0], 0, sizeof(aec->output_buffer)); aec->delay_estimator_farend = WebRtc_CreateDelayEstimatorFarend(PART_LEN1, kHistorySizeBlocks); if (aec->delay_estimator_farend == NULL) { WebRtcAec_FreeAec(aec); return NULL; } // We create the delay_estimator with the same amount of maximum lookahead as // the delay history size (kHistorySizeBlocks) for symmetry reasons. aec->delay_estimator = WebRtc_CreateDelayEstimator( aec->delay_estimator_farend, kHistorySizeBlocks); if (aec->delay_estimator == NULL) { WebRtcAec_FreeAec(aec); return NULL; } #ifdef WEBRTC_ANDROID aec->delay_agnostic_enabled = 1; // DA-AEC enabled by default. // DA-AEC assumes the system is causal from the beginning and will self adjust // the lookahead when shifting is required. WebRtc_set_lookahead(aec->delay_estimator, 0); #else aec->delay_agnostic_enabled = 0; WebRtc_set_lookahead(aec->delay_estimator, kLookaheadBlocks); #endif aec->extended_filter_enabled = 0; aec->refined_adaptive_filter_enabled = false; // Assembly optimization WebRtcAec_FilterFar = FilterFar; WebRtcAec_ScaleErrorSignal = ScaleErrorSignal; WebRtcAec_FilterAdaptation = FilterAdaptation; WebRtcAec_Overdrive = Overdrive; WebRtcAec_Suppress = Suppress; WebRtcAec_ComputeCoherence = ComputeCoherence; WebRtcAec_UpdateCoherenceSpectra = UpdateCoherenceSpectra; WebRtcAec_StoreAsComplex = StoreAsComplex; WebRtcAec_PartitionDelay = PartitionDelay; WebRtcAec_WindowData = WindowData; #if defined(WEBRTC_ARCH_X86_FAMILY) if (WebRtc_GetCPUInfo(kSSE2)) { WebRtcAec_InitAec_SSE2(); } #endif #if defined(MIPS_FPU_LE) WebRtcAec_InitAec_mips(); #endif #if defined(WEBRTC_HAS_NEON) WebRtcAec_InitAec_neon(); #endif return aec; } void WebRtcAec_FreeAec(AecCore* aec) { if (aec == NULL) { return; } WebRtc_FreeDelayEstimator(aec->delay_estimator); WebRtc_FreeDelayEstimatorFarend(aec->delay_estimator_farend); delete aec; } static void SetAdaptiveFilterStepSize(AecCore* aec) { // Extended filter adaptation parameter. // TODO(ajm): No narrowband tuning yet. const float kExtendedMu = 0.4f; if (aec->refined_adaptive_filter_enabled) { aec->filter_step_size = 0.05f; } else { if (aec->extended_filter_enabled) { aec->filter_step_size = kExtendedMu; } else { if (aec->sampFreq == 8000) { aec->filter_step_size = 0.6f; } else { aec->filter_step_size = 0.5f; } } } } static void SetErrorThreshold(AecCore* aec) { // Extended filter adaptation parameter. // TODO(ajm): No narrowband tuning yet. static const float kExtendedErrorThreshold = 1.0e-6f; if (aec->extended_filter_enabled) { aec->error_threshold = kExtendedErrorThreshold; } else { if (aec->sampFreq == 8000) { aec->error_threshold = 2e-6f; } else { aec->error_threshold = 1.5e-6f; } } } int WebRtcAec_InitAec(AecCore* aec, int sampFreq) { int i; aec->data_dumper->InitiateNewSetOfRecordings(); aec->sampFreq = sampFreq; SetAdaptiveFilterStepSize(aec); SetErrorThreshold(aec); if (sampFreq == 8000) { aec->num_bands = 1; } else { aec->num_bands = (size_t)(sampFreq / 16000); } // Start the output buffer with zeros to be able to produce // a full output frame in the first frame. aec->output_buffer_size = PART_LEN - (FRAME_LEN - PART_LEN); memset(&aec->output_buffer[0], 0, sizeof(aec->output_buffer)); aec->nearend_buffer_size = 0; memset(&aec->nearend_buffer[0], 0, sizeof(aec->nearend_buffer)); // Initialize far-end buffer. aec->farend_block_buffer_.ReInit(); aec->system_delay = 0; if (WebRtc_InitDelayEstimatorFarend(aec->delay_estimator_farend) != 0) { return -1; } if (WebRtc_InitDelayEstimator(aec->delay_estimator) != 0) { return -1; } aec->delay_logging_enabled = 0; aec->delay_metrics_delivered = 0; memset(aec->delay_histogram, 0, sizeof(aec->delay_histogram)); aec->num_delay_values = 0; aec->delay_median = -1; aec->delay_std = -1; aec->fraction_poor_delays = -1.0f; aec->previous_delay = -2; // (-2): Uninitialized. aec->delay_correction_count = 0; aec->shift_offset = kInitialShiftOffset; aec->delay_quality_threshold = kDelayQualityThresholdMin; aec->num_partitions = kNormalNumPartitions; // Update the delay estimator with filter length. We use half the // |num_partitions| to take the echo path into account. In practice we say // that the echo has a duration of maximum half |num_partitions|, which is not // true, but serves as a crude measure. WebRtc_set_allowed_offset(aec->delay_estimator, aec->num_partitions / 2); // TODO(bjornv): I currently hard coded the enable. Once we've established // that AECM has no performance regression, robust_validation will be enabled // all the time and the APIs to turn it on/off will be removed. Hence, remove // this line then. WebRtc_enable_robust_validation(aec->delay_estimator, 1); aec->frame_count = 0; // Default target suppression mode. aec->nlp_mode = 1; // Sampling frequency multiplier w.r.t. 8 kHz. // In case of multiple bands we process the lower band in 16 kHz, hence the // multiplier is always 2. if (aec->num_bands > 1) { aec->mult = 2; } else { aec->mult = static_cast(aec->sampFreq) / 8000; } aec->farBufWritePos = 0; aec->farBufReadPos = 0; aec->inSamples = 0; aec->outSamples = 0; aec->knownDelay = 0; // Initialize buffers memset(aec->previous_nearend_block, 0, sizeof(aec->previous_nearend_block)); memset(aec->eBuf, 0, sizeof(aec->eBuf)); memset(aec->xPow, 0, sizeof(aec->xPow)); memset(aec->dPow, 0, sizeof(aec->dPow)); memset(aec->dInitMinPow, 0, sizeof(aec->dInitMinPow)); aec->noisePow = aec->dInitMinPow; aec->noiseEstCtr = 0; // Initial comfort noise power for (i = 0; i < PART_LEN1; i++) { aec->dMinPow[i] = 1.0e6f; } // Holds the last block written to aec->xfBufBlockPos = 0; // TODO(peah): Investigate need for these initializations. Deleting them // doesn't change the output at all and yields 0.4% overall speedup. memset(aec->xfBuf, 0, sizeof(complex_t) * kExtendedNumPartitions * PART_LEN1); memset(aec->wfBuf, 0, sizeof(complex_t) * kExtendedNumPartitions * PART_LEN1); memset(aec->coherence_state.sde, 0, sizeof(complex_t) * PART_LEN1); memset(aec->coherence_state.sxd, 0, sizeof(complex_t) * PART_LEN1); memset(aec->xfwBuf, 0, sizeof(complex_t) * kExtendedNumPartitions * PART_LEN1); memset(aec->coherence_state.se, 0, sizeof(float) * PART_LEN1); // To prevent numerical instability in the first block. for (i = 0; i < PART_LEN1; i++) { aec->coherence_state.sd[i] = 1; } for (i = 0; i < PART_LEN1; i++) { aec->coherence_state.sx[i] = 1; } memset(aec->hNs, 0, sizeof(aec->hNs)); memset(aec->outBuf, 0, sizeof(float) * PART_LEN); aec->hNlFbMin = 1; aec->hNlFbLocalMin = 1; aec->hNlXdAvgMin = 1; aec->hNlNewMin = 0; aec->hNlMinCtr = 0; aec->overDrive = 2; aec->overdrive_scaling = 2; aec->delayIdx = 0; aec->stNearState = 0; aec->echoState = 0; aec->divergeState = 0; aec->seed = 777; aec->delayEstCtr = 0; aec->extreme_filter_divergence = 0; // Metrics disabled by default aec->metricsMode = 0; InitMetrics(aec); return 0; } void WebRtcAec_BufferFarendBlock(AecCore* aec, const float* farend) { // Check if the buffer is full, and in that case flush the oldest data. if (aec->farend_block_buffer_.AvaliableSpace() < 1) { aec->farend_block_buffer_.AdjustSize(1); } aec->farend_block_buffer_.Insert(farend); } int WebRtcAec_AdjustFarendBufferSizeAndSystemDelay(AecCore* aec, int buffer_size_decrease) { int achieved_buffer_size_decrease = aec->farend_block_buffer_.AdjustSize(buffer_size_decrease); aec->system_delay -= achieved_buffer_size_decrease * PART_LEN; return achieved_buffer_size_decrease; } void FormNearendBlock( size_t nearend_start_index, size_t num_bands, const float* const* nearend_frame, size_t num_samples_from_nearend_frame, const float nearend_buffer[NUM_HIGH_BANDS_MAX + 1] [PART_LEN - (FRAME_LEN - PART_LEN)], float nearend_block[NUM_HIGH_BANDS_MAX + 1][PART_LEN]) { RTC_DCHECK_LE(num_samples_from_nearend_frame, PART_LEN); const int num_samples_from_buffer = PART_LEN - num_samples_from_nearend_frame; if (num_samples_from_buffer > 0) { for (size_t i = 0; i < num_bands; ++i) { memcpy(&nearend_block[i][0], &nearend_buffer[i][0], num_samples_from_buffer * sizeof(float)); } } for (size_t i = 0; i < num_bands; ++i) { memcpy(&nearend_block[i][num_samples_from_buffer], &nearend_frame[i][nearend_start_index], num_samples_from_nearend_frame * sizeof(float)); } } void BufferNearendFrame( size_t nearend_start_index, size_t num_bands, const float* const* nearend_frame, size_t num_samples_to_buffer, float nearend_buffer[NUM_HIGH_BANDS_MAX + 1] [PART_LEN - (FRAME_LEN - PART_LEN)]) { for (size_t i = 0; i < num_bands; ++i) { memcpy( &nearend_buffer[i][0], &nearend_frame[i] [nearend_start_index + FRAME_LEN - num_samples_to_buffer], num_samples_to_buffer * sizeof(float)); } } void BufferOutputBlock(size_t num_bands, const float output_block[NUM_HIGH_BANDS_MAX + 1] [PART_LEN], size_t* output_buffer_size, float output_buffer[NUM_HIGH_BANDS_MAX + 1] [2 * PART_LEN]) { for (size_t i = 0; i < num_bands; ++i) { memcpy(&output_buffer[i][*output_buffer_size], &output_block[i][0], PART_LEN * sizeof(float)); } (*output_buffer_size) += PART_LEN; } void FormOutputFrame(size_t output_start_index, size_t num_bands, size_t* output_buffer_size, float output_buffer[NUM_HIGH_BANDS_MAX + 1][2 * PART_LEN], float* const* output_frame) { RTC_DCHECK_LE(FRAME_LEN, *output_buffer_size); for (size_t i = 0; i < num_bands; ++i) { memcpy(&output_frame[i][output_start_index], &output_buffer[i][0], FRAME_LEN * sizeof(float)); } (*output_buffer_size) -= FRAME_LEN; if (*output_buffer_size > 0) { RTC_DCHECK_GE(2 * PART_LEN - FRAME_LEN, (*output_buffer_size)); for (size_t i = 0; i < num_bands; ++i) { memcpy(&output_buffer[i][0], &output_buffer[i][FRAME_LEN], (*output_buffer_size) * sizeof(float)); } } } void WebRtcAec_ProcessFrames(AecCore* aec, const float* const* nearend, size_t num_bands, size_t num_samples, int knownDelay, float* const* out) { RTC_DCHECK(num_samples == 80 || num_samples == 160); aec->frame_count++; // For each frame the process is as follows: // 1) If the system_delay indicates on being too small for processing a // frame we stuff the buffer with enough data for 10 ms. // 2 a) Adjust the buffer to the system delay, by moving the read pointer. // b) Apply signal based delay correction, if we have detected poor AEC // performance. // 3) TODO(bjornv): Investigate if we need to add this: // If we can't move read pointer due to buffer size limitations we // flush/stuff the buffer. // 4) Process as many partitions as possible. // 5) Update the |system_delay| with respect to a full frame of FRAME_LEN // samples. Even though we will have data left to process (we work with // partitions) we consider updating a whole frame, since that's the // amount of data we input and output in audio_processing. // 6) Update the outputs. // The AEC has two different delay estimation algorithms built in. The // first relies on delay input values from the user and the amount of // shifted buffer elements is controlled by |knownDelay|. This delay will // give a guess on how much we need to shift far-end buffers to align with // the near-end signal. The other delay estimation algorithm uses the // far- and near-end signals to find the offset between them. This one // (called "signal delay") is then used to fine tune the alignment, or // simply compensate for errors in the system based one. // Note that the two algorithms operate independently. Currently, we only // allow one algorithm to be turned on. RTC_DCHECK_EQ(aec->num_bands, num_bands); for (size_t j = 0; j < num_samples; j += FRAME_LEN) { // 1) At most we process |aec->mult|+1 partitions in 10 ms. Make sure we // have enough far-end data for that by stuffing the buffer if the // |system_delay| indicates others. if (aec->system_delay < FRAME_LEN) { // We don't have enough data so we rewind 10 ms. WebRtcAec_AdjustFarendBufferSizeAndSystemDelay(aec, -(aec->mult + 1)); } if (!aec->delay_agnostic_enabled) { // 2 a) Compensate for a possible change in the system delay. // TODO(bjornv): Investigate how we should round the delay difference; // right now we know that incoming |knownDelay| is underestimated when // it's less than |aec->knownDelay|. We therefore, round (-32) in that // direction. In the other direction, we don't have this situation, but // might flush one partition too little. This can cause non-causality, // which should be investigated. Maybe, allow for a non-symmetric // rounding, like -16. int move_elements = (aec->knownDelay - knownDelay - 32) / PART_LEN; int moved_elements = aec->farend_block_buffer_.AdjustSize(move_elements); MaybeLogDelayAdjustment(moved_elements * (aec->sampFreq == 8000 ? 8 : 4), DelaySource::kSystemDelay); aec->knownDelay -= moved_elements * PART_LEN; } else { // 2 b) Apply signal based delay correction. int move_elements = SignalBasedDelayCorrection(aec); int moved_elements = aec->farend_block_buffer_.AdjustSize(move_elements); MaybeLogDelayAdjustment(moved_elements * (aec->sampFreq == 8000 ? 8 : 4), DelaySource::kDelayAgnostic); int far_near_buffer_diff = aec->farend_block_buffer_.Size() - (aec->nearend_buffer_size + FRAME_LEN) / PART_LEN; WebRtc_SoftResetDelayEstimator(aec->delay_estimator, moved_elements); WebRtc_SoftResetDelayEstimatorFarend(aec->delay_estimator_farend, moved_elements); // If we rely on reported system delay values only, a buffer underrun here // can never occur since we've taken care of that in 1) above. Here, we // apply signal based delay correction and can therefore end up with // buffer underruns since the delay estimation can be wrong. We therefore // stuff the buffer with enough elements if needed. if (far_near_buffer_diff < 0) { WebRtcAec_AdjustFarendBufferSizeAndSystemDelay(aec, far_near_buffer_diff); } } static_assert( 16 == (FRAME_LEN - PART_LEN), "These constants need to be properly related for this code to work"); float output_block[NUM_HIGH_BANDS_MAX + 1][PART_LEN]; float nearend_block[NUM_HIGH_BANDS_MAX + 1][PART_LEN]; float farend_extended_block_lowest_band[PART_LEN2]; // Form and process a block of nearend samples, buffer the output block of // samples. aec->farend_block_buffer_.ExtractExtendedBlock( farend_extended_block_lowest_band); FormNearendBlock(j, num_bands, nearend, PART_LEN - aec->nearend_buffer_size, aec->nearend_buffer, nearend_block); ProcessNearendBlock(aec, farend_extended_block_lowest_band, nearend_block, output_block); BufferOutputBlock(num_bands, output_block, &aec->output_buffer_size, aec->output_buffer); if ((FRAME_LEN - PART_LEN + aec->nearend_buffer_size) == PART_LEN) { // When possible (every fourth frame) form and process a second block of // nearend samples, buffer the output block of samples. aec->farend_block_buffer_.ExtractExtendedBlock( farend_extended_block_lowest_band); FormNearendBlock(j + FRAME_LEN - PART_LEN, num_bands, nearend, PART_LEN, aec->nearend_buffer, nearend_block); ProcessNearendBlock(aec, farend_extended_block_lowest_band, nearend_block, output_block); BufferOutputBlock(num_bands, output_block, &aec->output_buffer_size, aec->output_buffer); // Reset the buffer size as there are no samples left in the nearend input // to buffer. aec->nearend_buffer_size = 0; } else { // Buffer the remaining samples in the nearend input. aec->nearend_buffer_size += FRAME_LEN - PART_LEN; BufferNearendFrame(j, num_bands, nearend, aec->nearend_buffer_size, aec->nearend_buffer); } // 5) Update system delay with respect to the entire frame. aec->system_delay -= FRAME_LEN; // 6) Form the output frame. FormOutputFrame(j, num_bands, &aec->output_buffer_size, aec->output_buffer, out); } } int WebRtcAec_GetDelayMetricsCore(AecCore* self, int* median, int* std, float* fraction_poor_delays) { RTC_DCHECK(self); RTC_DCHECK(median); RTC_DCHECK(std); if (self->delay_logging_enabled == 0) { // Logging disabled. return -1; } if (self->delay_metrics_delivered == 0) { UpdateDelayMetrics(self); self->delay_metrics_delivered = 1; } *median = self->delay_median; *std = self->delay_std; *fraction_poor_delays = self->fraction_poor_delays; return 0; } int WebRtcAec_echo_state(AecCore* self) { return self->echoState; } void WebRtcAec_GetEchoStats(AecCore* self, Stats* erl, Stats* erle, Stats* a_nlp, float* divergent_filter_fraction) { RTC_DCHECK(erl); RTC_DCHECK(erle); RTC_DCHECK(a_nlp); *erl = self->erl; *erle = self->erle; *a_nlp = self->aNlp; *divergent_filter_fraction = self->divergent_filter_fraction.GetLatestFraction(); } void WebRtcAec_SetConfigCore(AecCore* self, int nlp_mode, int metrics_mode, int delay_logging) { RTC_DCHECK_GE(nlp_mode, 0); RTC_DCHECK_LT(nlp_mode, 3); self->nlp_mode = nlp_mode; self->metricsMode = metrics_mode; if (self->metricsMode) { InitMetrics(self); } // Turn on delay logging if it is either set explicitly or if delay agnostic // AEC is enabled (which requires delay estimates). self->delay_logging_enabled = delay_logging || self->delay_agnostic_enabled; if (self->delay_logging_enabled) { memset(self->delay_histogram, 0, sizeof(self->delay_histogram)); } } void WebRtcAec_enable_delay_agnostic(AecCore* self, int enable) { self->delay_agnostic_enabled = enable; } int WebRtcAec_delay_agnostic_enabled(AecCore* self) { return self->delay_agnostic_enabled; } void WebRtcAec_enable_refined_adaptive_filter(AecCore* self, bool enable) { self->refined_adaptive_filter_enabled = enable; SetAdaptiveFilterStepSize(self); SetErrorThreshold(self); } bool WebRtcAec_refined_adaptive_filter_enabled(const AecCore* self) { return self->refined_adaptive_filter_enabled; } void WebRtcAec_enable_extended_filter(AecCore* self, int enable) { self->extended_filter_enabled = enable; SetAdaptiveFilterStepSize(self); SetErrorThreshold(self); self->num_partitions = enable ? kExtendedNumPartitions : kNormalNumPartitions; // Update the delay estimator with filter length. See InitAEC() for details. WebRtc_set_allowed_offset(self->delay_estimator, self->num_partitions / 2); } int WebRtcAec_extended_filter_enabled(AecCore* self) { return self->extended_filter_enabled; } int WebRtcAec_system_delay(AecCore* self) { return self->system_delay; } void WebRtcAec_SetSystemDelay(AecCore* self, int delay) { RTC_DCHECK_GE(delay, 0); self->system_delay = delay; } } // namespace webrtc