/* * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/video_coding/jitter_estimator.h" #include #include #include #include #include #include "modules/video_coding/internal_defines.h" #include "modules/video_coding/rtt_filter.h" #include "system_wrappers/include/clock.h" #include "system_wrappers/include/field_trial.h" namespace webrtc { enum { kStartupDelaySamples = 30 }; enum { kFsAccuStartupSamples = 5 }; enum { kMaxFramerateEstimate = 200 }; VCMJitterEstimator::VCMJitterEstimator(const Clock* clock, int32_t vcmId, int32_t receiverId) : _vcmId(vcmId), _receiverId(receiverId), _phi(0.97), _psi(0.9999), _alphaCountMax(400), _thetaLow(0.000001), _nackLimit(3), _numStdDevDelayOutlier(15), _numStdDevFrameSizeOutlier(3), _noiseStdDevs(2.33), // ~Less than 1% chance // (look up in normal distribution table)... _noiseStdDevOffset(30.0), // ...of getting 30 ms freezes _rttFilter(), fps_counter_(30), // TODO(sprang): Use an estimator with limit based on // time, rather than number of samples. low_rate_experiment_(kInit), clock_(clock) { Reset(); } VCMJitterEstimator::~VCMJitterEstimator() {} VCMJitterEstimator& VCMJitterEstimator::operator=( const VCMJitterEstimator& rhs) { if (this != &rhs) { memcpy(_thetaCov, rhs._thetaCov, sizeof(_thetaCov)); memcpy(_Qcov, rhs._Qcov, sizeof(_Qcov)); _vcmId = rhs._vcmId; _receiverId = rhs._receiverId; _avgFrameSize = rhs._avgFrameSize; _varFrameSize = rhs._varFrameSize; _maxFrameSize = rhs._maxFrameSize; _fsSum = rhs._fsSum; _fsCount = rhs._fsCount; _lastUpdateT = rhs._lastUpdateT; _prevEstimate = rhs._prevEstimate; _prevFrameSize = rhs._prevFrameSize; _avgNoise = rhs._avgNoise; _alphaCount = rhs._alphaCount; _filterJitterEstimate = rhs._filterJitterEstimate; _startupCount = rhs._startupCount; _latestNackTimestamp = rhs._latestNackTimestamp; _nackCount = rhs._nackCount; _rttFilter = rhs._rttFilter; } return *this; } // Resets the JitterEstimate void VCMJitterEstimator::Reset() { _theta[0] = 1 / (512e3 / 8); _theta[1] = 0; _varNoise = 4.0; _thetaCov[0][0] = 1e-4; _thetaCov[1][1] = 1e2; _thetaCov[0][1] = _thetaCov[1][0] = 0; _Qcov[0][0] = 2.5e-10; _Qcov[1][1] = 1e-10; _Qcov[0][1] = _Qcov[1][0] = 0; _avgFrameSize = 500; _maxFrameSize = 500; _varFrameSize = 100; _lastUpdateT = -1; _prevEstimate = -1.0; _prevFrameSize = 0; _avgNoise = 0.0; _alphaCount = 1; _filterJitterEstimate = 0.0; _latestNackTimestamp = 0; _nackCount = 0; _fsSum = 0; _fsCount = 0; _startupCount = 0; _rttFilter.Reset(); fps_counter_.Reset(); } void VCMJitterEstimator::ResetNackCount() { _nackCount = 0; } // Updates the estimates with the new measurements void VCMJitterEstimator::UpdateEstimate(int64_t frameDelayMS, uint32_t frameSizeBytes, bool incompleteFrame /* = false */) { if (frameSizeBytes == 0) { return; } int deltaFS = frameSizeBytes - _prevFrameSize; if (_fsCount < kFsAccuStartupSamples) { _fsSum += frameSizeBytes; _fsCount++; } else if (_fsCount == kFsAccuStartupSamples) { // Give the frame size filter _avgFrameSize = static_cast(_fsSum) / static_cast(_fsCount); _fsCount++; } if (!incompleteFrame || frameSizeBytes > _avgFrameSize) { double avgFrameSize = _phi * _avgFrameSize + (1 - _phi) * frameSizeBytes; if (frameSizeBytes < _avgFrameSize + 2 * sqrt(_varFrameSize)) { // Only update the average frame size if this sample wasn't a // key frame _avgFrameSize = avgFrameSize; } // Update the variance anyway since we want to capture cases where we only // get // key frames. _varFrameSize = VCM_MAX(_phi * _varFrameSize + (1 - _phi) * (frameSizeBytes - avgFrameSize) * (frameSizeBytes - avgFrameSize), 1.0); } // Update max frameSize estimate _maxFrameSize = VCM_MAX(_psi * _maxFrameSize, static_cast(frameSizeBytes)); if (_prevFrameSize == 0) { _prevFrameSize = frameSizeBytes; return; } _prevFrameSize = frameSizeBytes; // Only update the Kalman filter if the sample is not considered // an extreme outlier. Even if it is an extreme outlier from a // delay point of view, if the frame size also is large the // deviation is probably due to an incorrect line slope. double deviation = DeviationFromExpectedDelay(frameDelayMS, deltaFS); if (fabs(deviation) < _numStdDevDelayOutlier * sqrt(_varNoise) || frameSizeBytes > _avgFrameSize + _numStdDevFrameSizeOutlier * sqrt(_varFrameSize)) { // Update the variance of the deviation from the // line given by the Kalman filter EstimateRandomJitter(deviation, incompleteFrame); // Prevent updating with frames which have been congested by a large // frame, and therefore arrives almost at the same time as that frame. // This can occur when we receive a large frame (key frame) which // has been delayed. The next frame is of normal size (delta frame), // and thus deltaFS will be << 0. This removes all frame samples // which arrives after a key frame. if ((!incompleteFrame || deviation >= 0.0) && static_cast(deltaFS) > -0.25 * _maxFrameSize) { // Update the Kalman filter with the new data KalmanEstimateChannel(frameDelayMS, deltaFS); } } else { int nStdDev = (deviation >= 0) ? _numStdDevDelayOutlier : -_numStdDevDelayOutlier; EstimateRandomJitter(nStdDev * sqrt(_varNoise), incompleteFrame); } // Post process the total estimated jitter if (_startupCount >= kStartupDelaySamples) { PostProcessEstimate(); } else { _startupCount++; } } // Updates the nack/packet ratio void VCMJitterEstimator::FrameNacked() { // Wait until _nackLimit retransmissions has been received, // then always add ~1 RTT delay. // TODO(holmer): Should we ever remove the additional delay if the // the packet losses seem to have stopped? We could for instance scale // the number of RTTs to add with the amount of retransmissions in a given // time interval, or similar. if (_nackCount < _nackLimit) { _nackCount++; } } // Updates Kalman estimate of the channel // The caller is expected to sanity check the inputs. void VCMJitterEstimator::KalmanEstimateChannel(int64_t frameDelayMS, int32_t deltaFSBytes) { double Mh[2]; double hMh_sigma; double kalmanGain[2]; double measureRes; double t00, t01; // Kalman filtering // Prediction // M = M + Q _thetaCov[0][0] += _Qcov[0][0]; _thetaCov[0][1] += _Qcov[0][1]; _thetaCov[1][0] += _Qcov[1][0]; _thetaCov[1][1] += _Qcov[1][1]; // Kalman gain // K = M*h'/(sigma2n + h*M*h') = M*h'/(1 + h*M*h') // h = [dFS 1] // Mh = M*h' // hMh_sigma = h*M*h' + R Mh[0] = _thetaCov[0][0] * deltaFSBytes + _thetaCov[0][1]; Mh[1] = _thetaCov[1][0] * deltaFSBytes + _thetaCov[1][1]; // sigma weights measurements with a small deltaFS as noisy and // measurements with large deltaFS as good if (_maxFrameSize < 1.0) { return; } double sigma = (300.0 * exp(-fabs(static_cast(deltaFSBytes)) / (1e0 * _maxFrameSize)) + 1) * sqrt(_varNoise); if (sigma < 1.0) { sigma = 1.0; } hMh_sigma = deltaFSBytes * Mh[0] + Mh[1] + sigma; if ((hMh_sigma < 1e-9 && hMh_sigma >= 0) || (hMh_sigma > -1e-9 && hMh_sigma <= 0)) { assert(false); return; } kalmanGain[0] = Mh[0] / hMh_sigma; kalmanGain[1] = Mh[1] / hMh_sigma; // Correction // theta = theta + K*(dT - h*theta) measureRes = frameDelayMS - (deltaFSBytes * _theta[0] + _theta[1]); _theta[0] += kalmanGain[0] * measureRes; _theta[1] += kalmanGain[1] * measureRes; if (_theta[0] < _thetaLow) { _theta[0] = _thetaLow; } // M = (I - K*h)*M t00 = _thetaCov[0][0]; t01 = _thetaCov[0][1]; _thetaCov[0][0] = (1 - kalmanGain[0] * deltaFSBytes) * t00 - kalmanGain[0] * _thetaCov[1][0]; _thetaCov[0][1] = (1 - kalmanGain[0] * deltaFSBytes) * t01 - kalmanGain[0] * _thetaCov[1][1]; _thetaCov[1][0] = _thetaCov[1][0] * (1 - kalmanGain[1]) - kalmanGain[1] * deltaFSBytes * t00; _thetaCov[1][1] = _thetaCov[1][1] * (1 - kalmanGain[1]) - kalmanGain[1] * deltaFSBytes * t01; // Covariance matrix, must be positive semi-definite assert(_thetaCov[0][0] + _thetaCov[1][1] >= 0 && _thetaCov[0][0] * _thetaCov[1][1] - _thetaCov[0][1] * _thetaCov[1][0] >= 0 && _thetaCov[0][0] >= 0); } // Calculate difference in delay between a sample and the // expected delay estimated by the Kalman filter double VCMJitterEstimator::DeviationFromExpectedDelay( int64_t frameDelayMS, int32_t deltaFSBytes) const { return frameDelayMS - (_theta[0] * deltaFSBytes + _theta[1]); } // Estimates the random jitter by calculating the variance of the // sample distance from the line given by theta. void VCMJitterEstimator::EstimateRandomJitter(double d_dT, bool incompleteFrame) { uint64_t now = clock_->TimeInMicroseconds(); if (_lastUpdateT != -1) { fps_counter_.AddSample(now - _lastUpdateT); } _lastUpdateT = now; if (_alphaCount == 0) { assert(false); return; } double alpha = static_cast(_alphaCount - 1) / static_cast(_alphaCount); _alphaCount++; if (_alphaCount > _alphaCountMax) _alphaCount = _alphaCountMax; if (LowRateExperimentEnabled()) { // In order to avoid a low frame rate stream to react slower to changes, // scale the alpha weight relative a 30 fps stream. double fps = GetFrameRate(); if (fps > 0.0) { double rate_scale = 30.0 / fps; // At startup, there can be a lot of noise in the fps estimate. // Interpolate rate_scale linearly, from 1.0 at sample #1, to 30.0 / fps // at sample #kStartupDelaySamples. if (_alphaCount < kStartupDelaySamples) { rate_scale = (_alphaCount * rate_scale + (kStartupDelaySamples - _alphaCount)) / kStartupDelaySamples; } alpha = pow(alpha, rate_scale); } } double avgNoise = alpha * _avgNoise + (1 - alpha) * d_dT; double varNoise = alpha * _varNoise + (1 - alpha) * (d_dT - _avgNoise) * (d_dT - _avgNoise); if (!incompleteFrame || varNoise > _varNoise) { _avgNoise = avgNoise; _varNoise = varNoise; } if (_varNoise < 1.0) { // The variance should never be zero, since we might get // stuck and consider all samples as outliers. _varNoise = 1.0; } } double VCMJitterEstimator::NoiseThreshold() const { double noiseThreshold = _noiseStdDevs * sqrt(_varNoise) - _noiseStdDevOffset; if (noiseThreshold < 1.0) { noiseThreshold = 1.0; } return noiseThreshold; } // Calculates the current jitter estimate from the filtered estimates double VCMJitterEstimator::CalculateEstimate() { double ret = _theta[0] * (_maxFrameSize - _avgFrameSize) + NoiseThreshold(); // A very low estimate (or negative) is neglected if (ret < 1.0) { if (_prevEstimate <= 0.01) { ret = 1.0; } else { ret = _prevEstimate; } } if (ret > 10000.0) { // Sanity ret = 10000.0; } _prevEstimate = ret; return ret; } void VCMJitterEstimator::PostProcessEstimate() { _filterJitterEstimate = CalculateEstimate(); } void VCMJitterEstimator::UpdateRtt(int64_t rttMs) { _rttFilter.Update(rttMs); } void VCMJitterEstimator::UpdateMaxFrameSize(uint32_t frameSizeBytes) { if (_maxFrameSize < frameSizeBytes) { _maxFrameSize = frameSizeBytes; } } // Returns the current filtered estimate if available, // otherwise tries to calculate an estimate. int VCMJitterEstimator::GetJitterEstimate(double rttMultiplier) { double jitterMS = CalculateEstimate() + OPERATING_SYSTEM_JITTER; if (_filterJitterEstimate > jitterMS) jitterMS = _filterJitterEstimate; if (_nackCount >= _nackLimit) jitterMS += _rttFilter.RttMs() * rttMultiplier; if (LowRateExperimentEnabled()) { static const double kJitterScaleLowThreshold = 5.0; static const double kJitterScaleHighThreshold = 10.0; double fps = GetFrameRate(); // Ignore jitter for very low fps streams. if (fps < kJitterScaleLowThreshold) { if (fps == 0.0) { return jitterMS; } return 0; } // Semi-low frame rate; scale by factor linearly interpolated from 0.0 at // kJitterScaleLowThreshold to 1.0 at kJitterScaleHighThreshold. if (fps < kJitterScaleHighThreshold) { jitterMS = (1.0 / (kJitterScaleHighThreshold - kJitterScaleLowThreshold)) * (fps - kJitterScaleLowThreshold) * jitterMS; } } return static_cast(jitterMS + 0.5); } bool VCMJitterEstimator::LowRateExperimentEnabled() { if (low_rate_experiment_ == kInit) { std::string group = webrtc::field_trial::FindFullName("WebRTC-ReducedJitterDelay"); if (group == "Disabled") { low_rate_experiment_ = kDisabled; } else { low_rate_experiment_ = kEnabled; } } return low_rate_experiment_ == kEnabled ? true : false; } double VCMJitterEstimator::GetFrameRate() const { if (fps_counter_.ComputeMean() == 0.0) return 0; double fps = 1000000.0 / fps_counter_.ComputeMean(); // Sanity check. assert(fps >= 0.0); if (fps > kMaxFramerateEstimate) { fps = kMaxFramerateEstimate; } return fps; } } // namespace webrtc