/* * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include // For ULONG_MAX returned by strtoul. #include #include // For strtoul. #include #include #include #include "modules/audio_coding/neteq/include/neteq.h" #include "modules/audio_coding/neteq/tools/fake_decode_from_file.h" #include "modules/audio_coding/neteq/tools/input_audio_file.h" #include "modules/audio_coding/neteq/tools/neteq_delay_analyzer.h" #include "modules/audio_coding/neteq/tools/neteq_packet_source_input.h" #include "modules/audio_coding/neteq/tools/neteq_replacement_input.h" #include "modules/audio_coding/neteq/tools/neteq_stats_getter.h" #include "modules/audio_coding/neteq/tools/neteq_test.h" #include "modules/audio_coding/neteq/tools/output_audio_file.h" #include "modules/audio_coding/neteq/tools/output_wav_file.h" #include "modules/audio_coding/neteq/tools/rtp_file_source.h" #include "rtc_base/checks.h" #include "rtc_base/flags.h" #include "test/testsupport/fileutils.h" #include "typedefs.h" // NOLINT(build/include) namespace webrtc { namespace test { namespace { // Parses the input string for a valid SSRC (at the start of the string). If a // valid SSRC is found, it is written to the output variable |ssrc|, and true is // returned. Otherwise, false is returned. bool ParseSsrc(const std::string& str, uint32_t* ssrc) { if (str.empty()) return true; int base = 10; // Look for "0x" or "0X" at the start and change base to 16 if found. if ((str.compare(0, 2, "0x") == 0) || (str.compare(0, 2, "0X") == 0)) base = 16; errno = 0; char* end_ptr; unsigned long value = strtoul(str.c_str(), &end_ptr, base); if (value == ULONG_MAX && errno == ERANGE) return false; // Value out of range for unsigned long. if (sizeof(unsigned long) > sizeof(uint32_t) && value > 0xFFFFFFFF) return false; // Value out of range for uint32_t. if (end_ptr - str.c_str() < static_cast(str.length())) return false; // Part of the string was not parsed. *ssrc = static_cast(value); return true; } // Flag validators. bool ValidatePayloadType(int value) { if (value >= 0 && value <= 127) // Value is ok. return true; printf("Payload type must be between 0 and 127, not %d\n", static_cast(value)); return false; } bool ValidateSsrcValue(const std::string& str) { uint32_t dummy_ssrc; if (ParseSsrc(str, &dummy_ssrc)) // Value is ok. return true; printf("Invalid SSRC: %s\n", str.c_str()); return false; } static bool ValidateExtensionId(int value) { if (value > 0 && value <= 255) // Value is ok. return true; printf("Extension ID must be between 1 and 255, not %d\n", static_cast(value)); return false; } // Define command line flags. DEFINE_int(pcmu, 0, "RTP payload type for PCM-u"); DEFINE_int(pcma, 8, "RTP payload type for PCM-a"); DEFINE_int(ilbc, 102, "RTP payload type for iLBC"); DEFINE_int(isac, 103, "RTP payload type for iSAC"); DEFINE_int(isac_swb, 104, "RTP payload type for iSAC-swb (32 kHz)"); DEFINE_int(opus, 111, "RTP payload type for Opus"); DEFINE_int(pcm16b, 93, "RTP payload type for PCM16b-nb (8 kHz)"); DEFINE_int(pcm16b_wb, 94, "RTP payload type for PCM16b-wb (16 kHz)"); DEFINE_int(pcm16b_swb32, 95, "RTP payload type for PCM16b-swb32 (32 kHz)"); DEFINE_int(pcm16b_swb48, 96, "RTP payload type for PCM16b-swb48 (48 kHz)"); DEFINE_int(g722, 9, "RTP payload type for G.722"); DEFINE_int(avt, 106, "RTP payload type for AVT/DTMF (8 kHz)"); DEFINE_int(avt_16, 114, "RTP payload type for AVT/DTMF (16 kHz)"); DEFINE_int(avt_32, 115, "RTP payload type for AVT/DTMF (32 kHz)"); DEFINE_int(avt_48, 116, "RTP payload type for AVT/DTMF (48 kHz)"); DEFINE_int(red, 117, "RTP payload type for redundant audio (RED)"); DEFINE_int(cn_nb, 13, "RTP payload type for comfort noise (8 kHz)"); DEFINE_int(cn_wb, 98, "RTP payload type for comfort noise (16 kHz)"); DEFINE_int(cn_swb32, 99, "RTP payload type for comfort noise (32 kHz)"); DEFINE_int(cn_swb48, 100, "RTP payload type for comfort noise (48 kHz)"); DEFINE_bool(codec_map, false, "Prints the mapping between RTP payload type and " "codec"); DEFINE_string(replacement_audio_file, "", "A PCM file that will be used to populate " "dummy" " RTP packets"); DEFINE_string(ssrc, "", "Only use packets with this SSRC (decimal or hex, the latter " "starting with 0x)"); DEFINE_int(audio_level, 1, "Extension ID for audio level (RFC 6464)"); DEFINE_int(abs_send_time, 3, "Extension ID for absolute sender time"); DEFINE_int(transport_seq_no, 5, "Extension ID for transport sequence number"); DEFINE_int(video_content_type, 7, "Extension ID for video content type"); DEFINE_int(video_timing, 8, "Extension ID for video timing"); DEFINE_bool(matlabplot, false, "Generates a matlab script for plotting the delay profile"); DEFINE_bool(pythonplot, false, "Generates a python script for plotting the delay profile"); DEFINE_bool(help, false, "Prints this message"); DEFINE_bool(concealment_events, false, "Prints concealment events"); // Maps a codec type to a printable name string. std::string CodecName(NetEqDecoder codec) { switch (codec) { case NetEqDecoder::kDecoderPCMu: return "PCM-u"; case NetEqDecoder::kDecoderPCMa: return "PCM-a"; case NetEqDecoder::kDecoderILBC: return "iLBC"; case NetEqDecoder::kDecoderISAC: return "iSAC"; case NetEqDecoder::kDecoderISACswb: return "iSAC-swb (32 kHz)"; case NetEqDecoder::kDecoderOpus: return "Opus"; case NetEqDecoder::kDecoderPCM16B: return "PCM16b-nb (8 kHz)"; case NetEqDecoder::kDecoderPCM16Bwb: return "PCM16b-wb (16 kHz)"; case NetEqDecoder::kDecoderPCM16Bswb32kHz: return "PCM16b-swb32 (32 kHz)"; case NetEqDecoder::kDecoderPCM16Bswb48kHz: return "PCM16b-swb48 (48 kHz)"; case NetEqDecoder::kDecoderG722: return "G.722"; case NetEqDecoder::kDecoderRED: return "redundant audio (RED)"; case NetEqDecoder::kDecoderAVT: return "AVT/DTMF (8 kHz)"; case NetEqDecoder::kDecoderAVT16kHz: return "AVT/DTMF (16 kHz)"; case NetEqDecoder::kDecoderAVT32kHz: return "AVT/DTMF (32 kHz)"; case NetEqDecoder::kDecoderAVT48kHz: return "AVT/DTMF (48 kHz)"; case NetEqDecoder::kDecoderCNGnb: return "comfort noise (8 kHz)"; case NetEqDecoder::kDecoderCNGwb: return "comfort noise (16 kHz)"; case NetEqDecoder::kDecoderCNGswb32kHz: return "comfort noise (32 kHz)"; case NetEqDecoder::kDecoderCNGswb48kHz: return "comfort noise (48 kHz)"; default: FATAL(); return "undefined"; } } void PrintCodecMappingEntry(NetEqDecoder codec, int flag) { std::cout << CodecName(codec) << ": " << flag << std::endl; } void PrintCodecMapping() { PrintCodecMappingEntry(NetEqDecoder::kDecoderPCMu, FLAG_pcmu); PrintCodecMappingEntry(NetEqDecoder::kDecoderPCMa, FLAG_pcma); PrintCodecMappingEntry(NetEqDecoder::kDecoderILBC, FLAG_ilbc); PrintCodecMappingEntry(NetEqDecoder::kDecoderISAC, FLAG_isac); PrintCodecMappingEntry(NetEqDecoder::kDecoderISACswb, FLAG_isac_swb); PrintCodecMappingEntry(NetEqDecoder::kDecoderOpus, FLAG_opus); PrintCodecMappingEntry(NetEqDecoder::kDecoderPCM16B, FLAG_pcm16b); PrintCodecMappingEntry(NetEqDecoder::kDecoderPCM16Bwb, FLAG_pcm16b_wb); PrintCodecMappingEntry(NetEqDecoder::kDecoderPCM16Bswb32kHz, FLAG_pcm16b_swb32); PrintCodecMappingEntry(NetEqDecoder::kDecoderPCM16Bswb48kHz, FLAG_pcm16b_swb48); PrintCodecMappingEntry(NetEqDecoder::kDecoderG722, FLAG_g722); PrintCodecMappingEntry(NetEqDecoder::kDecoderAVT, FLAG_avt); PrintCodecMappingEntry(NetEqDecoder::kDecoderAVT16kHz, FLAG_avt_16); PrintCodecMappingEntry(NetEqDecoder::kDecoderAVT32kHz, FLAG_avt_32); PrintCodecMappingEntry(NetEqDecoder::kDecoderAVT48kHz, FLAG_avt_48); PrintCodecMappingEntry(NetEqDecoder::kDecoderRED, FLAG_red); PrintCodecMappingEntry(NetEqDecoder::kDecoderCNGnb, FLAG_cn_nb); PrintCodecMappingEntry(NetEqDecoder::kDecoderCNGwb, FLAG_cn_wb); PrintCodecMappingEntry(NetEqDecoder::kDecoderCNGswb32kHz, FLAG_cn_swb32); PrintCodecMappingEntry(NetEqDecoder::kDecoderCNGswb48kHz, FLAG_cn_swb48); } absl::optional CodecSampleRate(uint8_t payload_type) { if (payload_type == FLAG_pcmu || payload_type == FLAG_pcma || payload_type == FLAG_ilbc || payload_type == FLAG_pcm16b || payload_type == FLAG_cn_nb || payload_type == FLAG_avt) return 8000; if (payload_type == FLAG_isac || payload_type == FLAG_pcm16b_wb || payload_type == FLAG_g722 || payload_type == FLAG_cn_wb || payload_type == FLAG_avt_16) return 16000; if (payload_type == FLAG_isac_swb || payload_type == FLAG_pcm16b_swb32 || payload_type == FLAG_cn_swb32 || payload_type == FLAG_avt_32) return 32000; if (payload_type == FLAG_opus || payload_type == FLAG_pcm16b_swb48 || payload_type == FLAG_cn_swb48 || payload_type == FLAG_avt_48) return 48000; if (payload_type == FLAG_red) return 0; return absl::nullopt; } // A callback class which prints whenver the inserted packet stream changes // the SSRC. class SsrcSwitchDetector : public NetEqPostInsertPacket { public: // Takes a pointer to another callback object, which will be invoked after // this object finishes. This does not transfer ownership, and null is a // valid value. explicit SsrcSwitchDetector(NetEqPostInsertPacket* other_callback) : other_callback_(other_callback) {} void AfterInsertPacket(const NetEqInput::PacketData& packet, NetEq* neteq) override { if (last_ssrc_ && packet.header.ssrc != *last_ssrc_) { std::cout << "Changing streams from 0x" << std::hex << *last_ssrc_ << " to 0x" << std::hex << packet.header.ssrc << std::dec << " (payload type " << static_cast(packet.header.payloadType) << ")" << std::endl; } last_ssrc_ = packet.header.ssrc; if (other_callback_) { other_callback_->AfterInsertPacket(packet, neteq); } } private: NetEqPostInsertPacket* other_callback_; absl::optional last_ssrc_; }; int RunTest(int argc, char* argv[]) { std::string program_name = argv[0]; std::string usage = "Tool for decoding an RTP dump file using NetEq.\n" "Run " + program_name + " --help for usage.\n" "Example usage:\n" + program_name + " input.rtp output.{pcm, wav}\n"; if (rtc::FlagList::SetFlagsFromCommandLine(&argc, argv, true)) { return 1; } if (FLAG_help) { std::cout << usage; rtc::FlagList::Print(nullptr, false); return 0; } if (FLAG_codec_map) { PrintCodecMapping(); } if (argc != 3) { if (FLAG_codec_map) { // We have already printed the codec map. Just end the program. return 0; } // Print usage information. std::cout << usage; return 0; } RTC_CHECK(ValidatePayloadType(FLAG_pcmu)); RTC_CHECK(ValidatePayloadType(FLAG_pcma)); RTC_CHECK(ValidatePayloadType(FLAG_ilbc)); RTC_CHECK(ValidatePayloadType(FLAG_isac)); RTC_CHECK(ValidatePayloadType(FLAG_isac_swb)); RTC_CHECK(ValidatePayloadType(FLAG_opus)); RTC_CHECK(ValidatePayloadType(FLAG_pcm16b)); RTC_CHECK(ValidatePayloadType(FLAG_pcm16b_wb)); RTC_CHECK(ValidatePayloadType(FLAG_pcm16b_swb32)); RTC_CHECK(ValidatePayloadType(FLAG_pcm16b_swb48)); RTC_CHECK(ValidatePayloadType(FLAG_g722)); RTC_CHECK(ValidatePayloadType(FLAG_avt)); RTC_CHECK(ValidatePayloadType(FLAG_avt_16)); RTC_CHECK(ValidatePayloadType(FLAG_avt_32)); RTC_CHECK(ValidatePayloadType(FLAG_avt_48)); RTC_CHECK(ValidatePayloadType(FLAG_red)); RTC_CHECK(ValidatePayloadType(FLAG_cn_nb)); RTC_CHECK(ValidatePayloadType(FLAG_cn_wb)); RTC_CHECK(ValidatePayloadType(FLAG_cn_swb32)); RTC_CHECK(ValidatePayloadType(FLAG_cn_swb48)); RTC_CHECK(ValidateSsrcValue(FLAG_ssrc)); RTC_CHECK(ValidateExtensionId(FLAG_audio_level)); RTC_CHECK(ValidateExtensionId(FLAG_abs_send_time)); RTC_CHECK(ValidateExtensionId(FLAG_transport_seq_no)); RTC_CHECK(ValidateExtensionId(FLAG_video_content_type)); RTC_CHECK(ValidateExtensionId(FLAG_video_timing)); // Gather RTP header extensions in a map. NetEqPacketSourceInput::RtpHeaderExtensionMap rtp_ext_map = { {FLAG_audio_level, kRtpExtensionAudioLevel}, {FLAG_abs_send_time, kRtpExtensionAbsoluteSendTime}, {FLAG_transport_seq_no, kRtpExtensionTransportSequenceNumber}, {FLAG_video_content_type, kRtpExtensionVideoContentType}, {FLAG_video_timing, kRtpExtensionVideoTiming}}; const std::string input_file_name = argv[1]; std::unique_ptr input; if (RtpFileSource::ValidRtpDump(input_file_name) || RtpFileSource::ValidPcap(input_file_name)) { input.reset(new NetEqRtpDumpInput(input_file_name, rtp_ext_map)); } else { input.reset(new NetEqEventLogInput(input_file_name, rtp_ext_map)); } std::cout << "Input file: " << input_file_name << std::endl; RTC_CHECK(input) << "Cannot open input file"; RTC_CHECK(!input->ended()) << "Input file is empty"; // Check if an SSRC value was provided. if (strlen(FLAG_ssrc) > 0) { uint32_t ssrc; RTC_CHECK(ParseSsrc(FLAG_ssrc, &ssrc)) << "Flag verification has failed."; static_cast(input.get())->SelectSsrc(ssrc); } // Check the sample rate. absl::optional sample_rate_hz; std::set> discarded_pt_and_ssrc; while (absl::optional first_rtp_header = input->NextHeader()) { RTC_DCHECK(first_rtp_header); sample_rate_hz = CodecSampleRate(first_rtp_header->payloadType); if (sample_rate_hz) { std::cout << "Found valid packet with payload type " << static_cast(first_rtp_header->payloadType) << " and SSRC 0x" << std::hex << first_rtp_header->ssrc << std::dec << std::endl; break; } // Discard this packet and move to the next. Keep track of discarded payload // types and SSRCs. discarded_pt_and_ssrc.emplace(first_rtp_header->payloadType, first_rtp_header->ssrc); input->PopPacket(); } if (!discarded_pt_and_ssrc.empty()) { std::cout << "Discarded initial packets with the following payload types " "and SSRCs:" << std::endl; for (const auto& d : discarded_pt_and_ssrc) { std::cout << "PT " << d.first << "; SSRC 0x" << std::hex << static_cast(d.second) << std::dec << std::endl; } } if (!sample_rate_hz) { std::cout << "Cannot find any packets with known payload types" << std::endl; RTC_NOTREACHED(); } // Open the output file now that we know the sample rate. (Rate is only needed // for wav files.) const std::string output_file_name = argv[2]; std::unique_ptr output; if (output_file_name.size() >= 4 && output_file_name.substr(output_file_name.size() - 4) == ".wav") { // Open a wav file. output.reset(new OutputWavFile(output_file_name, *sample_rate_hz)); } else { // Open a pcm file. output.reset(new OutputAudioFile(output_file_name)); } std::cout << "Output file: " << output_file_name << std::endl; NetEqTest::DecoderMap codecs = { {FLAG_pcmu, std::make_pair(NetEqDecoder::kDecoderPCMu, "pcmu")}, {FLAG_pcma, std::make_pair(NetEqDecoder::kDecoderPCMa, "pcma")}, {FLAG_ilbc, std::make_pair(NetEqDecoder::kDecoderILBC, "ilbc")}, {FLAG_isac, std::make_pair(NetEqDecoder::kDecoderISAC, "isac")}, {FLAG_isac_swb, std::make_pair(NetEqDecoder::kDecoderISACswb, "isac-swb")}, {FLAG_opus, std::make_pair(NetEqDecoder::kDecoderOpus, "opus")}, {FLAG_pcm16b, std::make_pair(NetEqDecoder::kDecoderPCM16B, "pcm16-nb")}, {FLAG_pcm16b_wb, std::make_pair(NetEqDecoder::kDecoderPCM16Bwb, "pcm16-wb")}, {FLAG_pcm16b_swb32, std::make_pair(NetEqDecoder::kDecoderPCM16Bswb32kHz, "pcm16-swb32")}, {FLAG_pcm16b_swb48, std::make_pair(NetEqDecoder::kDecoderPCM16Bswb48kHz, "pcm16-swb48")}, {FLAG_g722, std::make_pair(NetEqDecoder::kDecoderG722, "g722")}, {FLAG_avt, std::make_pair(NetEqDecoder::kDecoderAVT, "avt")}, {FLAG_avt_16, std::make_pair(NetEqDecoder::kDecoderAVT16kHz, "avt-16")}, {FLAG_avt_32, std::make_pair(NetEqDecoder::kDecoderAVT32kHz, "avt-32")}, {FLAG_avt_48, std::make_pair(NetEqDecoder::kDecoderAVT48kHz, "avt-48")}, {FLAG_red, std::make_pair(NetEqDecoder::kDecoderRED, "red")}, {FLAG_cn_nb, std::make_pair(NetEqDecoder::kDecoderCNGnb, "cng-nb")}, {FLAG_cn_wb, std::make_pair(NetEqDecoder::kDecoderCNGwb, "cng-wb")}, {FLAG_cn_swb32, std::make_pair(NetEqDecoder::kDecoderCNGswb32kHz, "cng-swb32")}, {FLAG_cn_swb48, std::make_pair(NetEqDecoder::kDecoderCNGswb48kHz, "cng-swb48")}}; // Check if a replacement audio file was provided. std::unique_ptr replacement_decoder; NetEqTest::ExtDecoderMap ext_codecs; if (strlen(FLAG_replacement_audio_file) > 0) { // Find largest unused payload type. int replacement_pt = 127; while (!(codecs.find(replacement_pt) == codecs.end() && ext_codecs.find(replacement_pt) == ext_codecs.end())) { --replacement_pt; RTC_CHECK_GE(replacement_pt, 0); } auto std_set_int32_to_uint8 = [](const std::set& a) { std::set b; for (auto& x : a) { b.insert(static_cast(x)); } return b; }; std::set cn_types = std_set_int32_to_uint8( {FLAG_cn_nb, FLAG_cn_wb, FLAG_cn_swb32, FLAG_cn_swb48}); std::set forbidden_types = std_set_int32_to_uint8( {FLAG_g722, FLAG_red, FLAG_avt, FLAG_avt_16, FLAG_avt_32, FLAG_avt_48}); input.reset(new NetEqReplacementInput(std::move(input), replacement_pt, cn_types, forbidden_types)); replacement_decoder.reset(new FakeDecodeFromFile( std::unique_ptr( new InputAudioFile(FLAG_replacement_audio_file)), 48000, false)); NetEqTest::ExternalDecoderInfo ext_dec_info = { replacement_decoder.get(), NetEqDecoder::kDecoderArbitrary, "replacement codec"}; ext_codecs[replacement_pt] = ext_dec_info; } NetEqTest::Callbacks callbacks; std::unique_ptr delay_analyzer; if (FLAG_matlabplot || FLAG_pythonplot) { delay_analyzer.reset(new NetEqDelayAnalyzer); } SsrcSwitchDetector ssrc_switch_detector(delay_analyzer.get()); callbacks.post_insert_packet = &ssrc_switch_detector; NetEqStatsGetter stats_getter(std::move(delay_analyzer)); callbacks.get_audio_callback = &stats_getter; NetEq::Config config; config.sample_rate_hz = *sample_rate_hz; NetEqTest test(config, codecs, ext_codecs, std::move(input), std::move(output), callbacks); int64_t test_duration_ms = test.Run(); if (FLAG_matlabplot) { auto matlab_script_name = output_file_name; std::replace(matlab_script_name.begin(), matlab_script_name.end(), '.', '_'); std::cout << "Creating Matlab plot script " << matlab_script_name + ".m" << std::endl; stats_getter.delay_analyzer()->CreateMatlabScript(matlab_script_name + ".m"); } if (FLAG_pythonplot) { auto python_script_name = output_file_name; std::replace(python_script_name.begin(), python_script_name.end(), '.', '_'); std::cout << "Creating Python plot script " << python_script_name + ".py" << std::endl; stats_getter.delay_analyzer()->CreatePythonScript(python_script_name + ".py"); } printf("Simulation statistics:\n"); printf(" output duration: %" PRId64 " ms\n", test_duration_ms); auto stats = stats_getter.AverageStats(); printf(" packet_loss_rate: %f %%\n", 100.0 * stats.packet_loss_rate); printf(" expand_rate: %f %%\n", 100.0 * stats.expand_rate); printf(" speech_expand_rate: %f %%\n", 100.0 * stats.speech_expand_rate); printf(" preemptive_rate: %f %%\n", 100.0 * stats.preemptive_rate); printf(" accelerate_rate: %f %%\n", 100.0 * stats.accelerate_rate); printf(" secondary_decoded_rate: %f %%\n", 100.0 * stats.secondary_decoded_rate); printf(" secondary_discarded_rate: %f %%\n", 100.0 * stats.secondary_discarded_rate); printf(" clockdrift_ppm: %f ppm\n", stats.clockdrift_ppm); printf(" mean_waiting_time_ms: %f ms\n", stats.mean_waiting_time_ms); printf(" median_waiting_time_ms: %f ms\n", stats.median_waiting_time_ms); printf(" min_waiting_time_ms: %f ms\n", stats.min_waiting_time_ms); printf(" max_waiting_time_ms: %f ms\n", stats.max_waiting_time_ms); printf(" current_buffer_size_ms: %f ms\n", stats.current_buffer_size_ms); printf(" preferred_buffer_size_ms: %f ms\n", stats.preferred_buffer_size_ms); if (FLAG_concealment_events) { std::cout << " concealment_events_ms:" << std::endl; for (auto concealment_event : stats_getter.concealment_events()) std::cout << concealment_event.ToString() << std::endl; std::cout << " end of concealment_events_ms" << std::endl; } return 0; } } // namespace } // namespace test } // namespace webrtc int main(int argc, char* argv[]) { return webrtc::test::RunTest(argc, argv); }