/* * Copyright 2004 The WebRTC Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "rtc_base/opensslidentity.h" #include // Must be included first before openssl headers. #include "rtc_base/win32.h" // NOLINT #include #include #include #include #include #include #include "rtc_base/checks.h" #include "rtc_base/helpers.h" #include "rtc_base/logging.h" #include "rtc_base/openssl.h" #include "rtc_base/openssldigest.h" #include "rtc_base/ptr_util.h" namespace rtc { // We could have exposed a myriad of parameters for the crypto stuff, // but keeping it simple seems best. // Random bits for certificate serial number static const int SERIAL_RAND_BITS = 64; // Generate a key pair. Caller is responsible for freeing the returned object. static EVP_PKEY* MakeKey(const KeyParams& key_params) { RTC_LOG(LS_INFO) << "Making key pair"; EVP_PKEY* pkey = EVP_PKEY_new(); if (key_params.type() == KT_RSA) { int key_length = key_params.rsa_params().mod_size; BIGNUM* exponent = BN_new(); RSA* rsa = RSA_new(); if (!pkey || !exponent || !rsa || !BN_set_word(exponent, key_params.rsa_params().pub_exp) || !RSA_generate_key_ex(rsa, key_length, exponent, nullptr) || !EVP_PKEY_assign_RSA(pkey, rsa)) { EVP_PKEY_free(pkey); BN_free(exponent); RSA_free(rsa); RTC_LOG(LS_ERROR) << "Failed to make RSA key pair"; return nullptr; } // ownership of rsa struct was assigned, don't free it. BN_free(exponent); } else if (key_params.type() == KT_ECDSA) { if (key_params.ec_curve() == EC_NIST_P256) { EC_KEY* ec_key = EC_KEY_new_by_curve_name(NID_X9_62_prime256v1); // Ensure curve name is included when EC key is serialized. // Without this call, OpenSSL versions before 1.1.0 will create // certificates that don't work for TLS. // This is a no-op for BoringSSL and OpenSSL 1.1.0+ EC_KEY_set_asn1_flag(ec_key, OPENSSL_EC_NAMED_CURVE); if (!pkey || !ec_key || !EC_KEY_generate_key(ec_key) || !EVP_PKEY_assign_EC_KEY(pkey, ec_key)) { EVP_PKEY_free(pkey); EC_KEY_free(ec_key); RTC_LOG(LS_ERROR) << "Failed to make EC key pair"; return nullptr; } // ownership of ec_key struct was assigned, don't free it. } else { // Add generation of any other curves here. EVP_PKEY_free(pkey); RTC_LOG(LS_ERROR) << "ECDSA key requested for unknown curve"; return nullptr; } } else { EVP_PKEY_free(pkey); RTC_LOG(LS_ERROR) << "Key type requested not understood"; return nullptr; } RTC_LOG(LS_INFO) << "Returning key pair"; return pkey; } // Generate a self-signed certificate, with the public key from the // given key pair. Caller is responsible for freeing the returned object. static X509* MakeCertificate(EVP_PKEY* pkey, const SSLIdentityParams& params) { RTC_LOG(LS_INFO) << "Making certificate for " << params.common_name; X509* x509 = nullptr; BIGNUM* serial_number = nullptr; X509_NAME* name = nullptr; time_t epoch_off = 0; // Time offset since epoch. if ((x509 = X509_new()) == nullptr) goto error; if (!X509_set_pubkey(x509, pkey)) goto error; // serial number // temporary reference to serial number inside x509 struct ASN1_INTEGER* asn1_serial_number; if ((serial_number = BN_new()) == nullptr || !BN_pseudo_rand(serial_number, SERIAL_RAND_BITS, 0, 0) || (asn1_serial_number = X509_get_serialNumber(x509)) == nullptr || !BN_to_ASN1_INTEGER(serial_number, asn1_serial_number)) goto error; if (!X509_set_version(x509, 2L)) // version 3 goto error; // There are a lot of possible components for the name entries. In // our P2P SSL mode however, the certificates are pre-exchanged // (through the secure XMPP channel), and so the certificate // identification is arbitrary. It can't be empty, so we set some // arbitrary common_name. Note that this certificate goes out in // clear during SSL negotiation, so there may be a privacy issue in // putting anything recognizable here. if ((name = X509_NAME_new()) == nullptr || !X509_NAME_add_entry_by_NID(name, NID_commonName, MBSTRING_UTF8, (unsigned char*)params.common_name.c_str(), -1, -1, 0) || !X509_set_subject_name(x509, name) || !X509_set_issuer_name(x509, name)) goto error; if (!X509_time_adj(X509_get_notBefore(x509), params.not_before, &epoch_off) || !X509_time_adj(X509_get_notAfter(x509), params.not_after, &epoch_off)) goto error; if (!X509_sign(x509, pkey, EVP_sha256())) goto error; BN_free(serial_number); X509_NAME_free(name); RTC_LOG(LS_INFO) << "Returning certificate"; return x509; error: BN_free(serial_number); X509_NAME_free(name); X509_free(x509); return nullptr; } // This dumps the SSL error stack to the log. static void LogSSLErrors(const std::string& prefix) { char error_buf[200]; unsigned long err; while ((err = ERR_get_error()) != 0) { ERR_error_string_n(err, error_buf, sizeof(error_buf)); RTC_LOG(LS_ERROR) << prefix << ": " << error_buf << "\n"; } } OpenSSLKeyPair* OpenSSLKeyPair::Generate(const KeyParams& key_params) { EVP_PKEY* pkey = MakeKey(key_params); if (!pkey) { LogSSLErrors("Generating key pair"); return nullptr; } return new OpenSSLKeyPair(pkey); } OpenSSLKeyPair* OpenSSLKeyPair::FromPrivateKeyPEMString( const std::string& pem_string) { BIO* bio = BIO_new_mem_buf(const_cast(pem_string.c_str()), -1); if (!bio) { RTC_LOG(LS_ERROR) << "Failed to create a new BIO buffer."; return nullptr; } BIO_set_mem_eof_return(bio, 0); EVP_PKEY* pkey = PEM_read_bio_PrivateKey(bio, nullptr, nullptr, const_cast("\0")); BIO_free(bio); // Frees the BIO, but not the pointed-to string. if (!pkey) { RTC_LOG(LS_ERROR) << "Failed to create the private key from PEM string."; return nullptr; } if (EVP_PKEY_missing_parameters(pkey) != 0) { RTC_LOG(LS_ERROR) << "The resulting key pair is missing public key parameters."; EVP_PKEY_free(pkey); return nullptr; } return new OpenSSLKeyPair(pkey); } OpenSSLKeyPair::~OpenSSLKeyPair() { EVP_PKEY_free(pkey_); } OpenSSLKeyPair* OpenSSLKeyPair::GetReference() { AddReference(); return new OpenSSLKeyPair(pkey_); } void OpenSSLKeyPair::AddReference() { #if defined(OPENSSL_IS_BORINGSSL) EVP_PKEY_up_ref(pkey_); #else CRYPTO_add(&pkey_->references, 1, CRYPTO_LOCK_EVP_PKEY); #endif } std::string OpenSSLKeyPair::PrivateKeyToPEMString() const { BIO* temp_memory_bio = BIO_new(BIO_s_mem()); if (!temp_memory_bio) { RTC_LOG_F(LS_ERROR) << "Failed to allocate temporary memory bio"; RTC_NOTREACHED(); return ""; } if (!PEM_write_bio_PrivateKey(temp_memory_bio, pkey_, nullptr, nullptr, 0, nullptr, nullptr)) { RTC_LOG_F(LS_ERROR) << "Failed to write private key"; BIO_free(temp_memory_bio); RTC_NOTREACHED(); return ""; } BIO_write(temp_memory_bio, "\0", 1); char* buffer; BIO_get_mem_data(temp_memory_bio, &buffer); std::string priv_key_str = buffer; BIO_free(temp_memory_bio); return priv_key_str; } std::string OpenSSLKeyPair::PublicKeyToPEMString() const { BIO* temp_memory_bio = BIO_new(BIO_s_mem()); if (!temp_memory_bio) { RTC_LOG_F(LS_ERROR) << "Failed to allocate temporary memory bio"; RTC_NOTREACHED(); return ""; } if (!PEM_write_bio_PUBKEY(temp_memory_bio, pkey_)) { RTC_LOG_F(LS_ERROR) << "Failed to write public key"; BIO_free(temp_memory_bio); RTC_NOTREACHED(); return ""; } BIO_write(temp_memory_bio, "\0", 1); char* buffer; BIO_get_mem_data(temp_memory_bio, &buffer); std::string pub_key_str = buffer; BIO_free(temp_memory_bio); return pub_key_str; } bool OpenSSLKeyPair::operator==(const OpenSSLKeyPair& other) const { return EVP_PKEY_cmp(this->pkey_, other.pkey_) == 1; } bool OpenSSLKeyPair::operator!=(const OpenSSLKeyPair& other) const { return !(*this == other); } #if !defined(NDEBUG) // Print a certificate to the log, for debugging. static void PrintCert(X509* x509) { BIO* temp_memory_bio = BIO_new(BIO_s_mem()); if (!temp_memory_bio) { RTC_LOG_F(LS_ERROR) << "Failed to allocate temporary memory bio"; return; } X509_print_ex(temp_memory_bio, x509, XN_FLAG_SEP_CPLUS_SPC, 0); BIO_write(temp_memory_bio, "\0", 1); char* buffer; BIO_get_mem_data(temp_memory_bio, &buffer); RTC_LOG(LS_VERBOSE) << buffer; BIO_free(temp_memory_bio); } #endif OpenSSLCertificate::OpenSSLCertificate(X509* x509) : x509_(x509) { AddReference(); } OpenSSLCertificate* OpenSSLCertificate::Generate( OpenSSLKeyPair* key_pair, const SSLIdentityParams& params) { SSLIdentityParams actual_params(params); if (actual_params.common_name.empty()) { // Use a random string, arbitrarily 8chars long. actual_params.common_name = CreateRandomString(8); } X509* x509 = MakeCertificate(key_pair->pkey(), actual_params); if (!x509) { LogSSLErrors("Generating certificate"); return nullptr; } #if !defined(NDEBUG) PrintCert(x509); #endif OpenSSLCertificate* ret = new OpenSSLCertificate(x509); X509_free(x509); return ret; } OpenSSLCertificate* OpenSSLCertificate::FromPEMString( const std::string& pem_string) { BIO* bio = BIO_new_mem_buf(const_cast(pem_string.c_str()), -1); if (!bio) return nullptr; BIO_set_mem_eof_return(bio, 0); X509* x509 = PEM_read_bio_X509(bio, nullptr, nullptr, const_cast("\0")); BIO_free(bio); // Frees the BIO, but not the pointed-to string. if (!x509) return nullptr; OpenSSLCertificate* ret = new OpenSSLCertificate(x509); X509_free(x509); return ret; } // NOTE: This implementation only functions correctly after InitializeSSL // and before CleanupSSL. bool OpenSSLCertificate::GetSignatureDigestAlgorithm( std::string* algorithm) const { int nid = OBJ_obj2nid(x509_->sig_alg->algorithm); switch (nid) { case NID_md5WithRSA: case NID_md5WithRSAEncryption: *algorithm = DIGEST_MD5; break; case NID_ecdsa_with_SHA1: case NID_dsaWithSHA1: case NID_dsaWithSHA1_2: case NID_sha1WithRSA: case NID_sha1WithRSAEncryption: *algorithm = DIGEST_SHA_1; break; case NID_ecdsa_with_SHA224: case NID_sha224WithRSAEncryption: case NID_dsa_with_SHA224: *algorithm = DIGEST_SHA_224; break; case NID_ecdsa_with_SHA256: case NID_sha256WithRSAEncryption: case NID_dsa_with_SHA256: *algorithm = DIGEST_SHA_256; break; case NID_ecdsa_with_SHA384: case NID_sha384WithRSAEncryption: *algorithm = DIGEST_SHA_384; break; case NID_ecdsa_with_SHA512: case NID_sha512WithRSAEncryption: *algorithm = DIGEST_SHA_512; break; default: // Unknown algorithm. There are several unhandled options that are less // common and more complex. RTC_LOG(LS_ERROR) << "Unknown signature algorithm NID: " << nid; algorithm->clear(); return false; } return true; } std::unique_ptr OpenSSLCertificate::GetChain() const { return nullptr; } bool OpenSSLCertificate::ComputeDigest(const std::string& algorithm, unsigned char* digest, size_t size, size_t* length) const { return ComputeDigest(x509_, algorithm, digest, size, length); } bool OpenSSLCertificate::ComputeDigest(const X509* x509, const std::string& algorithm, unsigned char* digest, size_t size, size_t* length) { const EVP_MD* md; unsigned int n; if (!OpenSSLDigest::GetDigestEVP(algorithm, &md)) return false; if (size < static_cast(EVP_MD_size(md))) return false; X509_digest(x509, md, digest, &n); *length = n; return true; } OpenSSLCertificate::~OpenSSLCertificate() { X509_free(x509_); } OpenSSLCertificate* OpenSSLCertificate::GetReference() const { return new OpenSSLCertificate(x509_); } std::string OpenSSLCertificate::ToPEMString() const { BIO* bio = BIO_new(BIO_s_mem()); if (!bio) { FATAL() << "unreachable code"; } if (!PEM_write_bio_X509(bio, x509_)) { BIO_free(bio); FATAL() << "unreachable code"; } BIO_write(bio, "\0", 1); char* buffer; BIO_get_mem_data(bio, &buffer); std::string ret(buffer); BIO_free(bio); return ret; } void OpenSSLCertificate::ToDER(Buffer* der_buffer) const { // In case of failure, make sure to leave the buffer empty. der_buffer->SetSize(0); // Calculates the DER representation of the certificate, from scratch. BIO* bio = BIO_new(BIO_s_mem()); if (!bio) { FATAL() << "unreachable code"; } if (!i2d_X509_bio(bio, x509_)) { BIO_free(bio); FATAL() << "unreachable code"; } char* data; size_t length = BIO_get_mem_data(bio, &data); der_buffer->SetData(data, length); BIO_free(bio); } void OpenSSLCertificate::AddReference() const { RTC_DCHECK(x509_ != nullptr); #if defined(OPENSSL_IS_BORINGSSL) X509_up_ref(x509_); #else CRYPTO_add(&x509_->references, 1, CRYPTO_LOCK_X509); #endif } bool OpenSSLCertificate::operator==(const OpenSSLCertificate& other) const { return X509_cmp(x509_, other.x509_) == 0; } bool OpenSSLCertificate::operator!=(const OpenSSLCertificate& other) const { return !(*this == other); } // Documented in sslidentity.h. int64_t OpenSSLCertificate::CertificateExpirationTime() const { ASN1_TIME* expire_time = X509_get_notAfter(x509_); bool long_format; if (expire_time->type == V_ASN1_UTCTIME) { long_format = false; } else if (expire_time->type == V_ASN1_GENERALIZEDTIME) { long_format = true; } else { return -1; } return ASN1TimeToSec(expire_time->data, expire_time->length, long_format); } OpenSSLIdentity::OpenSSLIdentity( std::unique_ptr key_pair, std::unique_ptr certificate) : key_pair_(std::move(key_pair)) { RTC_DCHECK(key_pair_ != nullptr); RTC_DCHECK(certificate != nullptr); std::vector> certs; certs.push_back(std::move(certificate)); cert_chain_.reset(new SSLCertChain(std::move(certs))); } OpenSSLIdentity::OpenSSLIdentity(std::unique_ptr key_pair, std::unique_ptr cert_chain) : key_pair_(std::move(key_pair)), cert_chain_(std::move(cert_chain)) { RTC_DCHECK(key_pair_ != nullptr); RTC_DCHECK(cert_chain_ != nullptr); } OpenSSLIdentity::~OpenSSLIdentity() = default; OpenSSLIdentity* OpenSSLIdentity::GenerateInternal( const SSLIdentityParams& params) { std::unique_ptr key_pair( OpenSSLKeyPair::Generate(params.key_params)); if (key_pair) { std::unique_ptr certificate( OpenSSLCertificate::Generate(key_pair.get(), params)); if (certificate != nullptr) return new OpenSSLIdentity(std::move(key_pair), std::move(certificate)); } RTC_LOG(LS_INFO) << "Identity generation failed"; return nullptr; } OpenSSLIdentity* OpenSSLIdentity::GenerateWithExpiration( const std::string& common_name, const KeyParams& key_params, time_t certificate_lifetime) { SSLIdentityParams params; params.key_params = key_params; params.common_name = common_name; time_t now = time(nullptr); params.not_before = now + kCertificateWindowInSeconds; params.not_after = now + certificate_lifetime; if (params.not_before > params.not_after) return nullptr; return GenerateInternal(params); } OpenSSLIdentity* OpenSSLIdentity::GenerateForTest( const SSLIdentityParams& params) { return GenerateInternal(params); } SSLIdentity* OpenSSLIdentity::FromPEMStrings(const std::string& private_key, const std::string& certificate) { std::unique_ptr cert( OpenSSLCertificate::FromPEMString(certificate)); if (!cert) { RTC_LOG(LS_ERROR) << "Failed to create OpenSSLCertificate from PEM string."; return nullptr; } std::unique_ptr key_pair( OpenSSLKeyPair::FromPrivateKeyPEMString(private_key)); if (!key_pair) { RTC_LOG(LS_ERROR) << "Failed to create key pair from PEM string."; return nullptr; } return new OpenSSLIdentity(std::move(key_pair), std::move(cert)); } SSLIdentity* OpenSSLIdentity::FromPEMChainStrings( const std::string& private_key, const std::string& certificate_chain) { BIO* bio = BIO_new_mem_buf(certificate_chain.data(), certificate_chain.size()); if (!bio) return nullptr; BIO_set_mem_eof_return(bio, 0); std::vector> certs; while (true) { X509* x509 = PEM_read_bio_X509(bio, nullptr, nullptr, const_cast("\0")); if (x509 == nullptr) { uint32_t err = ERR_peek_error(); if (ERR_GET_LIB(err) == ERR_LIB_PEM && ERR_GET_REASON(err) == PEM_R_NO_START_LINE) { break; } RTC_LOG(LS_ERROR) << "Failed to parse certificate from PEM string."; BIO_free(bio); return nullptr; } certs.emplace_back(new OpenSSLCertificate(x509)); X509_free(x509); } BIO_free(bio); if (certs.empty()) { RTC_LOG(LS_ERROR) << "Found no certificates in PEM string."; return nullptr; } std::unique_ptr key_pair( OpenSSLKeyPair::FromPrivateKeyPEMString(private_key)); if (!key_pair) { RTC_LOG(LS_ERROR) << "Failed to create key pair from PEM string."; return nullptr; } return new OpenSSLIdentity(std::move(key_pair), MakeUnique(std::move(certs))); } const OpenSSLCertificate& OpenSSLIdentity::certificate() const { return *static_cast(&cert_chain_->Get(0)); } OpenSSLIdentity* OpenSSLIdentity::GetReference() const { return new OpenSSLIdentity(WrapUnique(key_pair_->GetReference()), WrapUnique(certificate().GetReference())); } bool OpenSSLIdentity::ConfigureIdentity(SSL_CTX* ctx) { // 1 is the documented success return code. const OpenSSLCertificate* cert = &certificate(); if (SSL_CTX_use_certificate(ctx, cert->x509()) != 1 || SSL_CTX_use_PrivateKey(ctx, key_pair_->pkey()) != 1) { LogSSLErrors("Configuring key and certificate"); return false; } // If a chain is available, use it. for (size_t i = 1; i < cert_chain_->GetSize(); ++i) { cert = static_cast(&cert_chain_->Get(i)); if (SSL_CTX_add1_chain_cert(ctx, cert->x509()) != 1) { LogSSLErrors("Configuring intermediate certificate"); return false; } } return true; } std::string OpenSSLIdentity::PrivateKeyToPEMString() const { return key_pair_->PrivateKeyToPEMString(); } std::string OpenSSLIdentity::PublicKeyToPEMString() const { return key_pair_->PublicKeyToPEMString(); } bool OpenSSLIdentity::operator==(const OpenSSLIdentity& other) const { return *this->key_pair_ == *other.key_pair_ && this->certificate() == other.certificate(); } bool OpenSSLIdentity::operator!=(const OpenSSLIdentity& other) const { return !(*this == other); } } // namespace rtc