/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/video_coding/codecs/test/videoprocessor.h" #include #include #include #include #include #include #include "api/video/i420_buffer.h" #include "common_types.h" // NOLINT(build/include) #include "common_video/h264/h264_common.h" #include "modules/video_coding/codecs/vp8/simulcast_rate_allocator.h" #include "modules/video_coding/include/video_codec_initializer.h" #include "modules/video_coding/utility/default_video_bitrate_allocator.h" #include "rtc_base/checks.h" #include "rtc_base/logging.h" #include "rtc_base/timeutils.h" #include "system_wrappers/include/cpu_info.h" #include "test/gtest.h" namespace webrtc { namespace test { namespace { const int kRtpClockRateHz = 90000; std::unique_ptr CreateBitrateAllocator( TestConfig* config) { std::unique_ptr tl_factory; if (config->codec_settings.codecType == VideoCodecType::kVideoCodecVP8) { tl_factory.reset(new TemporalLayersFactory()); config->codec_settings.VP8()->tl_factory = tl_factory.get(); } return std::unique_ptr( VideoCodecInitializer::CreateBitrateAllocator(config->codec_settings, std::move(tl_factory))); } void PrintCodecSettings(const VideoCodec& codec_settings) { printf(" Codec settings:\n"); printf(" Codec type : %s\n", CodecTypeToPayloadString(codec_settings.codecType)); printf(" Start bitrate : %d kbps\n", codec_settings.startBitrate); printf(" Max bitrate : %d kbps\n", codec_settings.maxBitrate); printf(" Min bitrate : %d kbps\n", codec_settings.minBitrate); printf(" Width : %d\n", codec_settings.width); printf(" Height : %d\n", codec_settings.height); printf(" Max frame rate : %d\n", codec_settings.maxFramerate); printf(" QPmax : %d\n", codec_settings.qpMax); if (codec_settings.codecType == kVideoCodecVP8) { printf(" Complexity : %d\n", codec_settings.VP8().complexity); printf(" Resilience : %d\n", codec_settings.VP8().resilience); printf(" # temporal layers : %d\n", codec_settings.VP8().numberOfTemporalLayers); printf(" Denoising : %d\n", codec_settings.VP8().denoisingOn); printf(" Error concealment : %d\n", codec_settings.VP8().errorConcealmentOn); printf(" Automatic resize : %d\n", codec_settings.VP8().automaticResizeOn); printf(" Frame dropping : %d\n", codec_settings.VP8().frameDroppingOn); printf(" Key frame interval: %d\n", codec_settings.VP8().keyFrameInterval); } else if (codec_settings.codecType == kVideoCodecVP9) { printf(" Complexity : %d\n", codec_settings.VP9().complexity); printf(" Resilience : %d\n", codec_settings.VP9().resilienceOn); printf(" # temporal layers : %d\n", codec_settings.VP9().numberOfTemporalLayers); printf(" Denoising : %d\n", codec_settings.VP9().denoisingOn); printf(" Frame dropping : %d\n", codec_settings.VP9().frameDroppingOn); printf(" Key frame interval: %d\n", codec_settings.VP9().keyFrameInterval); printf(" Adaptive QP mode : %d\n", codec_settings.VP9().adaptiveQpMode); printf(" Automatic resize : %d\n", codec_settings.VP9().automaticResizeOn); printf(" # spatial layers : %d\n", codec_settings.VP9().numberOfSpatialLayers); printf(" Flexible mode : %d\n", codec_settings.VP9().flexibleMode); } else if (codec_settings.codecType == kVideoCodecH264) { printf(" Frame dropping : %d\n", codec_settings.H264().frameDroppingOn); printf(" Key frame interval: %d\n", codec_settings.H264().keyFrameInterval); printf(" Profile : %d\n", codec_settings.H264().profile); } } void VerifyQpParser(const EncodedImage& encoded_frame, const TestConfig& config) { if (config.hw_encoder) return; int qp; if (config.codec_settings.codecType == kVideoCodecVP8) { ASSERT_TRUE(vp8::GetQp(encoded_frame._buffer, encoded_frame._length, &qp)); } else if (config.codec_settings.codecType == kVideoCodecVP9) { ASSERT_TRUE(vp9::GetQp(encoded_frame._buffer, encoded_frame._length, &qp)); } else { return; } EXPECT_EQ(encoded_frame.qp_, qp) << "Encoder QP != parsed bitstream QP."; } rtc::Optional GetMaxNaluLength(const EncodedImage& encoded_frame, const TestConfig& config) { if (config.codec_settings.codecType != kVideoCodecH264) return rtc::Optional(); std::vector nalu_indices = webrtc::H264::FindNaluIndices(encoded_frame._buffer, encoded_frame._length); RTC_CHECK(!nalu_indices.empty()); size_t max_length = 0; for (const webrtc::H264::NaluIndex& index : nalu_indices) max_length = std::max(max_length, index.payload_size); return rtc::Optional(max_length); } int GetElapsedTimeMicroseconds(int64_t start_ns, int64_t stop_ns) { int64_t diff_us = (stop_ns - start_ns) / rtc::kNumNanosecsPerMicrosec; RTC_DCHECK_GE(diff_us, std::numeric_limits::min()); RTC_DCHECK_LE(diff_us, std::numeric_limits::max()); return static_cast(diff_us); } } // namespace const char* ExcludeFrameTypesToStr(ExcludeFrameTypes e) { switch (e) { case kExcludeOnlyFirstKeyFrame: return "ExcludeOnlyFirstKeyFrame"; case kExcludeAllKeyFrames: return "ExcludeAllKeyFrames"; default: RTC_NOTREACHED(); return "Unknown"; } } VideoProcessor::VideoProcessor(webrtc::VideoEncoder* encoder, webrtc::VideoDecoder* decoder, FrameReader* analysis_frame_reader, FrameWriter* analysis_frame_writer, PacketManipulator* packet_manipulator, const TestConfig& config, Stats* stats, IvfFileWriter* encoded_frame_writer, FrameWriter* decoded_frame_writer) : initialized_(false), config_(config), encoder_(encoder), decoder_(decoder), bitrate_allocator_(CreateBitrateAllocator(&config_)), encode_callback_(this), decode_callback_(this), packet_manipulator_(packet_manipulator), analysis_frame_reader_(analysis_frame_reader), analysis_frame_writer_(analysis_frame_writer), encoded_frame_writer_(encoded_frame_writer), decoded_frame_writer_(decoded_frame_writer), last_inputed_frame_num_(-1), last_encoded_frame_num_(-1), last_decoded_frame_num_(-1), first_key_frame_has_been_excluded_(false), last_decoded_frame_buffer_(analysis_frame_reader->FrameLength()), stats_(stats), rate_update_index_(-1) { RTC_DCHECK(encoder); RTC_DCHECK(decoder); RTC_DCHECK(packet_manipulator); RTC_DCHECK(analysis_frame_reader); RTC_DCHECK(analysis_frame_writer); RTC_DCHECK(stats); } VideoProcessor::~VideoProcessor() = default; void VideoProcessor::Init() { RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_); RTC_DCHECK(!initialized_) << "VideoProcessor already initialized."; initialized_ = true; // Setup required callbacks for the encoder and decoder. RTC_CHECK_EQ(encoder_->RegisterEncodeCompleteCallback(&encode_callback_), WEBRTC_VIDEO_CODEC_OK) << "Failed to register encode complete callback"; RTC_CHECK_EQ(decoder_->RegisterDecodeCompleteCallback(&decode_callback_), WEBRTC_VIDEO_CODEC_OK) << "Failed to register decode complete callback"; // Initialize the encoder and decoder. uint32_t num_cores = config_.use_single_core ? 1 : CpuInfo::DetectNumberOfCores(); RTC_CHECK_EQ( encoder_->InitEncode(&config_.codec_settings, num_cores, config_.networking_config.max_payload_size_in_bytes), WEBRTC_VIDEO_CODEC_OK) << "Failed to initialize VideoEncoder"; RTC_CHECK_EQ(decoder_->InitDecode(&config_.codec_settings, num_cores), WEBRTC_VIDEO_CODEC_OK) << "Failed to initialize VideoDecoder"; if (config_.verbose) { printf("Video Processor:\n"); printf(" Filename : %s\n", config_.filename.c_str()); printf(" Total # of frames: %d\n", analysis_frame_reader_->NumberOfFrames()); printf(" # CPU cores used : %d\n", num_cores); const char* encoder_name = encoder_->ImplementationName(); printf(" Encoder implementation name: %s\n", encoder_name); const char* decoder_name = decoder_->ImplementationName(); printf(" Decoder implementation name: %s\n", decoder_name); if (strcmp(encoder_name, decoder_name) == 0) { printf(" Codec implementation name : %s_%s\n", CodecTypeToPayloadString(config_.codec_settings.codecType), encoder_->ImplementationName()); } PrintCodecSettings(config_.codec_settings); printf("\n"); } } void VideoProcessor::Release() { RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_); RTC_CHECK_EQ(encoder_->Release(), WEBRTC_VIDEO_CODEC_OK); RTC_CHECK_EQ(decoder_->Release(), WEBRTC_VIDEO_CODEC_OK); encoder_->RegisterEncodeCompleteCallback(nullptr); decoder_->RegisterDecodeCompleteCallback(nullptr); initialized_ = false; } void VideoProcessor::ProcessFrame() { RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_); RTC_DCHECK(initialized_) << "VideoProcessor not initialized."; ++last_inputed_frame_num_; // Get frame from file. rtc::scoped_refptr buffer( analysis_frame_reader_->ReadFrame()); RTC_CHECK(buffer) << "Tried to read too many frames from the file."; // Use the frame number as the basis for timestamp to identify frames. Let the // first timestamp be non-zero, to not make the IvfFileWriter believe that we // want to use capture timestamps in the IVF files. const uint32_t rtp_timestamp = (last_inputed_frame_num_ + 1) * kRtpClockRateHz / config_.codec_settings.maxFramerate; rtp_timestamp_to_frame_num_[rtp_timestamp] = last_inputed_frame_num_; const int64_t kNoRenderTime = 0; VideoFrame source_frame(buffer, rtp_timestamp, kNoRenderTime, webrtc::kVideoRotation_0); // Decide if we are going to force a keyframe. std::vector frame_types(1, kVideoFrameDelta); if (config_.keyframe_interval > 0 && last_inputed_frame_num_ % config_.keyframe_interval == 0) { frame_types[0] = kVideoFrameKey; } // Create frame statistics object used for aggregation at end of test run. FrameStatistic* frame_stat = stats_->AddFrame(); // For the highest measurement accuracy of the encode time, the start/stop // time recordings should wrap the Encode call as tightly as possible. frame_stat->encode_start_ns = rtc::TimeNanos(); frame_stat->encode_return_code = encoder_->Encode(source_frame, nullptr, &frame_types); if (frame_stat->encode_return_code != WEBRTC_VIDEO_CODEC_OK) { LOG(LS_WARNING) << "Failed to encode frame " << last_inputed_frame_num_ << ", return code: " << frame_stat->encode_return_code << "."; } } void VideoProcessor::SetRates(int bitrate_kbps, int framerate_fps) { RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_); config_.codec_settings.maxFramerate = framerate_fps; int set_rates_result = encoder_->SetRateAllocation( bitrate_allocator_->GetAllocation(bitrate_kbps * 1000, framerate_fps), framerate_fps); RTC_DCHECK_GE(set_rates_result, 0) << "Failed to update encoder with new rate " << bitrate_kbps << "."; ++rate_update_index_; num_dropped_frames_.push_back(0); num_spatial_resizes_.push_back(0); } std::vector VideoProcessor::NumberDroppedFramesPerRateUpdate() const { RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_); return num_dropped_frames_; } std::vector VideoProcessor::NumberSpatialResizesPerRateUpdate() const { RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_); return num_spatial_resizes_; } void VideoProcessor::FrameEncoded(webrtc::VideoCodecType codec, const EncodedImage& encoded_image) { RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_); // For the highest measurement accuracy of the encode time, the start/stop // time recordings should wrap the Encode call as tightly as possible. int64_t encode_stop_ns = rtc::TimeNanos(); // Take the opportunity to verify the QP bitstream parser. VerifyQpParser(encoded_image, config_); // Check for dropped frames. const int frame_number = rtp_timestamp_to_frame_num_[encoded_image._timeStamp]; bool last_frame_missing = false; if (frame_number > 0) { RTC_DCHECK_GE(last_encoded_frame_num_, 0); int num_dropped_from_last_encode = frame_number - last_encoded_frame_num_ - 1; RTC_DCHECK_GE(num_dropped_from_last_encode, 0); RTC_CHECK_GE(rate_update_index_, 0); num_dropped_frames_[rate_update_index_] += num_dropped_from_last_encode; if (num_dropped_from_last_encode > 0) { // For dropped frames, we write out the last decoded frame to avoid // getting out of sync for the computation of PSNR and SSIM. for (int i = 0; i < num_dropped_from_last_encode; i++) { RTC_DCHECK_EQ(last_decoded_frame_buffer_.size(), analysis_frame_writer_->FrameLength()); RTC_CHECK(analysis_frame_writer_->WriteFrame( last_decoded_frame_buffer_.data())); if (decoded_frame_writer_) { RTC_DCHECK_EQ(last_decoded_frame_buffer_.size(), decoded_frame_writer_->FrameLength()); RTC_CHECK(decoded_frame_writer_->WriteFrame( last_decoded_frame_buffer_.data())); } } } const FrameStatistic* last_encoded_frame_stat = stats_->GetFrame(last_encoded_frame_num_); last_frame_missing = (last_encoded_frame_stat->manipulated_length == 0); } // Ensure strict monotonicity. RTC_CHECK_GT(frame_number, last_encoded_frame_num_); last_encoded_frame_num_ = frame_number; // Update frame statistics. FrameStatistic* frame_stat = stats_->GetFrame(frame_number); frame_stat->encode_time_us = GetElapsedTimeMicroseconds(frame_stat->encode_start_ns, encode_stop_ns); frame_stat->encoding_successful = true; frame_stat->encoded_frame_size_bytes = encoded_image._length; frame_stat->frame_type = encoded_image._frameType; frame_stat->qp = encoded_image.qp_; frame_stat->bitrate_kbps = static_cast( encoded_image._length * config_.codec_settings.maxFramerate * 8 / 1000); frame_stat->total_packets = encoded_image._length / config_.networking_config.packet_size_in_bytes + 1; frame_stat->max_nalu_length = GetMaxNaluLength(encoded_image, config_); // Simulate packet loss. bool exclude_this_frame = false; if (encoded_image._frameType == kVideoFrameKey) { // Only keyframes can be excluded. switch (config_.exclude_frame_types) { case kExcludeOnlyFirstKeyFrame: if (!first_key_frame_has_been_excluded_) { first_key_frame_has_been_excluded_ = true; exclude_this_frame = true; } break; case kExcludeAllKeyFrames: exclude_this_frame = true; break; default: RTC_NOTREACHED(); } } // Make a raw copy of the |encoded_image| buffer. size_t copied_buffer_size = encoded_image._length + EncodedImage::GetBufferPaddingBytes(codec); std::unique_ptr copied_buffer(new uint8_t[copied_buffer_size]); memcpy(copied_buffer.get(), encoded_image._buffer, encoded_image._length); // The image to feed to the decoder. EncodedImage copied_image; memcpy(&copied_image, &encoded_image, sizeof(copied_image)); copied_image._size = copied_buffer_size; copied_image._buffer = copied_buffer.get(); if (!exclude_this_frame) { frame_stat->packets_dropped = packet_manipulator_->ManipulatePackets(&copied_image); } frame_stat->manipulated_length = copied_image._length; // For the highest measurement accuracy of the decode time, the start/stop // time recordings should wrap the Decode call as tightly as possible. frame_stat->decode_start_ns = rtc::TimeNanos(); frame_stat->decode_return_code = decoder_->Decode(copied_image, last_frame_missing, nullptr); if (frame_stat->decode_return_code != WEBRTC_VIDEO_CODEC_OK) { // Write the last successful frame the output file to avoid getting it out // of sync with the source file for SSIM and PSNR comparisons. RTC_DCHECK_EQ(last_decoded_frame_buffer_.size(), analysis_frame_writer_->FrameLength()); RTC_CHECK( analysis_frame_writer_->WriteFrame(last_decoded_frame_buffer_.data())); if (decoded_frame_writer_) { RTC_DCHECK_EQ(last_decoded_frame_buffer_.size(), decoded_frame_writer_->FrameLength()); RTC_CHECK( decoded_frame_writer_->WriteFrame(last_decoded_frame_buffer_.data())); } } if (encoded_frame_writer_) { RTC_CHECK(encoded_frame_writer_->WriteFrame(encoded_image, codec)); } } void VideoProcessor::FrameDecoded(const VideoFrame& image) { RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_); // For the highest measurement accuracy of the decode time, the start/stop // time recordings should wrap the Decode call as tightly as possible. int64_t decode_stop_ns = rtc::TimeNanos(); // Update frame statistics. const int frame_number = rtp_timestamp_to_frame_num_[image.timestamp()]; FrameStatistic* frame_stat = stats_->GetFrame(frame_number); frame_stat->decoded_width = image.width(); frame_stat->decoded_height = image.height(); frame_stat->decode_time_us = GetElapsedTimeMicroseconds(frame_stat->decode_start_ns, decode_stop_ns); frame_stat->decoding_successful = true; // Check if the codecs have resized the frame since previously decoded frame. if (frame_number > 0) { RTC_CHECK_GE(last_decoded_frame_num_, 0); const FrameStatistic* last_decoded_frame_stat = stats_->GetFrame(last_decoded_frame_num_); if (static_cast(image.width()) != last_decoded_frame_stat->decoded_width || static_cast(image.height()) != last_decoded_frame_stat->decoded_height) { RTC_CHECK_GE(rate_update_index_, 0); ++num_spatial_resizes_[rate_update_index_]; } } // Ensure strict monotonicity. RTC_CHECK_GT(frame_number, last_decoded_frame_num_); last_decoded_frame_num_ = frame_number; // Check if frame size is different from the original size, and if so, // scale back to original size. This is needed for the PSNR and SSIM // calculations. size_t extracted_length; rtc::Buffer extracted_buffer; if (image.width() != config_.codec_settings.width || image.height() != config_.codec_settings.height) { rtc::scoped_refptr scaled_buffer(I420Buffer::Create( config_.codec_settings.width, config_.codec_settings.height)); // Should be the same aspect ratio, no cropping needed. scaled_buffer->ScaleFrom(*image.video_frame_buffer()->ToI420()); size_t length = CalcBufferSize(VideoType::kI420, scaled_buffer->width(), scaled_buffer->height()); extracted_buffer.SetSize(length); extracted_length = ExtractBuffer(scaled_buffer, length, extracted_buffer.data()); } else { // No resize. size_t length = CalcBufferSize(VideoType::kI420, image.width(), image.height()); extracted_buffer.SetSize(length); extracted_length = ExtractBuffer(image.video_frame_buffer()->ToI420(), length, extracted_buffer.data()); } RTC_DCHECK_EQ(extracted_length, analysis_frame_writer_->FrameLength()); RTC_CHECK(analysis_frame_writer_->WriteFrame(extracted_buffer.data())); if (decoded_frame_writer_) { RTC_DCHECK_EQ(extracted_length, decoded_frame_writer_->FrameLength()); RTC_CHECK(decoded_frame_writer_->WriteFrame(extracted_buffer.data())); } last_decoded_frame_buffer_ = std::move(extracted_buffer); } } // namespace test } // namespace webrtc