/* * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/video_coding/jitter_estimator.h" #include #include #include #include #include "absl/types/optional.h" #include "api/units/data_size.h" #include "api/units/frequency.h" #include "api/units/time_delta.h" #include "api/units/timestamp.h" #include "modules/video_coding/rtt_filter.h" #include "rtc_base/experiments/jitter_upper_bound_experiment.h" #include "rtc_base/numerics/safe_conversions.h" #include "system_wrappers/include/clock.h" #include "system_wrappers/include/field_trial.h" namespace webrtc { namespace { static constexpr uint32_t kStartupDelaySamples = 30; static constexpr int64_t kFsAccuStartupSamples = 5; static constexpr Frequency kMaxFramerateEstimate = Frequency::Hertz(200); static constexpr TimeDelta kNackCountTimeout = TimeDelta::Seconds(60); static constexpr double kDefaultMaxTimestampDeviationInSigmas = 3.5; constexpr double kPhi = 0.97; constexpr double kPsi = 0.9999; constexpr uint32_t kAlphaCountMax = 400; constexpr double kThetaLow = 0.000001; constexpr uint32_t kNackLimit = 3; constexpr int32_t kNumStdDevDelayOutlier = 15; constexpr int32_t kNumStdDevFrameSizeOutlier = 3; // ~Less than 1% chance (look up in normal distribution table)... constexpr double kNoiseStdDevs = 2.33; // ...of getting 30 ms freezes constexpr double kNoiseStdDevOffset = 30.0; } // namespace VCMJitterEstimator::VCMJitterEstimator(Clock* clock) : fps_counter_(30), // TODO(sprang): Use an estimator with limit based on // time, rather than number of samples. time_deviation_upper_bound_( JitterUpperBoundExperiment::GetUpperBoundSigmas().value_or( kDefaultMaxTimestampDeviationInSigmas)), enable_reduced_delay_( !field_trial::IsEnabled("WebRTC-ReducedJitterDelayKillSwitch")), clock_(clock) { Reset(); } VCMJitterEstimator::~VCMJitterEstimator() = default; // Resets the JitterEstimate. void VCMJitterEstimator::Reset() { theta_[0] = 1 / (512e3 / 8); theta_[1] = 0; var_noise_ = 4.0; theta_cov_[0][0] = 1e-4; theta_cov_[1][1] = 1e2; theta_cov_[0][1] = theta_cov_[1][0] = 0; q_cov_[0][0] = 2.5e-10; q_cov_[1][1] = 1e-10; q_cov_[0][1] = q_cov_[1][0] = 0; avg_frame_size_ = kDefaultAvgAndMaxFrameSize; max_frame_size_ = kDefaultAvgAndMaxFrameSize; var_frame_size_ = 100; last_update_time_ = absl::nullopt; prev_estimate_ = absl::nullopt; prev_frame_size_ = absl::nullopt; avg_noise_ = 0.0; alpha_count_ = 1; filter_jitter_estimate_ = TimeDelta::Zero(); latest_nack_ = Timestamp::Zero(); nack_count_ = 0; frame_size_sum_ = DataSize::Zero(); frame_size_count_ = 0; startup_count_ = 0; rtt_filter_.Reset(); fps_counter_.Reset(); } // Updates the estimates with the new measurements. void VCMJitterEstimator::UpdateEstimate(TimeDelta frame_delay, DataSize frame_size, bool incomplete_frame /* = false */) { if (frame_size.IsZero()) { return; } // Can't use DataSize since this can be negative. double delta_frame_bytes = frame_size.bytes() - prev_frame_size_.value_or(DataSize::Zero()).bytes(); if (frame_size_count_ < kFsAccuStartupSamples) { frame_size_sum_ += frame_size; frame_size_count_++; } else if (frame_size_count_ == kFsAccuStartupSamples) { // Give the frame size filter. avg_frame_size_ = frame_size_sum_ / static_cast(frame_size_count_); frame_size_count_++; } if (!incomplete_frame || frame_size > avg_frame_size_) { DataSize avg_frame_size = kPhi * avg_frame_size_ + (1 - kPhi) * frame_size; DataSize deviation_size = DataSize::Bytes(2 * sqrt(var_frame_size_)); if (frame_size < avg_frame_size_ + deviation_size) { // Only update the average frame size if this sample wasn't a key frame. avg_frame_size_ = avg_frame_size; } // Update the variance anyway since we want to capture cases where we only // get key frames. double delta_bytes = frame_size.bytes() - avg_frame_size.bytes(); var_frame_size_ = std::max( kPhi * var_frame_size_ + (1 - kPhi) * (delta_bytes * delta_bytes), 1.0); } // Update max_frame_size_ estimate. max_frame_size_ = std::max(kPsi * max_frame_size_, frame_size); if (!prev_frame_size_) { prev_frame_size_ = frame_size; return; } prev_frame_size_ = frame_size; // Cap frame_delay based on the current time deviation noise. TimeDelta max_time_deviation = TimeDelta::Millis(time_deviation_upper_bound_ * sqrt(var_noise_) + 0.5); frame_delay.Clamp(-max_time_deviation, max_time_deviation); // Only update the Kalman filter if the sample is not considered an extreme // outlier. Even if it is an extreme outlier from a delay point of view, if // the frame size also is large the deviation is probably due to an incorrect // line slope. double deviation = DeviationFromExpectedDelay(frame_delay, delta_frame_bytes); if (fabs(deviation) < kNumStdDevDelayOutlier * sqrt(var_noise_) || frame_size.bytes() > avg_frame_size_.bytes() + kNumStdDevFrameSizeOutlier * sqrt(var_frame_size_)) { // Update the variance of the deviation from the line given by the Kalman // filter. EstimateRandomJitter(deviation, incomplete_frame); // Prevent updating with frames which have been congested by a large frame, // and therefore arrives almost at the same time as that frame. // This can occur when we receive a large frame (key frame) which has been // delayed. The next frame is of normal size (delta frame), and thus deltaFS // will be << 0. This removes all frame samples which arrives after a key // frame. if ((!incomplete_frame || deviation >= 0) && delta_frame_bytes > -0.25 * max_frame_size_.bytes()) { // Update the Kalman filter with the new data KalmanEstimateChannel(frame_delay, delta_frame_bytes); } } else { int nStdDev = (deviation >= 0) ? kNumStdDevDelayOutlier : -kNumStdDevDelayOutlier; EstimateRandomJitter(nStdDev * sqrt(var_noise_), incomplete_frame); } // Post process the total estimated jitter if (startup_count_ >= kStartupDelaySamples) { PostProcessEstimate(); } else { startup_count_++; } } // Updates the nack/packet ratio. void VCMJitterEstimator::FrameNacked() { if (nack_count_ < kNackLimit) { nack_count_++; } latest_nack_ = clock_->CurrentTime(); } // Updates Kalman estimate of the channel. // The caller is expected to sanity check the inputs. void VCMJitterEstimator::KalmanEstimateChannel(TimeDelta frame_delay, double delta_frame_size_bytes) { double Mh[2]; double hMh_sigma; double kalmanGain[2]; double measureRes; double t00, t01; // Kalman filtering // Prediction // M = M + Q theta_cov_[0][0] += q_cov_[0][0]; theta_cov_[0][1] += q_cov_[0][1]; theta_cov_[1][0] += q_cov_[1][0]; theta_cov_[1][1] += q_cov_[1][1]; // Kalman gain // K = M*h'/(sigma2n + h*M*h') = M*h'/(1 + h*M*h') // h = [dFS 1] // Mh = M*h' // hMh_sigma = h*M*h' + R Mh[0] = theta_cov_[0][0] * delta_frame_size_bytes + theta_cov_[0][1]; Mh[1] = theta_cov_[1][0] * delta_frame_size_bytes + theta_cov_[1][1]; // sigma weights measurements with a small deltaFS as noisy and // measurements with large deltaFS as good if (max_frame_size_ < DataSize::Bytes(1)) { return; } double sigma = (300.0 * exp(-fabs(delta_frame_size_bytes) / (1e0 * max_frame_size_.bytes())) + 1) * sqrt(var_noise_); if (sigma < 1.0) { sigma = 1.0; } hMh_sigma = delta_frame_size_bytes * Mh[0] + Mh[1] + sigma; if ((hMh_sigma < 1e-9 && hMh_sigma >= 0) || (hMh_sigma > -1e-9 && hMh_sigma <= 0)) { RTC_DCHECK_NOTREACHED(); return; } kalmanGain[0] = Mh[0] / hMh_sigma; kalmanGain[1] = Mh[1] / hMh_sigma; // Correction // theta = theta + K*(dT - h*theta) measureRes = frame_delay.ms() - (delta_frame_size_bytes * theta_[0] + theta_[1]); theta_[0] += kalmanGain[0] * measureRes; theta_[1] += kalmanGain[1] * measureRes; if (theta_[0] < kThetaLow) { theta_[0] = kThetaLow; } // M = (I - K*h)*M t00 = theta_cov_[0][0]; t01 = theta_cov_[0][1]; theta_cov_[0][0] = (1 - kalmanGain[0] * delta_frame_size_bytes) * t00 - kalmanGain[0] * theta_cov_[1][0]; theta_cov_[0][1] = (1 - kalmanGain[0] * delta_frame_size_bytes) * t01 - kalmanGain[0] * theta_cov_[1][1]; theta_cov_[1][0] = theta_cov_[1][0] * (1 - kalmanGain[1]) - kalmanGain[1] * delta_frame_size_bytes * t00; theta_cov_[1][1] = theta_cov_[1][1] * (1 - kalmanGain[1]) - kalmanGain[1] * delta_frame_size_bytes * t01; // Covariance matrix, must be positive semi-definite. RTC_DCHECK(theta_cov_[0][0] + theta_cov_[1][1] >= 0 && theta_cov_[0][0] * theta_cov_[1][1] - theta_cov_[0][1] * theta_cov_[1][0] >= 0 && theta_cov_[0][0] >= 0); } // Calculate difference in delay between a sample and the expected delay // estimated by the Kalman filter double VCMJitterEstimator::DeviationFromExpectedDelay( TimeDelta frame_delay, double delta_frame_size_bytes) const { return frame_delay.ms() - (theta_[0] * delta_frame_size_bytes + theta_[1]); } // Estimates the random jitter by calculating the variance of the sample // distance from the line given by theta. void VCMJitterEstimator::EstimateRandomJitter(double d_dT, bool incomplete_frame) { Timestamp now = clock_->CurrentTime(); if (last_update_time_.has_value()) { fps_counter_.AddSample((now - *last_update_time_).us()); } last_update_time_ = now; if (alpha_count_ == 0) { RTC_DCHECK_NOTREACHED(); return; } double alpha = static_cast(alpha_count_ - 1) / static_cast(alpha_count_); alpha_count_++; if (alpha_count_ > kAlphaCountMax) alpha_count_ = kAlphaCountMax; // In order to avoid a low frame rate stream to react slower to changes, // scale the alpha weight relative a 30 fps stream. Frequency fps = GetFrameRate(); if (fps > Frequency::Zero()) { constexpr Frequency k30Fps = Frequency::Hertz(30); double rate_scale = k30Fps / fps; // At startup, there can be a lot of noise in the fps estimate. // Interpolate rate_scale linearly, from 1.0 at sample #1, to 30.0 / fps // at sample #kStartupDelaySamples. if (alpha_count_ < kStartupDelaySamples) { rate_scale = (alpha_count_ * rate_scale + (kStartupDelaySamples - alpha_count_)) / kStartupDelaySamples; } alpha = pow(alpha, rate_scale); } double avgNoise = alpha * avg_noise_ + (1 - alpha) * d_dT; double varNoise = alpha * var_noise_ + (1 - alpha) * (d_dT - avg_noise_) * (d_dT - avg_noise_); if (!incomplete_frame || varNoise > var_noise_) { avg_noise_ = avgNoise; var_noise_ = varNoise; } if (var_noise_ < 1.0) { // The variance should never be zero, since we might get stuck and consider // all samples as outliers. var_noise_ = 1.0; } } double VCMJitterEstimator::NoiseThreshold() const { double noiseThreshold = kNoiseStdDevs * sqrt(var_noise_) - kNoiseStdDevOffset; if (noiseThreshold < 1.0) { noiseThreshold = 1.0; } return noiseThreshold; } // Calculates the current jitter estimate from the filtered estimates. TimeDelta VCMJitterEstimator::CalculateEstimate() { double retMs = theta_[0] * (max_frame_size_.bytes() - avg_frame_size_.bytes()) + NoiseThreshold(); TimeDelta ret = TimeDelta::Millis(retMs); constexpr TimeDelta kMinPrevEstimate = TimeDelta::Micros(10); constexpr TimeDelta kMaxEstimate = TimeDelta::Seconds(10); // A very low estimate (or negative) is neglected. if (ret < TimeDelta::Millis(1)) { if (!prev_estimate_ || prev_estimate_ <= kMinPrevEstimate) { ret = TimeDelta::Millis(1); } else { ret = *prev_estimate_; } } if (ret > kMaxEstimate) { // Sanity ret = kMaxEstimate; } prev_estimate_ = ret; return ret; } void VCMJitterEstimator::PostProcessEstimate() { filter_jitter_estimate_ = CalculateEstimate(); } void VCMJitterEstimator::UpdateRtt(TimeDelta rtt) { rtt_filter_.Update(rtt); } // Returns the current filtered estimate if available, // otherwise tries to calculate an estimate. TimeDelta VCMJitterEstimator::GetJitterEstimate( double rtt_multiplier, absl::optional rtt_mult_add_cap) { TimeDelta jitter = CalculateEstimate() + OPERATING_SYSTEM_JITTER; Timestamp now = clock_->CurrentTime(); if (now - latest_nack_ > kNackCountTimeout) nack_count_ = 0; if (filter_jitter_estimate_ > jitter) jitter = filter_jitter_estimate_; if (nack_count_ >= kNackLimit) { if (rtt_mult_add_cap.has_value()) { jitter += std::min(rtt_filter_.Rtt() * rtt_multiplier, rtt_mult_add_cap.value()); } else { jitter += rtt_filter_.Rtt() * rtt_multiplier; } } if (enable_reduced_delay_) { static const Frequency kJitterScaleLowThreshold = Frequency::Hertz(5); static const Frequency kJitterScaleHighThreshold = Frequency::Hertz(10); Frequency fps = GetFrameRate(); // Ignore jitter for very low fps streams. if (fps < kJitterScaleLowThreshold) { if (fps.IsZero()) { return std::max(TimeDelta::Zero(), jitter); } return TimeDelta::Zero(); } // Semi-low frame rate; scale by factor linearly interpolated from 0.0 at // kJitterScaleLowThreshold to 1.0 at kJitterScaleHighThreshold. if (fps < kJitterScaleHighThreshold) { jitter = (1.0 / (kJitterScaleHighThreshold - kJitterScaleLowThreshold)) * (fps - kJitterScaleLowThreshold) * jitter; } } return std::max(TimeDelta::Zero(), jitter); } Frequency VCMJitterEstimator::GetFrameRate() const { TimeDelta mean_frame_period = TimeDelta::Micros(fps_counter_.ComputeMean()); if (mean_frame_period <= TimeDelta::Zero()) return Frequency::Zero(); Frequency fps = 1 / mean_frame_period; // Sanity check. RTC_DCHECK_GE(fps, Frequency::Zero()); return std::min(fps, kMaxFramerateEstimate); } } // namespace webrtc