webrtc/modules/video_coding/media_opt_util.cc
Danil Chapovalov 67ba914249 Propagate FieldTrialsView through FEC protection method helpers
And thus in those helpers query RateControlSettings field trials via propagated FieldTrialView instead of the via global field trial string

Bug: webrtc:42220378
Change-Id: I84f4bf42037d864519c4d2031d25cf909fd5010f
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/350305
Commit-Queue: Philip Eliasson <philipel@webrtc.org>
Reviewed-by: Philip Eliasson <philipel@webrtc.org>
Auto-Submit: Danil Chapovalov <danilchap@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#42286}
2024-05-13 11:44:26 +00:00

709 lines
24 KiB
C++

/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/video_coding/media_opt_util.h"
#include <math.h>
#include <algorithm>
#include <memory>
#include "api/field_trials_view.h"
#include "modules/video_coding/fec_rate_table.h"
#include "modules/video_coding/internal_defines.h"
#include "modules/video_coding/utility/simulcast_rate_allocator.h"
#include "rtc_base/checks.h"
#include "rtc_base/experiments/rate_control_settings.h"
#include "rtc_base/numerics/safe_conversions.h"
#include "system_wrappers/include/clock.h"
namespace webrtc {
// Max value of loss rates in off-line model
static const int kPacketLossMax = 129;
namespace media_optimization {
VCMProtectionParameters::VCMProtectionParameters()
: rtt(0),
lossPr(0.0f),
bitRate(0.0f),
packetsPerFrame(0.0f),
packetsPerFrameKey(0.0f),
frameRate(0.0f),
keyFrameSize(0.0f),
fecRateDelta(0),
fecRateKey(0),
codecWidth(0),
codecHeight(0),
numLayers(1) {}
VCMProtectionMethod::VCMProtectionMethod()
: _effectivePacketLoss(0),
_protectionFactorK(0),
_protectionFactorD(0),
_scaleProtKey(2.0f),
_maxPayloadSize(1460),
_corrFecCost(1.0),
_type(kNone) {}
VCMProtectionMethod::~VCMProtectionMethod() {}
enum VCMProtectionMethodEnum VCMProtectionMethod::Type() const {
return _type;
}
uint8_t VCMProtectionMethod::RequiredPacketLossER() {
return _effectivePacketLoss;
}
uint8_t VCMProtectionMethod::RequiredProtectionFactorK() {
return _protectionFactorK;
}
uint8_t VCMProtectionMethod::RequiredProtectionFactorD() {
return _protectionFactorD;
}
bool VCMProtectionMethod::RequiredUepProtectionK() {
return _useUepProtectionK;
}
bool VCMProtectionMethod::RequiredUepProtectionD() {
return _useUepProtectionD;
}
int VCMProtectionMethod::MaxFramesFec() const {
return 1;
}
VCMNackFecMethod::VCMNackFecMethod(const FieldTrialsView& field_trials,
int64_t lowRttNackThresholdMs,
int64_t highRttNackThresholdMs)
: VCMFecMethod(field_trials),
_lowRttNackMs(lowRttNackThresholdMs),
_highRttNackMs(highRttNackThresholdMs),
_maxFramesFec(1) {
RTC_DCHECK(lowRttNackThresholdMs >= -1 && highRttNackThresholdMs >= -1);
RTC_DCHECK(highRttNackThresholdMs == -1 ||
lowRttNackThresholdMs <= highRttNackThresholdMs);
RTC_DCHECK(lowRttNackThresholdMs > -1 || highRttNackThresholdMs == -1);
_type = kNackFec;
}
VCMNackFecMethod::~VCMNackFecMethod() {
//
}
bool VCMNackFecMethod::ProtectionFactor(
const VCMProtectionParameters* parameters) {
// Hybrid Nack FEC has three operational modes:
// 1. Low RTT (below kLowRttNackMs) - Nack only: Set FEC rate
// (_protectionFactorD) to zero. -1 means no FEC.
// 2. High RTT (above _highRttNackMs) - FEC Only: Keep FEC factors.
// -1 means always allow NACK.
// 3. Medium RTT values - Hybrid mode: We will only nack the
// residual following the decoding of the FEC (refer to JB logic). FEC
// delta protection factor will be adjusted based on the RTT.
// Otherwise: we count on FEC; if the RTT is below a threshold, then we
// nack the residual, based on a decision made in the JB.
// Compute the protection factors
VCMFecMethod::ProtectionFactor(parameters);
if (_lowRttNackMs == -1 || parameters->rtt < _lowRttNackMs) {
_protectionFactorD = 0;
VCMFecMethod::UpdateProtectionFactorD(_protectionFactorD);
// When in Hybrid mode (RTT range), adjust FEC rates based on the
// RTT (NACK effectiveness) - adjustment factor is in the range [0,1].
} else if (_highRttNackMs == -1 || parameters->rtt < _highRttNackMs) {
// TODO(mikhal): Disabling adjustment temporarily.
// uint16_t rttIndex = (uint16_t) parameters->rtt;
float adjustRtt = 1.0f; // (float)VCMNackFecTable[rttIndex] / 100.0f;
// Adjust FEC with NACK on (for delta frame only)
// table depends on RTT relative to rttMax (NACK Threshold)
_protectionFactorD = rtc::saturated_cast<uint8_t>(
adjustRtt * rtc::saturated_cast<float>(_protectionFactorD));
// update FEC rates after applying adjustment
VCMFecMethod::UpdateProtectionFactorD(_protectionFactorD);
}
return true;
}
int VCMNackFecMethod::ComputeMaxFramesFec(
const VCMProtectionParameters* parameters) {
if (parameters->numLayers > 2) {
// For more than 2 temporal layers we will only have FEC on the base layer,
// and the base layers will be pretty far apart. Therefore we force one
// frame FEC.
return 1;
}
// We set the max number of frames to base the FEC on so that on average
// we will have complete frames in one RTT. Note that this is an upper
// bound, and that the actual number of frames used for FEC is decided by the
// RTP module based on the actual number of packets and the protection factor.
float base_layer_framerate =
parameters->frameRate /
rtc::saturated_cast<float>(1 << (parameters->numLayers - 1));
int max_frames_fec = std::max(
rtc::saturated_cast<int>(
2.0f * base_layer_framerate * parameters->rtt / 1000.0f + 0.5f),
1);
// `kUpperLimitFramesFec` is the upper limit on how many frames we
// allow any FEC to be based on.
if (max_frames_fec > kUpperLimitFramesFec) {
max_frames_fec = kUpperLimitFramesFec;
}
return max_frames_fec;
}
int VCMNackFecMethod::MaxFramesFec() const {
return _maxFramesFec;
}
bool VCMNackFecMethod::BitRateTooLowForFec(
const VCMProtectionParameters* parameters) {
// Bitrate below which we turn off FEC, regardless of reported packet loss.
// The condition should depend on resolution and content. For now, use
// threshold on bytes per frame, with some effect for the frame size.
// The condition for turning off FEC is also based on other factors,
// such as `_numLayers`, `_maxFramesFec`, and `_rtt`.
int estimate_bytes_per_frame = 1000 * BitsPerFrame(parameters) / 8;
int max_bytes_per_frame = kMaxBytesPerFrameForFec;
int num_pixels = parameters->codecWidth * parameters->codecHeight;
if (num_pixels <= 352 * 288) {
max_bytes_per_frame = kMaxBytesPerFrameForFecLow;
} else if (num_pixels > 640 * 480) {
max_bytes_per_frame = kMaxBytesPerFrameForFecHigh;
}
// TODO(marpan): add condition based on maximum frames used for FEC,
// and expand condition based on frame size.
// Max round trip time threshold in ms.
const int64_t kMaxRttTurnOffFec = 200;
if (estimate_bytes_per_frame < max_bytes_per_frame &&
parameters->numLayers < 3 && parameters->rtt < kMaxRttTurnOffFec) {
return true;
}
return false;
}
bool VCMNackFecMethod::EffectivePacketLoss(
const VCMProtectionParameters* parameters) {
// Set the effective packet loss for encoder (based on FEC code).
// Compute the effective packet loss and residual packet loss due to FEC.
VCMFecMethod::EffectivePacketLoss(parameters);
return true;
}
bool VCMNackFecMethod::UpdateParameters(
const VCMProtectionParameters* parameters) {
ProtectionFactor(parameters);
EffectivePacketLoss(parameters);
_maxFramesFec = ComputeMaxFramesFec(parameters);
if (BitRateTooLowForFec(parameters)) {
_protectionFactorK = 0;
_protectionFactorD = 0;
}
// Protection/fec rates obtained above are defined relative to total number
// of packets (total rate: source + fec) FEC in RTP module assumes
// protection factor is defined relative to source number of packets so we
// should convert the factor to reduce mismatch between mediaOpt's rate and
// the actual one
_protectionFactorK = VCMFecMethod::ConvertFECRate(_protectionFactorK);
_protectionFactorD = VCMFecMethod::ConvertFECRate(_protectionFactorD);
return true;
}
VCMNackMethod::VCMNackMethod() : VCMProtectionMethod() {
_type = kNack;
}
VCMNackMethod::~VCMNackMethod() {
//
}
bool VCMNackMethod::EffectivePacketLoss(
const VCMProtectionParameters* parameter) {
// Effective Packet Loss, NA in current version.
_effectivePacketLoss = 0;
return true;
}
bool VCMNackMethod::UpdateParameters(
const VCMProtectionParameters* parameters) {
// Compute the effective packet loss
EffectivePacketLoss(parameters);
// nackCost = (bitRate - nackCost) * (lossPr)
return true;
}
VCMFecMethod::VCMFecMethod(const FieldTrialsView& field_trials)
: rate_control_settings_(field_trials) {
_type = kFec;
}
VCMFecMethod::~VCMFecMethod() = default;
uint8_t VCMFecMethod::BoostCodeRateKey(uint8_t packetFrameDelta,
uint8_t packetFrameKey) const {
uint8_t boostRateKey = 2;
// Default: ratio scales the FEC protection up for I frames
uint8_t ratio = 1;
if (packetFrameDelta > 0) {
ratio = (int8_t)(packetFrameKey / packetFrameDelta);
}
ratio = VCM_MAX(boostRateKey, ratio);
return ratio;
}
uint8_t VCMFecMethod::ConvertFECRate(uint8_t codeRateRTP) const {
return rtc::saturated_cast<uint8_t>(
VCM_MIN(255, (0.5 + 255.0 * codeRateRTP /
rtc::saturated_cast<float>(255 - codeRateRTP))));
}
// Update FEC with protectionFactorD
void VCMFecMethod::UpdateProtectionFactorD(uint8_t protectionFactorD) {
_protectionFactorD = protectionFactorD;
}
// Update FEC with protectionFactorK
void VCMFecMethod::UpdateProtectionFactorK(uint8_t protectionFactorK) {
_protectionFactorK = protectionFactorK;
}
bool VCMFecMethod::ProtectionFactor(const VCMProtectionParameters* parameters) {
// FEC PROTECTION SETTINGS: varies with packet loss and bitrate
// No protection if (filtered) packetLoss is 0
uint8_t packetLoss = rtc::saturated_cast<uint8_t>(255 * parameters->lossPr);
if (packetLoss == 0) {
_protectionFactorK = 0;
_protectionFactorD = 0;
return true;
}
// Parameters for FEC setting:
// first partition size, thresholds, table pars, spatial resoln fac.
// First partition protection: ~ 20%
uint8_t firstPartitionProt = rtc::saturated_cast<uint8_t>(255 * 0.20);
// Minimum protection level needed to generate one FEC packet for one
// source packet/frame (in RTP sender)
uint8_t minProtLevelFec = 85;
// Threshold on packetLoss and bitRrate/frameRate (=average #packets),
// above which we allocate protection to cover at least first partition.
uint8_t lossThr = 0;
uint8_t packetNumThr = 1;
// Parameters for range of rate index of table.
const uint8_t ratePar1 = 5;
const uint8_t ratePar2 = 49;
// Spatial resolution size, relative to a reference size.
float spatialSizeToRef = rtc::saturated_cast<float>(parameters->codecWidth *
parameters->codecHeight) /
(rtc::saturated_cast<float>(704 * 576));
// resolnFac: This parameter will generally increase/decrease the FEC rate
// (for fixed bitRate and packetLoss) based on system size.
// Use a smaller exponent (< 1) to control/soften system size effect.
const float resolnFac = 1.0 / powf(spatialSizeToRef, 0.3f);
const int bitRatePerFrame = BitsPerFrame(parameters);
// Average number of packets per frame (source and fec):
const uint8_t avgTotPackets = rtc::saturated_cast<uint8_t>(
1.5f + rtc::saturated_cast<float>(bitRatePerFrame) * 1000.0f /
rtc::saturated_cast<float>(8.0 * _maxPayloadSize));
// FEC rate parameters: for P and I frame
uint8_t codeRateDelta = 0;
uint8_t codeRateKey = 0;
// Get index for table: the FEC protection depends on an effective rate.
// The range on the rate index corresponds to rates (bps)
// from ~200k to ~8000k, for 30fps
const uint16_t effRateFecTable =
rtc::saturated_cast<uint16_t>(resolnFac * bitRatePerFrame);
uint8_t rateIndexTable = rtc::saturated_cast<uint8_t>(
VCM_MAX(VCM_MIN((effRateFecTable - ratePar1) / ratePar1, ratePar2), 0));
// Restrict packet loss range to 50:
// current tables defined only up to 50%
if (packetLoss >= kPacketLossMax) {
packetLoss = kPacketLossMax - 1;
}
uint16_t indexTable = rateIndexTable * kPacketLossMax + packetLoss;
// Check on table index
RTC_DCHECK_LT(indexTable, kFecRateTableSize);
// Protection factor for P frame
codeRateDelta = kFecRateTable[indexTable];
if (packetLoss > lossThr && avgTotPackets > packetNumThr) {
// Set a minimum based on first partition size.
if (codeRateDelta < firstPartitionProt) {
codeRateDelta = firstPartitionProt;
}
}
// Check limit on amount of protection for P frame; 50% is max.
if (codeRateDelta >= kPacketLossMax) {
codeRateDelta = kPacketLossMax - 1;
}
// For Key frame:
// Effectively at a higher rate, so we scale/boost the rate
// The boost factor may depend on several factors: ratio of packet
// number of I to P frames, how much protection placed on P frames, etc.
const uint8_t packetFrameDelta =
rtc::saturated_cast<uint8_t>(0.5 + parameters->packetsPerFrame);
const uint8_t packetFrameKey =
rtc::saturated_cast<uint8_t>(0.5 + parameters->packetsPerFrameKey);
const uint8_t boostKey = BoostCodeRateKey(packetFrameDelta, packetFrameKey);
rateIndexTable = rtc::saturated_cast<uint8_t>(VCM_MAX(
VCM_MIN(1 + (boostKey * effRateFecTable - ratePar1) / ratePar1, ratePar2),
0));
uint16_t indexTableKey = rateIndexTable * kPacketLossMax + packetLoss;
indexTableKey = VCM_MIN(indexTableKey, kFecRateTableSize);
// Check on table index
RTC_DCHECK_LT(indexTableKey, kFecRateTableSize);
// Protection factor for I frame
codeRateKey = kFecRateTable[indexTableKey];
// Boosting for Key frame.
int boostKeyProt = _scaleProtKey * codeRateDelta;
if (boostKeyProt >= kPacketLossMax) {
boostKeyProt = kPacketLossMax - 1;
}
// Make sure I frame protection is at least larger than P frame protection,
// and at least as high as filtered packet loss.
codeRateKey = rtc::saturated_cast<uint8_t>(
VCM_MAX(packetLoss, VCM_MAX(boostKeyProt, codeRateKey)));
// Check limit on amount of protection for I frame: 50% is max.
if (codeRateKey >= kPacketLossMax) {
codeRateKey = kPacketLossMax - 1;
}
_protectionFactorK = codeRateKey;
_protectionFactorD = codeRateDelta;
// Generally there is a rate mis-match between the FEC cost estimated
// in mediaOpt and the actual FEC cost sent out in RTP module.
// This is more significant at low rates (small # of source packets), where
// the granularity of the FEC decreases. In this case, non-zero protection
// in mediaOpt may generate 0 FEC packets in RTP sender (since actual #FEC
// is based on rounding off protectionFactor on actual source packet number).
// The correction factor (_corrFecCost) attempts to corrects this, at least
// for cases of low rates (small #packets) and low protection levels.
float numPacketsFl =
1.0f + (rtc::saturated_cast<float>(bitRatePerFrame) * 1000.0 /
rtc::saturated_cast<float>(8.0 * _maxPayloadSize) +
0.5);
const float estNumFecGen =
0.5f +
rtc::saturated_cast<float>(_protectionFactorD * numPacketsFl / 255.0f);
// We reduce cost factor (which will reduce overhead for FEC and
// hybrid method) and not the protectionFactor.
_corrFecCost = 1.0f;
if (estNumFecGen < 1.1f && _protectionFactorD < minProtLevelFec) {
_corrFecCost = 0.5f;
}
if (estNumFecGen < 0.9f && _protectionFactorD < minProtLevelFec) {
_corrFecCost = 0.0f;
}
// DONE WITH FEC PROTECTION SETTINGS
return true;
}
int VCMFecMethod::BitsPerFrame(const VCMProtectionParameters* parameters) {
// When temporal layers are available FEC will only be applied on the base
// layer.
const float bitRateRatio =
webrtc::SimulcastRateAllocator::GetTemporalRateAllocation(
parameters->numLayers, 0,
rate_control_settings_.Vp8BaseHeavyTl3RateAllocation());
float frameRateRatio = powf(1 / 2.0, parameters->numLayers - 1);
float bitRate = parameters->bitRate * bitRateRatio;
float frameRate = parameters->frameRate * frameRateRatio;
// TODO(mikhal): Update factor following testing.
float adjustmentFactor = 1;
if (frameRate < 1.0f)
frameRate = 1.0f;
// Average bits per frame (units of kbits)
return rtc::saturated_cast<int>(adjustmentFactor * bitRate / frameRate);
}
bool VCMFecMethod::EffectivePacketLoss(
const VCMProtectionParameters* parameters) {
// Effective packet loss to encoder is based on RPL (residual packet loss)
// this is a soft setting based on degree of FEC protection
// RPL = received/input packet loss - average_FEC_recovery
// note: received/input packet loss may be filtered based on FilteredLoss
// Effective Packet Loss, NA in current version.
_effectivePacketLoss = 0;
return true;
}
bool VCMFecMethod::UpdateParameters(const VCMProtectionParameters* parameters) {
// Compute the protection factor
ProtectionFactor(parameters);
// Compute the effective packet loss
EffectivePacketLoss(parameters);
// Protection/fec rates obtained above is defined relative to total number
// of packets (total rate: source+fec) FEC in RTP module assumes protection
// factor is defined relative to source number of packets so we should
// convert the factor to reduce mismatch between mediaOpt suggested rate and
// the actual rate
_protectionFactorK = ConvertFECRate(_protectionFactorK);
_protectionFactorD = ConvertFECRate(_protectionFactorD);
return true;
}
VCMLossProtectionLogic::VCMLossProtectionLogic(const Environment& env)
: env_(env),
_currentParameters(),
_rtt(0),
_lossPr(0.0f),
_bitRate(0.0f),
_frameRate(0.0f),
_keyFrameSize(0.0f),
_fecRateKey(0),
_fecRateDelta(0),
_lastPrUpdateT(0),
_lossPr255(0.9999f),
_lossPrHistory(),
_shortMaxLossPr255(0),
_packetsPerFrame(0.9999f),
_packetsPerFrameKey(0.9999f),
_codecWidth(704),
_codecHeight(576),
_numLayers(1) {
Reset(env_.clock().CurrentTime().ms());
}
VCMLossProtectionLogic::~VCMLossProtectionLogic() {
Release();
}
void VCMLossProtectionLogic::SetMethod(
enum VCMProtectionMethodEnum newMethodType) {
if (_selectedMethod && _selectedMethod->Type() == newMethodType)
return;
switch (newMethodType) {
case kNack:
_selectedMethod.reset(new VCMNackMethod());
break;
case kFec:
_selectedMethod = std::make_unique<VCMFecMethod>(env_.field_trials());
break;
case kNackFec:
_selectedMethod = std::make_unique<VCMNackFecMethod>(env_.field_trials(),
kLowRttNackMs, -1);
break;
case kNone:
_selectedMethod.reset();
break;
}
UpdateMethod();
}
void VCMLossProtectionLogic::UpdateRtt(int64_t rtt) {
_rtt = rtt;
}
void VCMLossProtectionLogic::UpdateMaxLossHistory(uint8_t lossPr255,
int64_t now) {
if (_lossPrHistory[0].timeMs >= 0 &&
now - _lossPrHistory[0].timeMs < kLossPrShortFilterWinMs) {
if (lossPr255 > _shortMaxLossPr255) {
_shortMaxLossPr255 = lossPr255;
}
} else {
// Only add a new value to the history once a second
if (_lossPrHistory[0].timeMs == -1) {
// First, no shift
_shortMaxLossPr255 = lossPr255;
} else {
// Shift
for (int32_t i = (kLossPrHistorySize - 2); i >= 0; i--) {
_lossPrHistory[i + 1].lossPr255 = _lossPrHistory[i].lossPr255;
_lossPrHistory[i + 1].timeMs = _lossPrHistory[i].timeMs;
}
}
if (_shortMaxLossPr255 == 0) {
_shortMaxLossPr255 = lossPr255;
}
_lossPrHistory[0].lossPr255 = _shortMaxLossPr255;
_lossPrHistory[0].timeMs = now;
_shortMaxLossPr255 = 0;
}
}
uint8_t VCMLossProtectionLogic::MaxFilteredLossPr(int64_t nowMs) const {
uint8_t maxFound = _shortMaxLossPr255;
if (_lossPrHistory[0].timeMs == -1) {
return maxFound;
}
for (int32_t i = 0; i < kLossPrHistorySize; i++) {
if (_lossPrHistory[i].timeMs == -1) {
break;
}
if (nowMs - _lossPrHistory[i].timeMs >
kLossPrHistorySize * kLossPrShortFilterWinMs) {
// This sample (and all samples after this) is too old
break;
}
if (_lossPrHistory[i].lossPr255 > maxFound) {
// This sample is the largest one this far into the history
maxFound = _lossPrHistory[i].lossPr255;
}
}
return maxFound;
}
uint8_t VCMLossProtectionLogic::FilteredLoss(int64_t nowMs,
FilterPacketLossMode filter_mode,
uint8_t lossPr255) {
// Update the max window filter.
UpdateMaxLossHistory(lossPr255, nowMs);
// Update the recursive average filter.
_lossPr255.Apply(rtc::saturated_cast<float>(nowMs - _lastPrUpdateT),
rtc::saturated_cast<float>(lossPr255));
_lastPrUpdateT = nowMs;
// Filtered loss: default is received loss (no filtering).
uint8_t filtered_loss = lossPr255;
switch (filter_mode) {
case kNoFilter:
break;
case kAvgFilter:
filtered_loss = rtc::saturated_cast<uint8_t>(_lossPr255.filtered() + 0.5);
break;
case kMaxFilter:
filtered_loss = MaxFilteredLossPr(nowMs);
break;
}
return filtered_loss;
}
void VCMLossProtectionLogic::UpdateFilteredLossPr(uint8_t packetLossEnc) {
_lossPr = rtc::saturated_cast<float>(packetLossEnc) / 255.0;
}
void VCMLossProtectionLogic::UpdateBitRate(float bitRate) {
_bitRate = bitRate;
}
void VCMLossProtectionLogic::UpdatePacketsPerFrame(float nPackets,
int64_t nowMs) {
_packetsPerFrame.Apply(
rtc::saturated_cast<float>(nowMs - _lastPacketPerFrameUpdateT), nPackets);
_lastPacketPerFrameUpdateT = nowMs;
}
void VCMLossProtectionLogic::UpdatePacketsPerFrameKey(float nPackets,
int64_t nowMs) {
_packetsPerFrameKey.Apply(
rtc::saturated_cast<float>(nowMs - _lastPacketPerFrameUpdateTKey),
nPackets);
_lastPacketPerFrameUpdateTKey = nowMs;
}
void VCMLossProtectionLogic::UpdateKeyFrameSize(float keyFrameSize) {
_keyFrameSize = keyFrameSize;
}
void VCMLossProtectionLogic::UpdateFrameSize(size_t width, size_t height) {
_codecWidth = width;
_codecHeight = height;
}
void VCMLossProtectionLogic::UpdateNumLayers(int numLayers) {
_numLayers = (numLayers == 0) ? 1 : numLayers;
}
bool VCMLossProtectionLogic::UpdateMethod() {
if (!_selectedMethod)
return false;
_currentParameters.rtt = _rtt;
_currentParameters.lossPr = _lossPr;
_currentParameters.bitRate = _bitRate;
_currentParameters.frameRate = _frameRate; // rename actual frame rate?
_currentParameters.keyFrameSize = _keyFrameSize;
_currentParameters.fecRateDelta = _fecRateDelta;
_currentParameters.fecRateKey = _fecRateKey;
_currentParameters.packetsPerFrame = _packetsPerFrame.filtered();
_currentParameters.packetsPerFrameKey = _packetsPerFrameKey.filtered();
_currentParameters.codecWidth = _codecWidth;
_currentParameters.codecHeight = _codecHeight;
_currentParameters.numLayers = _numLayers;
return _selectedMethod->UpdateParameters(&_currentParameters);
}
VCMProtectionMethod* VCMLossProtectionLogic::SelectedMethod() const {
return _selectedMethod.get();
}
VCMProtectionMethodEnum VCMLossProtectionLogic::SelectedType() const {
return _selectedMethod ? _selectedMethod->Type() : kNone;
}
void VCMLossProtectionLogic::Reset(int64_t nowMs) {
_lastPrUpdateT = nowMs;
_lastPacketPerFrameUpdateT = nowMs;
_lastPacketPerFrameUpdateTKey = nowMs;
_lossPr255.Reset(0.9999f);
_packetsPerFrame.Reset(0.9999f);
_fecRateDelta = _fecRateKey = 0;
for (int32_t i = 0; i < kLossPrHistorySize; i++) {
_lossPrHistory[i].lossPr255 = 0;
_lossPrHistory[i].timeMs = -1;
}
_shortMaxLossPr255 = 0;
Release();
}
void VCMLossProtectionLogic::Release() {
_selectedMethod.reset();
}
} // namespace media_optimization
} // namespace webrtc