mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-13 13:50:40 +01:00

As mentioned on https://webrtc-review.googlesource.com/c/src/+/183380, then relanded as https://webrtc-review.googlesource.com/c/src/+/183444, functions in cpu_features_wrapper.h should be refactored to use C++ features like namespaces and drop the WebRtc_ prefix. Bug: None Change-Id: I3e83e1668f9bf48a5d8e85d809f006666b7fa45e Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/183445 Reviewed-by: Karl Wiberg <kwiberg@webrtc.org> Commit-Queue: Mirko Bonadei <mbonadei@webrtc.org> Cr-Commit-Position: refs/heads/master@{#32045}
209 lines
6 KiB
C++
209 lines
6 KiB
C++
/*
|
|
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/audio_processing/aec3/vector_math.h"
|
|
|
|
#include <math.h>
|
|
|
|
#include "rtc_base/system/arch.h"
|
|
#include "system_wrappers/include/cpu_features_wrapper.h"
|
|
#include "test/gtest.h"
|
|
|
|
namespace webrtc {
|
|
|
|
#if defined(WEBRTC_HAS_NEON)
|
|
|
|
TEST(VectorMath, Sqrt) {
|
|
std::array<float, kFftLengthBy2Plus1> x;
|
|
std::array<float, kFftLengthBy2Plus1> z;
|
|
std::array<float, kFftLengthBy2Plus1> z_neon;
|
|
|
|
for (size_t k = 0; k < x.size(); ++k) {
|
|
x[k] = (2.f / 3.f) * k;
|
|
}
|
|
|
|
std::copy(x.begin(), x.end(), z.begin());
|
|
aec3::VectorMath(Aec3Optimization::kNone).Sqrt(z);
|
|
std::copy(x.begin(), x.end(), z_neon.begin());
|
|
aec3::VectorMath(Aec3Optimization::kNeon).Sqrt(z_neon);
|
|
for (size_t k = 0; k < z.size(); ++k) {
|
|
EXPECT_NEAR(z[k], z_neon[k], 0.0001f);
|
|
EXPECT_NEAR(sqrtf(x[k]), z_neon[k], 0.0001f);
|
|
}
|
|
}
|
|
|
|
TEST(VectorMath, Multiply) {
|
|
std::array<float, kFftLengthBy2Plus1> x;
|
|
std::array<float, kFftLengthBy2Plus1> y;
|
|
std::array<float, kFftLengthBy2Plus1> z;
|
|
std::array<float, kFftLengthBy2Plus1> z_neon;
|
|
|
|
for (size_t k = 0; k < x.size(); ++k) {
|
|
x[k] = k;
|
|
y[k] = (2.f / 3.f) * k;
|
|
}
|
|
|
|
aec3::VectorMath(Aec3Optimization::kNone).Multiply(x, y, z);
|
|
aec3::VectorMath(Aec3Optimization::kNeon).Multiply(x, y, z_neon);
|
|
for (size_t k = 0; k < z.size(); ++k) {
|
|
EXPECT_FLOAT_EQ(z[k], z_neon[k]);
|
|
EXPECT_FLOAT_EQ(x[k] * y[k], z_neon[k]);
|
|
}
|
|
}
|
|
|
|
TEST(VectorMath, Accumulate) {
|
|
std::array<float, kFftLengthBy2Plus1> x;
|
|
std::array<float, kFftLengthBy2Plus1> z;
|
|
std::array<float, kFftLengthBy2Plus1> z_neon;
|
|
|
|
for (size_t k = 0; k < x.size(); ++k) {
|
|
x[k] = k;
|
|
z[k] = z_neon[k] = 2.f * k;
|
|
}
|
|
|
|
aec3::VectorMath(Aec3Optimization::kNone).Accumulate(x, z);
|
|
aec3::VectorMath(Aec3Optimization::kNeon).Accumulate(x, z_neon);
|
|
for (size_t k = 0; k < z.size(); ++k) {
|
|
EXPECT_FLOAT_EQ(z[k], z_neon[k]);
|
|
EXPECT_FLOAT_EQ(x[k] + 2.f * x[k], z_neon[k]);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if defined(WEBRTC_ARCH_X86_FAMILY)
|
|
|
|
TEST(VectorMath, Sse2Sqrt) {
|
|
if (GetCPUInfo(kSSE2) != 0) {
|
|
std::array<float, kFftLengthBy2Plus1> x;
|
|
std::array<float, kFftLengthBy2Plus1> z;
|
|
std::array<float, kFftLengthBy2Plus1> z_sse2;
|
|
|
|
for (size_t k = 0; k < x.size(); ++k) {
|
|
x[k] = (2.f / 3.f) * k;
|
|
}
|
|
|
|
std::copy(x.begin(), x.end(), z.begin());
|
|
aec3::VectorMath(Aec3Optimization::kNone).Sqrt(z);
|
|
std::copy(x.begin(), x.end(), z_sse2.begin());
|
|
aec3::VectorMath(Aec3Optimization::kSse2).Sqrt(z_sse2);
|
|
EXPECT_EQ(z, z_sse2);
|
|
for (size_t k = 0; k < z.size(); ++k) {
|
|
EXPECT_FLOAT_EQ(z[k], z_sse2[k]);
|
|
EXPECT_FLOAT_EQ(sqrtf(x[k]), z_sse2[k]);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(VectorMath, Avx2Sqrt) {
|
|
if (GetCPUInfo(kAVX2) != 0) {
|
|
std::array<float, kFftLengthBy2Plus1> x;
|
|
std::array<float, kFftLengthBy2Plus1> z;
|
|
std::array<float, kFftLengthBy2Plus1> z_avx2;
|
|
|
|
for (size_t k = 0; k < x.size(); ++k) {
|
|
x[k] = (2.f / 3.f) * k;
|
|
}
|
|
|
|
std::copy(x.begin(), x.end(), z.begin());
|
|
aec3::VectorMath(Aec3Optimization::kNone).Sqrt(z);
|
|
std::copy(x.begin(), x.end(), z_avx2.begin());
|
|
aec3::VectorMath(Aec3Optimization::kAvx2).Sqrt(z_avx2);
|
|
EXPECT_EQ(z, z_avx2);
|
|
for (size_t k = 0; k < z.size(); ++k) {
|
|
EXPECT_FLOAT_EQ(z[k], z_avx2[k]);
|
|
EXPECT_FLOAT_EQ(sqrtf(x[k]), z_avx2[k]);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(VectorMath, Sse2Multiply) {
|
|
if (GetCPUInfo(kSSE2) != 0) {
|
|
std::array<float, kFftLengthBy2Plus1> x;
|
|
std::array<float, kFftLengthBy2Plus1> y;
|
|
std::array<float, kFftLengthBy2Plus1> z;
|
|
std::array<float, kFftLengthBy2Plus1> z_sse2;
|
|
|
|
for (size_t k = 0; k < x.size(); ++k) {
|
|
x[k] = k;
|
|
y[k] = (2.f / 3.f) * k;
|
|
}
|
|
|
|
aec3::VectorMath(Aec3Optimization::kNone).Multiply(x, y, z);
|
|
aec3::VectorMath(Aec3Optimization::kSse2).Multiply(x, y, z_sse2);
|
|
for (size_t k = 0; k < z.size(); ++k) {
|
|
EXPECT_FLOAT_EQ(z[k], z_sse2[k]);
|
|
EXPECT_FLOAT_EQ(x[k] * y[k], z_sse2[k]);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(VectorMath, Avx2Multiply) {
|
|
if (GetCPUInfo(kAVX2) != 0) {
|
|
std::array<float, kFftLengthBy2Plus1> x;
|
|
std::array<float, kFftLengthBy2Plus1> y;
|
|
std::array<float, kFftLengthBy2Plus1> z;
|
|
std::array<float, kFftLengthBy2Plus1> z_avx2;
|
|
|
|
for (size_t k = 0; k < x.size(); ++k) {
|
|
x[k] = k;
|
|
y[k] = (2.f / 3.f) * k;
|
|
}
|
|
|
|
aec3::VectorMath(Aec3Optimization::kNone).Multiply(x, y, z);
|
|
aec3::VectorMath(Aec3Optimization::kAvx2).Multiply(x, y, z_avx2);
|
|
for (size_t k = 0; k < z.size(); ++k) {
|
|
EXPECT_FLOAT_EQ(z[k], z_avx2[k]);
|
|
EXPECT_FLOAT_EQ(x[k] * y[k], z_avx2[k]);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(VectorMath, Sse2Accumulate) {
|
|
if (GetCPUInfo(kSSE2) != 0) {
|
|
std::array<float, kFftLengthBy2Plus1> x;
|
|
std::array<float, kFftLengthBy2Plus1> z;
|
|
std::array<float, kFftLengthBy2Plus1> z_sse2;
|
|
|
|
for (size_t k = 0; k < x.size(); ++k) {
|
|
x[k] = k;
|
|
z[k] = z_sse2[k] = 2.f * k;
|
|
}
|
|
|
|
aec3::VectorMath(Aec3Optimization::kNone).Accumulate(x, z);
|
|
aec3::VectorMath(Aec3Optimization::kSse2).Accumulate(x, z_sse2);
|
|
for (size_t k = 0; k < z.size(); ++k) {
|
|
EXPECT_FLOAT_EQ(z[k], z_sse2[k]);
|
|
EXPECT_FLOAT_EQ(x[k] + 2.f * x[k], z_sse2[k]);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(VectorMath, Avx2Accumulate) {
|
|
if (GetCPUInfo(kAVX2) != 0) {
|
|
std::array<float, kFftLengthBy2Plus1> x;
|
|
std::array<float, kFftLengthBy2Plus1> z;
|
|
std::array<float, kFftLengthBy2Plus1> z_avx2;
|
|
|
|
for (size_t k = 0; k < x.size(); ++k) {
|
|
x[k] = k;
|
|
z[k] = z_avx2[k] = 2.f * k;
|
|
}
|
|
|
|
aec3::VectorMath(Aec3Optimization::kNone).Accumulate(x, z);
|
|
aec3::VectorMath(Aec3Optimization::kAvx2).Accumulate(x, z_avx2);
|
|
for (size_t k = 0; k < z.size(); ++k) {
|
|
EXPECT_FLOAT_EQ(z[k], z_avx2[k]);
|
|
EXPECT_FLOAT_EQ(x[k] + 2.f * x[k], z_avx2[k]);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
} // namespace webrtc
|