webrtc/modules/video_coding/timing_unittest.cc
Jonas Olsson a4d873786f Format almost everything.
This CL was generated by running

git ls-files | grep -P "(\.h|\.cc)$" | grep -v 'sdk/' | grep -v 'rtc_base/ssl_' | \
grep -v 'fake_rtc_certificate_generator.h' | grep -v 'modules/audio_device/win/' | \
grep -v 'system_wrappers/source/clock.cc' | grep -v 'rtc_base/trace_event.h' | \
grep -v 'modules/audio_coding/codecs/ilbc/' | grep -v 'screen_capturer_mac.h' | \
grep -v 'spl_inl_mips.h' | grep -v 'data_size_unittest.cc' | grep -v 'timestamp_unittest.cc' \
| xargs clang-format -i ; git cl format

Most of these changes are clang-format grouping and reordering includes
differently.

Bug: webrtc:9340
Change-Id: Ic83ddbc169bfacd21883e381b5181c3dd4fe8a63
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/144051
Commit-Queue: Jonas Olsson <jonasolsson@webrtc.org>
Reviewed-by: Karl Wiberg <kwiberg@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#28505}
2019-07-08 13:45:15 +00:00

130 lines
4.7 KiB
C++

/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/video_coding/timing.h"
#include "system_wrappers/include/clock.h"
#include "test/gtest.h"
namespace webrtc {
namespace {
const int kFps = 25;
} // namespace
TEST(ReceiverTiming, Tests) {
SimulatedClock clock(0);
VCMTiming timing(&clock);
timing.Reset();
uint32_t timestamp = 0;
timing.UpdateCurrentDelay(timestamp);
timing.Reset();
timing.IncomingTimestamp(timestamp, clock.TimeInMilliseconds());
uint32_t jitter_delay_ms = 20;
timing.SetJitterDelay(jitter_delay_ms);
timing.UpdateCurrentDelay(timestamp);
timing.set_render_delay(0);
uint32_t wait_time_ms = timing.MaxWaitingTime(
timing.RenderTimeMs(timestamp, clock.TimeInMilliseconds()),
clock.TimeInMilliseconds());
// First update initializes the render time. Since we have no decode delay
// we get wait_time_ms = renderTime - now - renderDelay = jitter.
EXPECT_EQ(jitter_delay_ms, wait_time_ms);
jitter_delay_ms += VCMTiming::kDelayMaxChangeMsPerS + 10;
timestamp += 90000;
clock.AdvanceTimeMilliseconds(1000);
timing.SetJitterDelay(jitter_delay_ms);
timing.UpdateCurrentDelay(timestamp);
wait_time_ms = timing.MaxWaitingTime(
timing.RenderTimeMs(timestamp, clock.TimeInMilliseconds()),
clock.TimeInMilliseconds());
// Since we gradually increase the delay we only get 100 ms every second.
EXPECT_EQ(jitter_delay_ms - 10, wait_time_ms);
timestamp += 90000;
clock.AdvanceTimeMilliseconds(1000);
timing.UpdateCurrentDelay(timestamp);
wait_time_ms = timing.MaxWaitingTime(
timing.RenderTimeMs(timestamp, clock.TimeInMilliseconds()),
clock.TimeInMilliseconds());
EXPECT_EQ(jitter_delay_ms, wait_time_ms);
// Insert frames without jitter, verify that this gives the exact wait time.
const int kNumFrames = 300;
for (int i = 0; i < kNumFrames; i++) {
clock.AdvanceTimeMilliseconds(1000 / kFps);
timestamp += 90000 / kFps;
timing.IncomingTimestamp(timestamp, clock.TimeInMilliseconds());
}
timing.UpdateCurrentDelay(timestamp);
wait_time_ms = timing.MaxWaitingTime(
timing.RenderTimeMs(timestamp, clock.TimeInMilliseconds()),
clock.TimeInMilliseconds());
EXPECT_EQ(jitter_delay_ms, wait_time_ms);
// Add decode time estimates for 1 second.
const uint32_t kDecodeTimeMs = 10;
for (int i = 0; i < kFps; i++) {
clock.AdvanceTimeMilliseconds(kDecodeTimeMs);
timing.StopDecodeTimer(kDecodeTimeMs, clock.TimeInMilliseconds());
timestamp += 90000 / kFps;
clock.AdvanceTimeMilliseconds(1000 / kFps - kDecodeTimeMs);
timing.IncomingTimestamp(timestamp, clock.TimeInMilliseconds());
}
timing.UpdateCurrentDelay(timestamp);
wait_time_ms = timing.MaxWaitingTime(
timing.RenderTimeMs(timestamp, clock.TimeInMilliseconds()),
clock.TimeInMilliseconds());
EXPECT_EQ(jitter_delay_ms, wait_time_ms);
const int kMinTotalDelayMs = 200;
timing.set_min_playout_delay(kMinTotalDelayMs);
clock.AdvanceTimeMilliseconds(5000);
timestamp += 5 * 90000;
timing.UpdateCurrentDelay(timestamp);
const int kRenderDelayMs = 10;
timing.set_render_delay(kRenderDelayMs);
wait_time_ms = timing.MaxWaitingTime(
timing.RenderTimeMs(timestamp, clock.TimeInMilliseconds()),
clock.TimeInMilliseconds());
// We should at least have kMinTotalDelayMs - decodeTime (10) - renderTime
// (10) to wait.
EXPECT_EQ(kMinTotalDelayMs - kDecodeTimeMs - kRenderDelayMs, wait_time_ms);
// The total video delay should be equal to the min total delay.
EXPECT_EQ(kMinTotalDelayMs, timing.TargetVideoDelay());
// Reset playout delay.
timing.set_min_playout_delay(0);
clock.AdvanceTimeMilliseconds(5000);
timestamp += 5 * 90000;
timing.UpdateCurrentDelay(timestamp);
}
TEST(ReceiverTiming, WrapAround) {
SimulatedClock clock(0);
VCMTiming timing(&clock);
// Provoke a wrap-around. The fifth frame will have wrapped at 25 fps.
uint32_t timestamp = 0xFFFFFFFFu - 3 * 90000 / kFps;
for (int i = 0; i < 5; ++i) {
timing.IncomingTimestamp(timestamp, clock.TimeInMilliseconds());
clock.AdvanceTimeMilliseconds(1000 / kFps);
timestamp += 90000 / kFps;
EXPECT_EQ(3 * 1000 / kFps,
timing.RenderTimeMs(0xFFFFFFFFu, clock.TimeInMilliseconds()));
EXPECT_EQ(3 * 1000 / kFps + 1,
timing.RenderTimeMs(89u, // One ms later in 90 kHz.
clock.TimeInMilliseconds()));
}
}
} // namespace webrtc