webrtc/modules/congestion_controller/goog_cc/delay_based_bwe_unittest.cc
Erik Språng b3564c1cb2 Back off relative to current estimate rather than ack rate when in ALR.
If we're in ALR, the acked rate is going to be significantly lower than
the current estimate for the link capacity. If we need to back off in
this situation (usually caused by latency spikes), this CL makes us back
off relative to current estimate if. We then immediately send a new
probe just in case the network did actually change.

All of this is behind experiment flags for now.

Bug: webrtc:10144
Change-Id: I062a259c36417eea2211d44592ef7fc979aa22b7
Reviewed-on: https://webrtc-review.googlesource.com/c/113880
Commit-Queue: Erik Språng <sprang@webrtc.org>
Reviewed-by: Sebastian Jansson <srte@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#26045}
2018-12-18 12:33:08 +00:00

296 lines
11 KiB
C++

/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/congestion_controller/goog_cc/delay_based_bwe.h"
#include "api/transport/network_types.h"
#include "modules/congestion_controller/goog_cc/acknowledged_bitrate_estimator.h"
#include "modules/congestion_controller/goog_cc/delay_based_bwe_unittest_helper.h"
#include "system_wrappers/include/clock.h"
#include "test/gtest.h"
namespace webrtc {
namespace {
constexpr int kNumProbesCluster0 = 5;
constexpr int kNumProbesCluster1 = 8;
const PacedPacketInfo kPacingInfo0(0, kNumProbesCluster0, 2000);
const PacedPacketInfo kPacingInfo1(1, kNumProbesCluster1, 4000);
constexpr float kTargetUtilizationFraction = 0.95f;
constexpr Timestamp kDummyTimestamp = Timestamp::Seconds<1000>();
} // namespace
TEST_F(DelayBasedBweTest, NoCrashEmptyFeedback) {
std::vector<PacketFeedback> packet_feedback_vector;
bitrate_estimator_->IncomingPacketFeedbackVector(packet_feedback_vector,
absl::nullopt, absl::nullopt,
false, kDummyTimestamp);
}
TEST_F(DelayBasedBweTest, NoCrashOnlyLostFeedback) {
std::vector<PacketFeedback> packet_feedback_vector;
packet_feedback_vector.push_back(PacketFeedback(PacketFeedback::kNotReceived,
PacketFeedback::kNoSendTime,
0, 1500, PacedPacketInfo()));
packet_feedback_vector.push_back(PacketFeedback(PacketFeedback::kNotReceived,
PacketFeedback::kNoSendTime,
1, 1500, PacedPacketInfo()));
bitrate_estimator_->IncomingPacketFeedbackVector(packet_feedback_vector,
absl::nullopt, absl::nullopt,
false, kDummyTimestamp);
}
TEST_F(DelayBasedBweTest, ProbeDetection) {
int64_t now_ms = clock_.TimeInMilliseconds();
uint16_t seq_num = 0;
// First burst sent at 8 * 1000 / 10 = 800 kbps.
for (int i = 0; i < kNumProbesCluster0; ++i) {
clock_.AdvanceTimeMilliseconds(10);
now_ms = clock_.TimeInMilliseconds();
IncomingFeedback(now_ms, now_ms, seq_num++, 1000, kPacingInfo0);
}
EXPECT_TRUE(bitrate_observer_.updated());
// Second burst sent at 8 * 1000 / 5 = 1600 kbps.
for (int i = 0; i < kNumProbesCluster1; ++i) {
clock_.AdvanceTimeMilliseconds(5);
now_ms = clock_.TimeInMilliseconds();
IncomingFeedback(now_ms, now_ms, seq_num++, 1000, kPacingInfo1);
}
EXPECT_TRUE(bitrate_observer_.updated());
EXPECT_GT(bitrate_observer_.latest_bitrate(), 1500000u);
}
TEST_F(DelayBasedBweTest, ProbeDetectionNonPacedPackets) {
int64_t now_ms = clock_.TimeInMilliseconds();
uint16_t seq_num = 0;
// First burst sent at 8 * 1000 / 10 = 800 kbps, but with every other packet
// not being paced which could mess things up.
for (int i = 0; i < kNumProbesCluster0; ++i) {
clock_.AdvanceTimeMilliseconds(5);
now_ms = clock_.TimeInMilliseconds();
IncomingFeedback(now_ms, now_ms, seq_num++, 1000, kPacingInfo0);
// Non-paced packet, arriving 5 ms after.
clock_.AdvanceTimeMilliseconds(5);
IncomingFeedback(now_ms, now_ms, seq_num++, 100, PacedPacketInfo());
}
EXPECT_TRUE(bitrate_observer_.updated());
EXPECT_GT(bitrate_observer_.latest_bitrate(), 800000u);
}
TEST_F(DelayBasedBweTest, ProbeDetectionFasterArrival) {
int64_t now_ms = clock_.TimeInMilliseconds();
uint16_t seq_num = 0;
// First burst sent at 8 * 1000 / 10 = 800 kbps.
// Arriving at 8 * 1000 / 5 = 1600 kbps.
int64_t send_time_ms = 0;
for (int i = 0; i < kNumProbesCluster0; ++i) {
clock_.AdvanceTimeMilliseconds(1);
send_time_ms += 10;
now_ms = clock_.TimeInMilliseconds();
IncomingFeedback(now_ms, send_time_ms, seq_num++, 1000, kPacingInfo0);
}
EXPECT_FALSE(bitrate_observer_.updated());
}
TEST_F(DelayBasedBweTest, ProbeDetectionSlowerArrival) {
int64_t now_ms = clock_.TimeInMilliseconds();
uint16_t seq_num = 0;
// First burst sent at 8 * 1000 / 5 = 1600 kbps.
// Arriving at 8 * 1000 / 7 = 1142 kbps.
// Since the receive rate is significantly below the send rate, we expect to
// use 95% of the estimated capacity.
int64_t send_time_ms = 0;
for (int i = 0; i < kNumProbesCluster1; ++i) {
clock_.AdvanceTimeMilliseconds(7);
send_time_ms += 5;
now_ms = clock_.TimeInMilliseconds();
IncomingFeedback(now_ms, send_time_ms, seq_num++, 1000, kPacingInfo1);
}
EXPECT_TRUE(bitrate_observer_.updated());
EXPECT_NEAR(bitrate_observer_.latest_bitrate(),
kTargetUtilizationFraction * 1140000u, 10000u);
}
TEST_F(DelayBasedBweTest, ProbeDetectionSlowerArrivalHighBitrate) {
int64_t now_ms = clock_.TimeInMilliseconds();
uint16_t seq_num = 0;
// Burst sent at 8 * 1000 / 1 = 8000 kbps.
// Arriving at 8 * 1000 / 2 = 4000 kbps.
// Since the receive rate is significantly below the send rate, we expect to
// use 95% of the estimated capacity.
int64_t send_time_ms = 0;
for (int i = 0; i < kNumProbesCluster1; ++i) {
clock_.AdvanceTimeMilliseconds(2);
send_time_ms += 1;
now_ms = clock_.TimeInMilliseconds();
IncomingFeedback(now_ms, send_time_ms, seq_num++, 1000, kPacingInfo1);
}
EXPECT_TRUE(bitrate_observer_.updated());
EXPECT_NEAR(bitrate_observer_.latest_bitrate(),
kTargetUtilizationFraction * 4000000u, 10000u);
}
TEST_F(DelayBasedBweTest, GetExpectedBwePeriodMs) {
auto default_interval = bitrate_estimator_->GetExpectedBwePeriod();
EXPECT_GT(default_interval.ms(), 0);
CapacityDropTestHelper(1, true, 333, 0);
auto interval = bitrate_estimator_->GetExpectedBwePeriod();
EXPECT_GT(interval.ms(), 0);
EXPECT_NE(interval.ms(), default_interval.ms());
}
TEST_F(DelayBasedBweTest, InitialBehavior) {
InitialBehaviorTestHelper(730000);
}
TEST_F(DelayBasedBweTest, RateIncreaseReordering) {
RateIncreaseReorderingTestHelper(730000);
}
TEST_F(DelayBasedBweTest, RateIncreaseRtpTimestamps) {
RateIncreaseRtpTimestampsTestHelper(627);
}
TEST_F(DelayBasedBweTest, CapacityDropOneStream) {
CapacityDropTestHelper(1, false, 300, 0);
}
TEST_F(DelayBasedBweTest, CapacityDropPosOffsetChange) {
CapacityDropTestHelper(1, false, 867, 30000);
}
TEST_F(DelayBasedBweTest, CapacityDropNegOffsetChange) {
CapacityDropTestHelper(1, false, 933, -30000);
}
TEST_F(DelayBasedBweTest, CapacityDropOneStreamWrap) {
CapacityDropTestHelper(1, true, 333, 0);
}
TEST_F(DelayBasedBweTest, TestTimestampGrouping) {
TestTimestampGroupingTestHelper();
}
TEST_F(DelayBasedBweTest, TestShortTimeoutAndWrap) {
// Simulate a client leaving and rejoining the call after 35 seconds. This
// will make abs send time wrap, so if streams aren't timed out properly
// the next 30 seconds of packets will be out of order.
TestWrappingHelper(35);
}
TEST_F(DelayBasedBweTest, TestLongTimeoutAndWrap) {
// Simulate a client leaving and rejoining the call after some multiple of
// 64 seconds later. This will cause a zero difference in abs send times due
// to the wrap, but a big difference in arrival time, if streams aren't
// properly timed out.
TestWrappingHelper(10 * 64);
}
TEST_F(DelayBasedBweTest, TestInitialOveruse) {
const DataRate kStartBitrate = DataRate::kbps(300);
const DataRate kInitialCapacity = DataRate::kbps(200);
const uint32_t kDummySsrc = 0;
// High FPS to ensure that we send a lot of packets in a short time.
const int kFps = 90;
stream_generator_->AddStream(new test::RtpStream(kFps, kStartBitrate.bps()));
stream_generator_->set_capacity_bps(kInitialCapacity.bps());
// Needed to initialize the AimdRateControl.
bitrate_estimator_->SetStartBitrate(kStartBitrate);
// Produce 30 frames (in 1/3 second) and give them to the estimator.
int64_t bitrate_bps = kStartBitrate.bps();
bool seen_overuse = false;
for (int i = 0; i < 30; ++i) {
bool overuse = GenerateAndProcessFrame(kDummySsrc, bitrate_bps);
// The purpose of this test is to ensure that we back down even if we don't
// have any acknowledged bitrate estimate yet. Hence, if the test works
// as expected, we should not have a measured bitrate yet.
EXPECT_FALSE(acknowledged_bitrate_estimator_->bitrate_bps().has_value());
if (overuse) {
EXPECT_TRUE(bitrate_observer_.updated());
EXPECT_NEAR(bitrate_observer_.latest_bitrate(), kStartBitrate.bps() / 2,
15000);
bitrate_bps = bitrate_observer_.latest_bitrate();
seen_overuse = true;
break;
} else if (bitrate_observer_.updated()) {
bitrate_bps = bitrate_observer_.latest_bitrate();
bitrate_observer_.Reset();
}
}
EXPECT_TRUE(seen_overuse);
EXPECT_NEAR(bitrate_observer_.latest_bitrate(), kStartBitrate.bps() / 2,
15000);
}
class DelayBasedBweTestWithBackoffTimeoutExperiment : public DelayBasedBweTest {
public:
DelayBasedBweTestWithBackoffTimeoutExperiment()
: DelayBasedBweTest("WebRTC-BweInitialBackOffInterval/Enabled-200/") {}
};
// This test subsumes and improves DelayBasedBweTest.TestInitialOveruse above.
TEST_F(DelayBasedBweTestWithBackoffTimeoutExperiment, TestInitialOveruse) {
const DataRate kStartBitrate = DataRate::kbps(300);
const DataRate kInitialCapacity = DataRate::kbps(200);
const uint32_t kDummySsrc = 0;
// High FPS to ensure that we send a lot of packets in a short time.
const int kFps = 90;
stream_generator_->AddStream(new test::RtpStream(kFps, kStartBitrate.bps()));
stream_generator_->set_capacity_bps(kInitialCapacity.bps());
// Needed to initialize the AimdRateControl.
bitrate_estimator_->SetStartBitrate(kStartBitrate);
// Produce 30 frames (in 1/3 second) and give them to the estimator.
int64_t bitrate_bps = kStartBitrate.bps();
bool seen_overuse = false;
for (int frames = 0; frames < 30 && !seen_overuse; ++frames) {
bool overuse = GenerateAndProcessFrame(kDummySsrc, bitrate_bps);
// The purpose of this test is to ensure that we back down even if we don't
// have any acknowledged bitrate estimate yet. Hence, if the test works
// as expected, we should not have a measured bitrate yet.
EXPECT_FALSE(acknowledged_bitrate_estimator_->bitrate_bps().has_value());
if (overuse) {
EXPECT_TRUE(bitrate_observer_.updated());
EXPECT_NEAR(bitrate_observer_.latest_bitrate(), kStartBitrate.bps() / 2,
15000);
bitrate_bps = bitrate_observer_.latest_bitrate();
seen_overuse = true;
} else if (bitrate_observer_.updated()) {
bitrate_bps = bitrate_observer_.latest_bitrate();
bitrate_observer_.Reset();
}
}
EXPECT_TRUE(seen_overuse);
// Continue generating an additional 15 frames (equivalent to 167 ms) and
// verify that we don't back down further.
for (int frames = 0; frames < 15 && seen_overuse; ++frames) {
bool overuse = GenerateAndProcessFrame(kDummySsrc, bitrate_bps);
EXPECT_FALSE(overuse);
if (bitrate_observer_.updated()) {
bitrate_bps = bitrate_observer_.latest_bitrate();
EXPECT_GE(bitrate_bps, kStartBitrate.bps() / 2 - 15000);
EXPECT_LE(bitrate_bps, kInitialCapacity.bps() + 15000);
bitrate_observer_.Reset();
}
}
}
} // namespace webrtc