webrtc/modules/rtp_rtcp/source/rtp_rtcp_impl.cc
Erik Språng 04e1bab1b3 Replaces OverheadObserver with simple getter.
This interface has a couple of issues. Primarily for me, it makes it
difficult work with the paced sender as we need to either temporarily
release a lock or force a thread-handover in order to avoid a cyclic
lock order.

For video in particular, its behavior is also falky since header sizes
can vary not only form frame to frame, but from packet to packet within
a frame (e.g. TimingInfo extension is only on the last packet, if set).
On bitrate allocation, the last reported value is picked, leading to
timing issues affecting the bitrate set.

This CL removes the callback interface and instead we simply poll the
RTP module for a packet overhead. This consists of an expected overhead
based on which non-volatile header extensions are registered (so for
instance AbsoluteCaptureTime is disregarded since it's only populated
once per second). The overhead estimation is a little less accurate but
instead simpler and deterministic.

Bug: webrtc:10809
Change-Id: I2c3d3fcca6ad35704c4c1b6b9e0a39227aada1ea
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/173704
Commit-Queue: Erik Språng <sprang@webrtc.org>
Reviewed-by: Stefan Holmer <stefan@webrtc.org>
Reviewed-by: Ali Tofigh <alito@webrtc.org>
Reviewed-by: Jakob Ivarsson <jakobi@webrtc.org>
Reviewed-by: Per Åhgren <peah@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#31185}
2020-05-07 17:33:45 +00:00

812 lines
27 KiB
C++

/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/rtp_rtcp/source/rtp_rtcp_impl.h"
#include <string.h>
#include <algorithm>
#include <cstdint>
#include <memory>
#include <set>
#include <string>
#include <utility>
#include "api/transport/field_trial_based_config.h"
#include "modules/rtp_rtcp/source/rtcp_packet/dlrr.h"
#include "modules/rtp_rtcp/source/rtp_rtcp_config.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#ifdef _WIN32
// Disable warning C4355: 'this' : used in base member initializer list.
#pragma warning(disable : 4355)
#endif
namespace webrtc {
namespace {
const int64_t kRtpRtcpMaxIdleTimeProcessMs = 5;
const int64_t kRtpRtcpRttProcessTimeMs = 1000;
const int64_t kRtpRtcpBitrateProcessTimeMs = 10;
const int64_t kDefaultExpectedRetransmissionTimeMs = 125;
} // namespace
ModuleRtpRtcpImpl::RtpSenderContext::RtpSenderContext(
const RtpRtcp::Configuration& config)
: packet_history(config.clock, config.enable_rtx_padding_prioritization),
packet_sender(config, &packet_history),
non_paced_sender(&packet_sender),
packet_generator(
config,
&packet_history,
config.paced_sender ? config.paced_sender : &non_paced_sender) {}
RtpRtcp::Configuration::Configuration() = default;
RtpRtcp::Configuration::Configuration(Configuration&& rhs) = default;
std::unique_ptr<RtpRtcp> RtpRtcp::Create(const Configuration& configuration) {
RTC_DCHECK(configuration.clock);
return std::make_unique<ModuleRtpRtcpImpl>(configuration);
}
ModuleRtpRtcpImpl::ModuleRtpRtcpImpl(const Configuration& configuration)
: rtcp_sender_(configuration),
rtcp_receiver_(configuration, this),
clock_(configuration.clock),
last_bitrate_process_time_(clock_->TimeInMilliseconds()),
last_rtt_process_time_(clock_->TimeInMilliseconds()),
next_process_time_(clock_->TimeInMilliseconds() +
kRtpRtcpMaxIdleTimeProcessMs),
packet_overhead_(28), // IPV4 UDP.
nack_last_time_sent_full_ms_(0),
nack_last_seq_number_sent_(0),
remote_bitrate_(configuration.remote_bitrate_estimator),
rtt_stats_(configuration.rtt_stats),
rtt_ms_(0) {
if (!configuration.receiver_only) {
rtp_sender_ = std::make_unique<RtpSenderContext>(configuration);
// Make sure rtcp sender use same timestamp offset as rtp sender.
rtcp_sender_.SetTimestampOffset(
rtp_sender_->packet_generator.TimestampOffset());
}
// Set default packet size limit.
// TODO(nisse): Kind-of duplicates
// webrtc::VideoSendStream::Config::Rtp::kDefaultMaxPacketSize.
const size_t kTcpOverIpv4HeaderSize = 40;
SetMaxRtpPacketSize(IP_PACKET_SIZE - kTcpOverIpv4HeaderSize);
}
ModuleRtpRtcpImpl::~ModuleRtpRtcpImpl() = default;
// Returns the number of milliseconds until the module want a worker thread
// to call Process.
int64_t ModuleRtpRtcpImpl::TimeUntilNextProcess() {
return std::max<int64_t>(0,
next_process_time_ - clock_->TimeInMilliseconds());
}
// Process any pending tasks such as timeouts (non time critical events).
void ModuleRtpRtcpImpl::Process() {
const int64_t now = clock_->TimeInMilliseconds();
next_process_time_ = now + kRtpRtcpMaxIdleTimeProcessMs;
if (rtp_sender_) {
if (now >= last_bitrate_process_time_ + kRtpRtcpBitrateProcessTimeMs) {
rtp_sender_->packet_sender.ProcessBitrateAndNotifyObservers();
last_bitrate_process_time_ = now;
next_process_time_ =
std::min(next_process_time_, now + kRtpRtcpBitrateProcessTimeMs);
}
}
bool process_rtt = now >= last_rtt_process_time_ + kRtpRtcpRttProcessTimeMs;
if (rtcp_sender_.Sending()) {
// Process RTT if we have received a report block and we haven't
// processed RTT for at least |kRtpRtcpRttProcessTimeMs| milliseconds.
if (rtcp_receiver_.LastReceivedReportBlockMs() > last_rtt_process_time_ &&
process_rtt) {
std::vector<RTCPReportBlock> receive_blocks;
rtcp_receiver_.StatisticsReceived(&receive_blocks);
int64_t max_rtt = 0;
for (std::vector<RTCPReportBlock>::iterator it = receive_blocks.begin();
it != receive_blocks.end(); ++it) {
int64_t rtt = 0;
rtcp_receiver_.RTT(it->sender_ssrc, &rtt, NULL, NULL, NULL);
max_rtt = (rtt > max_rtt) ? rtt : max_rtt;
}
// Report the rtt.
if (rtt_stats_ && max_rtt != 0)
rtt_stats_->OnRttUpdate(max_rtt);
}
// Verify receiver reports are delivered and the reported sequence number
// is increasing.
if (rtcp_receiver_.RtcpRrTimeout()) {
RTC_LOG_F(LS_WARNING) << "Timeout: No RTCP RR received.";
} else if (rtcp_receiver_.RtcpRrSequenceNumberTimeout()) {
RTC_LOG_F(LS_WARNING) << "Timeout: No increase in RTCP RR extended "
"highest sequence number.";
}
if (remote_bitrate_ && rtcp_sender_.TMMBR()) {
unsigned int target_bitrate = 0;
std::vector<unsigned int> ssrcs;
if (remote_bitrate_->LatestEstimate(&ssrcs, &target_bitrate)) {
if (!ssrcs.empty()) {
target_bitrate = target_bitrate / ssrcs.size();
}
rtcp_sender_.SetTargetBitrate(target_bitrate);
}
}
} else {
// Report rtt from receiver.
if (process_rtt) {
int64_t rtt_ms;
if (rtt_stats_ && rtcp_receiver_.GetAndResetXrRrRtt(&rtt_ms)) {
rtt_stats_->OnRttUpdate(rtt_ms);
}
}
}
// Get processed rtt.
if (process_rtt) {
last_rtt_process_time_ = now;
next_process_time_ = std::min(
next_process_time_, last_rtt_process_time_ + kRtpRtcpRttProcessTimeMs);
if (rtt_stats_) {
// Make sure we have a valid RTT before setting.
int64_t last_rtt = rtt_stats_->LastProcessedRtt();
if (last_rtt >= 0)
set_rtt_ms(last_rtt);
}
}
if (rtcp_sender_.TimeToSendRTCPReport())
rtcp_sender_.SendRTCP(GetFeedbackState(), kRtcpReport);
if (TMMBR() && rtcp_receiver_.UpdateTmmbrTimers()) {
rtcp_receiver_.NotifyTmmbrUpdated();
}
}
void ModuleRtpRtcpImpl::SetRtxSendStatus(int mode) {
rtp_sender_->packet_generator.SetRtxStatus(mode);
}
int ModuleRtpRtcpImpl::RtxSendStatus() const {
return rtp_sender_ ? rtp_sender_->packet_generator.RtxStatus() : kRtxOff;
}
void ModuleRtpRtcpImpl::SetRtxSendPayloadType(int payload_type,
int associated_payload_type) {
rtp_sender_->packet_generator.SetRtxPayloadType(payload_type,
associated_payload_type);
}
absl::optional<uint32_t> ModuleRtpRtcpImpl::RtxSsrc() const {
return rtp_sender_ ? rtp_sender_->packet_generator.RtxSsrc() : absl::nullopt;
}
absl::optional<uint32_t> ModuleRtpRtcpImpl::FlexfecSsrc() const {
if (rtp_sender_) {
return rtp_sender_->packet_generator.FlexfecSsrc();
}
return absl::nullopt;
}
void ModuleRtpRtcpImpl::IncomingRtcpPacket(const uint8_t* rtcp_packet,
const size_t length) {
rtcp_receiver_.IncomingPacket(rtcp_packet, length);
}
void ModuleRtpRtcpImpl::RegisterSendPayloadFrequency(int payload_type,
int payload_frequency) {
rtcp_sender_.SetRtpClockRate(payload_type, payload_frequency);
}
int32_t ModuleRtpRtcpImpl::DeRegisterSendPayload(const int8_t payload_type) {
return 0;
}
uint32_t ModuleRtpRtcpImpl::StartTimestamp() const {
return rtp_sender_->packet_generator.TimestampOffset();
}
// Configure start timestamp, default is a random number.
void ModuleRtpRtcpImpl::SetStartTimestamp(const uint32_t timestamp) {
rtcp_sender_.SetTimestampOffset(timestamp);
rtp_sender_->packet_generator.SetTimestampOffset(timestamp);
rtp_sender_->packet_sender.SetTimestampOffset(timestamp);
}
uint16_t ModuleRtpRtcpImpl::SequenceNumber() const {
return rtp_sender_->packet_generator.SequenceNumber();
}
// Set SequenceNumber, default is a random number.
void ModuleRtpRtcpImpl::SetSequenceNumber(const uint16_t seq_num) {
rtp_sender_->packet_generator.SetSequenceNumber(seq_num);
}
void ModuleRtpRtcpImpl::SetRtpState(const RtpState& rtp_state) {
rtp_sender_->packet_generator.SetRtpState(rtp_state);
rtp_sender_->packet_sender.SetMediaHasBeenSent(rtp_state.media_has_been_sent);
rtcp_sender_.SetTimestampOffset(rtp_state.start_timestamp);
}
void ModuleRtpRtcpImpl::SetRtxState(const RtpState& rtp_state) {
rtp_sender_->packet_generator.SetRtxRtpState(rtp_state);
}
RtpState ModuleRtpRtcpImpl::GetRtpState() const {
RtpState state = rtp_sender_->packet_generator.GetRtpState();
state.media_has_been_sent = rtp_sender_->packet_sender.MediaHasBeenSent();
return state;
}
RtpState ModuleRtpRtcpImpl::GetRtxState() const {
return rtp_sender_->packet_generator.GetRtxRtpState();
}
void ModuleRtpRtcpImpl::SetRid(const std::string& rid) {
if (rtp_sender_) {
rtp_sender_->packet_generator.SetRid(rid);
}
}
void ModuleRtpRtcpImpl::SetMid(const std::string& mid) {
if (rtp_sender_) {
rtp_sender_->packet_generator.SetMid(mid);
}
// TODO(bugs.webrtc.org/4050): If we end up supporting the MID SDES item for
// RTCP, this will need to be passed down to the RTCPSender also.
}
void ModuleRtpRtcpImpl::SetCsrcs(const std::vector<uint32_t>& csrcs) {
rtcp_sender_.SetCsrcs(csrcs);
rtp_sender_->packet_generator.SetCsrcs(csrcs);
}
// TODO(pbos): Handle media and RTX streams separately (separate RTCP
// feedbacks).
RTCPSender::FeedbackState ModuleRtpRtcpImpl::GetFeedbackState() {
RTCPSender::FeedbackState state;
// This is called also when receiver_only is true. Hence below
// checks that rtp_sender_ exists.
if (rtp_sender_) {
StreamDataCounters rtp_stats;
StreamDataCounters rtx_stats;
rtp_sender_->packet_sender.GetDataCounters(&rtp_stats, &rtx_stats);
state.packets_sent =
rtp_stats.transmitted.packets + rtx_stats.transmitted.packets;
state.media_bytes_sent = rtp_stats.transmitted.payload_bytes +
rtx_stats.transmitted.payload_bytes;
state.send_bitrate =
rtp_sender_->packet_sender.SendBitrate().bps<uint32_t>();
}
state.module = this;
LastReceivedNTP(&state.last_rr_ntp_secs, &state.last_rr_ntp_frac,
&state.remote_sr);
state.last_xr_rtis = rtcp_receiver_.ConsumeReceivedXrReferenceTimeInfo();
return state;
}
// TODO(nisse): This method shouldn't be called for a receive-only
// stream. Delete rtp_sender_ check as soon as all applications are
// updated.
int32_t ModuleRtpRtcpImpl::SetSendingStatus(const bool sending) {
if (rtcp_sender_.Sending() != sending) {
// Sends RTCP BYE when going from true to false
if (rtcp_sender_.SetSendingStatus(GetFeedbackState(), sending) != 0) {
RTC_LOG(LS_WARNING) << "Failed to send RTCP BYE";
}
}
return 0;
}
bool ModuleRtpRtcpImpl::Sending() const {
return rtcp_sender_.Sending();
}
// TODO(nisse): This method shouldn't be called for a receive-only
// stream. Delete rtp_sender_ check as soon as all applications are
// updated.
void ModuleRtpRtcpImpl::SetSendingMediaStatus(const bool sending) {
if (rtp_sender_) {
rtp_sender_->packet_generator.SetSendingMediaStatus(sending);
} else {
RTC_DCHECK(!sending);
}
}
bool ModuleRtpRtcpImpl::SendingMedia() const {
return rtp_sender_ ? rtp_sender_->packet_generator.SendingMedia() : false;
}
bool ModuleRtpRtcpImpl::IsAudioConfigured() const {
return rtp_sender_ ? rtp_sender_->packet_generator.IsAudioConfigured()
: false;
}
void ModuleRtpRtcpImpl::SetAsPartOfAllocation(bool part_of_allocation) {
RTC_CHECK(rtp_sender_);
rtp_sender_->packet_sender.ForceIncludeSendPacketsInAllocation(
part_of_allocation);
}
bool ModuleRtpRtcpImpl::OnSendingRtpFrame(uint32_t timestamp,
int64_t capture_time_ms,
int payload_type,
bool force_sender_report) {
if (!Sending())
return false;
rtcp_sender_.SetLastRtpTime(timestamp, capture_time_ms, payload_type);
// Make sure an RTCP report isn't queued behind a key frame.
if (rtcp_sender_.TimeToSendRTCPReport(force_sender_report))
rtcp_sender_.SendRTCP(GetFeedbackState(), kRtcpReport);
return true;
}
bool ModuleRtpRtcpImpl::TrySendPacket(RtpPacketToSend* packet,
const PacedPacketInfo& pacing_info) {
RTC_DCHECK(rtp_sender_);
// TODO(sprang): Consider if we can remove this check.
if (!rtp_sender_->packet_generator.SendingMedia()) {
return false;
}
rtp_sender_->packet_sender.SendPacket(packet, pacing_info);
return true;
}
void ModuleRtpRtcpImpl::OnPacketsAcknowledged(
rtc::ArrayView<const uint16_t> sequence_numbers) {
RTC_DCHECK(rtp_sender_);
rtp_sender_->packet_history.CullAcknowledgedPackets(sequence_numbers);
}
bool ModuleRtpRtcpImpl::SupportsPadding() const {
RTC_DCHECK(rtp_sender_);
return rtp_sender_->packet_generator.SupportsPadding();
}
bool ModuleRtpRtcpImpl::SupportsRtxPayloadPadding() const {
RTC_DCHECK(rtp_sender_);
return rtp_sender_->packet_generator.SupportsRtxPayloadPadding();
}
std::vector<std::unique_ptr<RtpPacketToSend>>
ModuleRtpRtcpImpl::GeneratePadding(size_t target_size_bytes) {
RTC_DCHECK(rtp_sender_);
return rtp_sender_->packet_generator.GeneratePadding(
target_size_bytes, rtp_sender_->packet_sender.MediaHasBeenSent());
}
std::vector<RtpSequenceNumberMap::Info>
ModuleRtpRtcpImpl::GetSentRtpPacketInfos(
rtc::ArrayView<const uint16_t> sequence_numbers) const {
RTC_DCHECK(rtp_sender_);
return rtp_sender_->packet_sender.GetSentRtpPacketInfos(sequence_numbers);
}
size_t ModuleRtpRtcpImpl::ExpectedPerPacketOverhead() const {
if (!rtp_sender_) {
return 0;
}
return rtp_sender_->packet_generator.ExpectedPerPacketOverhead();
}
size_t ModuleRtpRtcpImpl::MaxRtpPacketSize() const {
RTC_DCHECK(rtp_sender_);
return rtp_sender_->packet_generator.MaxRtpPacketSize();
}
void ModuleRtpRtcpImpl::SetMaxRtpPacketSize(size_t rtp_packet_size) {
RTC_DCHECK_LE(rtp_packet_size, IP_PACKET_SIZE)
<< "rtp packet size too large: " << rtp_packet_size;
RTC_DCHECK_GT(rtp_packet_size, packet_overhead_)
<< "rtp packet size too small: " << rtp_packet_size;
rtcp_sender_.SetMaxRtpPacketSize(rtp_packet_size);
if (rtp_sender_) {
rtp_sender_->packet_generator.SetMaxRtpPacketSize(rtp_packet_size);
}
}
RtcpMode ModuleRtpRtcpImpl::RTCP() const {
return rtcp_sender_.Status();
}
// Configure RTCP status i.e on/off.
void ModuleRtpRtcpImpl::SetRTCPStatus(const RtcpMode method) {
rtcp_sender_.SetRTCPStatus(method);
}
int32_t ModuleRtpRtcpImpl::SetCNAME(const char* c_name) {
return rtcp_sender_.SetCNAME(c_name);
}
int32_t ModuleRtpRtcpImpl::AddMixedCNAME(uint32_t ssrc, const char* c_name) {
return rtcp_sender_.AddMixedCNAME(ssrc, c_name);
}
int32_t ModuleRtpRtcpImpl::RemoveMixedCNAME(const uint32_t ssrc) {
return rtcp_sender_.RemoveMixedCNAME(ssrc);
}
int32_t ModuleRtpRtcpImpl::RemoteCNAME(const uint32_t remote_ssrc,
char c_name[RTCP_CNAME_SIZE]) const {
return rtcp_receiver_.CNAME(remote_ssrc, c_name);
}
int32_t ModuleRtpRtcpImpl::RemoteNTP(uint32_t* received_ntpsecs,
uint32_t* received_ntpfrac,
uint32_t* rtcp_arrival_time_secs,
uint32_t* rtcp_arrival_time_frac,
uint32_t* rtcp_timestamp) const {
return rtcp_receiver_.NTP(received_ntpsecs, received_ntpfrac,
rtcp_arrival_time_secs, rtcp_arrival_time_frac,
rtcp_timestamp)
? 0
: -1;
}
// Get RoundTripTime.
int32_t ModuleRtpRtcpImpl::RTT(const uint32_t remote_ssrc,
int64_t* rtt,
int64_t* avg_rtt,
int64_t* min_rtt,
int64_t* max_rtt) const {
int32_t ret = rtcp_receiver_.RTT(remote_ssrc, rtt, avg_rtt, min_rtt, max_rtt);
if (rtt && *rtt == 0) {
// Try to get RTT from RtcpRttStats class.
*rtt = rtt_ms();
}
return ret;
}
int64_t ModuleRtpRtcpImpl::ExpectedRetransmissionTimeMs() const {
int64_t expected_retransmission_time_ms = rtt_ms();
if (expected_retransmission_time_ms > 0) {
return expected_retransmission_time_ms;
}
// No rtt available (|kRtpRtcpRttProcessTimeMs| not yet passed?), so try to
// poll avg_rtt_ms directly from rtcp receiver.
if (rtcp_receiver_.RTT(rtcp_receiver_.RemoteSSRC(), nullptr,
&expected_retransmission_time_ms, nullptr,
nullptr) == 0) {
return expected_retransmission_time_ms;
}
return kDefaultExpectedRetransmissionTimeMs;
}
// Force a send of an RTCP packet.
// Normal SR and RR are triggered via the process function.
int32_t ModuleRtpRtcpImpl::SendRTCP(RTCPPacketType packet_type) {
return rtcp_sender_.SendRTCP(GetFeedbackState(), packet_type);
}
int32_t ModuleRtpRtcpImpl::SetRTCPApplicationSpecificData(
const uint8_t sub_type,
const uint32_t name,
const uint8_t* data,
const uint16_t length) {
return rtcp_sender_.SetApplicationSpecificData(sub_type, name, data, length);
}
void ModuleRtpRtcpImpl::SetRtcpXrRrtrStatus(bool enable) {
rtcp_receiver_.SetRtcpXrRrtrStatus(enable);
rtcp_sender_.SendRtcpXrReceiverReferenceTime(enable);
}
bool ModuleRtpRtcpImpl::RtcpXrRrtrStatus() const {
return rtcp_sender_.RtcpXrReceiverReferenceTime();
}
// TODO(asapersson): Replace this method with the one below.
int32_t ModuleRtpRtcpImpl::DataCountersRTP(size_t* bytes_sent,
uint32_t* packets_sent) const {
StreamDataCounters rtp_stats;
StreamDataCounters rtx_stats;
rtp_sender_->packet_sender.GetDataCounters(&rtp_stats, &rtx_stats);
if (bytes_sent) {
// TODO(http://crbug.com/webrtc/10525): Bytes sent should only include
// payload bytes, not header and padding bytes.
*bytes_sent = rtp_stats.transmitted.payload_bytes +
rtp_stats.transmitted.padding_bytes +
rtp_stats.transmitted.header_bytes +
rtx_stats.transmitted.payload_bytes +
rtx_stats.transmitted.padding_bytes +
rtx_stats.transmitted.header_bytes;
}
if (packets_sent) {
*packets_sent =
rtp_stats.transmitted.packets + rtx_stats.transmitted.packets;
}
return 0;
}
void ModuleRtpRtcpImpl::GetSendStreamDataCounters(
StreamDataCounters* rtp_counters,
StreamDataCounters* rtx_counters) const {
rtp_sender_->packet_sender.GetDataCounters(rtp_counters, rtx_counters);
}
// Received RTCP report.
int32_t ModuleRtpRtcpImpl::RemoteRTCPStat(
std::vector<RTCPReportBlock>* receive_blocks) const {
return rtcp_receiver_.StatisticsReceived(receive_blocks);
}
std::vector<ReportBlockData> ModuleRtpRtcpImpl::GetLatestReportBlockData()
const {
return rtcp_receiver_.GetLatestReportBlockData();
}
// (REMB) Receiver Estimated Max Bitrate.
void ModuleRtpRtcpImpl::SetRemb(int64_t bitrate_bps,
std::vector<uint32_t> ssrcs) {
rtcp_sender_.SetRemb(bitrate_bps, std::move(ssrcs));
}
void ModuleRtpRtcpImpl::UnsetRemb() {
rtcp_sender_.UnsetRemb();
}
void ModuleRtpRtcpImpl::SetExtmapAllowMixed(bool extmap_allow_mixed) {
rtp_sender_->packet_generator.SetExtmapAllowMixed(extmap_allow_mixed);
}
int32_t ModuleRtpRtcpImpl::RegisterSendRtpHeaderExtension(
const RTPExtensionType type,
const uint8_t id) {
return rtp_sender_->packet_generator.RegisterRtpHeaderExtension(type, id);
}
void ModuleRtpRtcpImpl::RegisterRtpHeaderExtension(absl::string_view uri,
int id) {
bool registered =
rtp_sender_->packet_generator.RegisterRtpHeaderExtension(uri, id);
RTC_CHECK(registered);
}
int32_t ModuleRtpRtcpImpl::DeregisterSendRtpHeaderExtension(
const RTPExtensionType type) {
return rtp_sender_->packet_generator.DeregisterRtpHeaderExtension(type);
}
void ModuleRtpRtcpImpl::DeregisterSendRtpHeaderExtension(
absl::string_view uri) {
rtp_sender_->packet_generator.DeregisterRtpHeaderExtension(uri);
}
// (TMMBR) Temporary Max Media Bit Rate.
bool ModuleRtpRtcpImpl::TMMBR() const {
return rtcp_sender_.TMMBR();
}
void ModuleRtpRtcpImpl::SetTMMBRStatus(const bool enable) {
rtcp_sender_.SetTMMBRStatus(enable);
}
void ModuleRtpRtcpImpl::SetTmmbn(std::vector<rtcp::TmmbItem> bounding_set) {
rtcp_sender_.SetTmmbn(std::move(bounding_set));
}
// Send a Negative acknowledgment packet.
int32_t ModuleRtpRtcpImpl::SendNACK(const uint16_t* nack_list,
const uint16_t size) {
uint16_t nack_length = size;
uint16_t start_id = 0;
int64_t now_ms = clock_->TimeInMilliseconds();
if (TimeToSendFullNackList(now_ms)) {
nack_last_time_sent_full_ms_ = now_ms;
} else {
// Only send extended list.
if (nack_last_seq_number_sent_ == nack_list[size - 1]) {
// Last sequence number is the same, do not send list.
return 0;
}
// Send new sequence numbers.
for (int i = 0; i < size; ++i) {
if (nack_last_seq_number_sent_ == nack_list[i]) {
start_id = i + 1;
break;
}
}
nack_length = size - start_id;
}
// Our RTCP NACK implementation is limited to kRtcpMaxNackFields sequence
// numbers per RTCP packet.
if (nack_length > kRtcpMaxNackFields) {
nack_length = kRtcpMaxNackFields;
}
nack_last_seq_number_sent_ = nack_list[start_id + nack_length - 1];
return rtcp_sender_.SendRTCP(GetFeedbackState(), kRtcpNack, nack_length,
&nack_list[start_id]);
}
void ModuleRtpRtcpImpl::SendNack(
const std::vector<uint16_t>& sequence_numbers) {
rtcp_sender_.SendRTCP(GetFeedbackState(), kRtcpNack, sequence_numbers.size(),
sequence_numbers.data());
}
bool ModuleRtpRtcpImpl::TimeToSendFullNackList(int64_t now) const {
// Use RTT from RtcpRttStats class if provided.
int64_t rtt = rtt_ms();
if (rtt == 0) {
rtcp_receiver_.RTT(rtcp_receiver_.RemoteSSRC(), NULL, &rtt, NULL, NULL);
}
const int64_t kStartUpRttMs = 100;
int64_t wait_time = 5 + ((rtt * 3) >> 1); // 5 + RTT * 1.5.
if (rtt == 0) {
wait_time = kStartUpRttMs;
}
// Send a full NACK list once within every |wait_time|.
return now - nack_last_time_sent_full_ms_ > wait_time;
}
// Store the sent packets, needed to answer to Negative acknowledgment requests.
void ModuleRtpRtcpImpl::SetStorePacketsStatus(const bool enable,
const uint16_t number_to_store) {
rtp_sender_->packet_history.SetStorePacketsStatus(
enable ? RtpPacketHistory::StorageMode::kStoreAndCull
: RtpPacketHistory::StorageMode::kDisabled,
number_to_store);
}
bool ModuleRtpRtcpImpl::StorePackets() const {
return rtp_sender_->packet_history.GetStorageMode() !=
RtpPacketHistory::StorageMode::kDisabled;
}
void ModuleRtpRtcpImpl::SendCombinedRtcpPacket(
std::vector<std::unique_ptr<rtcp::RtcpPacket>> rtcp_packets) {
rtcp_sender_.SendCombinedRtcpPacket(std::move(rtcp_packets));
}
int32_t ModuleRtpRtcpImpl::SendLossNotification(uint16_t last_decoded_seq_num,
uint16_t last_received_seq_num,
bool decodability_flag,
bool buffering_allowed) {
return rtcp_sender_.SendLossNotification(
GetFeedbackState(), last_decoded_seq_num, last_received_seq_num,
decodability_flag, buffering_allowed);
}
void ModuleRtpRtcpImpl::SetRemoteSSRC(const uint32_t ssrc) {
// Inform about the incoming SSRC.
rtcp_sender_.SetRemoteSSRC(ssrc);
rtcp_receiver_.SetRemoteSSRC(ssrc);
}
// TODO(nisse): Delete video_rate amd fec_rate arguments.
void ModuleRtpRtcpImpl::BitrateSent(uint32_t* total_rate,
uint32_t* video_rate,
uint32_t* fec_rate,
uint32_t* nack_rate) const {
*total_rate = rtp_sender_->packet_sender.SendBitrate().bps<uint32_t>();
if (video_rate)
*video_rate = 0;
if (fec_rate)
*fec_rate = 0;
*nack_rate = rtp_sender_->packet_sender.NackOverheadRate().bps<uint32_t>();
}
void ModuleRtpRtcpImpl::OnRequestSendReport() {
SendRTCP(kRtcpSr);
}
void ModuleRtpRtcpImpl::OnReceivedNack(
const std::vector<uint16_t>& nack_sequence_numbers) {
if (!rtp_sender_)
return;
if (!StorePackets() || nack_sequence_numbers.empty()) {
return;
}
// Use RTT from RtcpRttStats class if provided.
int64_t rtt = rtt_ms();
if (rtt == 0) {
rtcp_receiver_.RTT(rtcp_receiver_.RemoteSSRC(), NULL, &rtt, NULL, NULL);
}
rtp_sender_->packet_generator.OnReceivedNack(nack_sequence_numbers, rtt);
}
void ModuleRtpRtcpImpl::OnReceivedRtcpReportBlocks(
const ReportBlockList& report_blocks) {
if (rtp_sender_) {
uint32_t ssrc = SSRC();
absl::optional<uint32_t> rtx_ssrc;
if (rtp_sender_->packet_generator.RtxStatus() != kRtxOff) {
rtx_ssrc = rtp_sender_->packet_generator.RtxSsrc();
}
for (const RTCPReportBlock& report_block : report_blocks) {
if (ssrc == report_block.source_ssrc) {
rtp_sender_->packet_generator.OnReceivedAckOnSsrc(
report_block.extended_highest_sequence_number);
} else if (rtx_ssrc && *rtx_ssrc == report_block.source_ssrc) {
rtp_sender_->packet_generator.OnReceivedAckOnRtxSsrc(
report_block.extended_highest_sequence_number);
}
}
}
}
bool ModuleRtpRtcpImpl::LastReceivedNTP(
uint32_t* rtcp_arrival_time_secs, // When we got the last report.
uint32_t* rtcp_arrival_time_frac,
uint32_t* remote_sr) const {
// Remote SR: NTP inside the last received (mid 16 bits from sec and frac).
uint32_t ntp_secs = 0;
uint32_t ntp_frac = 0;
if (!rtcp_receiver_.NTP(&ntp_secs, &ntp_frac, rtcp_arrival_time_secs,
rtcp_arrival_time_frac, NULL)) {
return false;
}
*remote_sr =
((ntp_secs & 0x0000ffff) << 16) + ((ntp_frac & 0xffff0000) >> 16);
return true;
}
// Called from RTCPsender.
std::vector<rtcp::TmmbItem> ModuleRtpRtcpImpl::BoundingSet(bool* tmmbr_owner) {
return rtcp_receiver_.BoundingSet(tmmbr_owner);
}
void ModuleRtpRtcpImpl::set_rtt_ms(int64_t rtt_ms) {
rtc::CritScope cs(&critical_section_rtt_);
rtt_ms_ = rtt_ms;
if (rtp_sender_) {
rtp_sender_->packet_history.SetRtt(rtt_ms);
}
}
int64_t ModuleRtpRtcpImpl::rtt_ms() const {
rtc::CritScope cs(&critical_section_rtt_);
return rtt_ms_;
}
void ModuleRtpRtcpImpl::SetVideoBitrateAllocation(
const VideoBitrateAllocation& bitrate) {
rtcp_sender_.SetVideoBitrateAllocation(bitrate);
}
RTPSender* ModuleRtpRtcpImpl::RtpSender() {
return rtp_sender_ ? &rtp_sender_->packet_generator : nullptr;
}
const RTPSender* ModuleRtpRtcpImpl::RtpSender() const {
return rtp_sender_ ? &rtp_sender_->packet_generator : nullptr;
}
DataRate ModuleRtpRtcpImpl::SendRate() const {
RTC_DCHECK(rtp_sender_);
return rtp_sender_->packet_sender.SendBitrate();
}
DataRate ModuleRtpRtcpImpl::NackOverheadRate() const {
RTC_DCHECK(rtp_sender_);
return rtp_sender_->packet_sender.NackOverheadRate();
}
} // namespace webrtc