mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-14 14:20:45 +01:00

rename WebRtcKeyValueConfig to FieldTrialsView Bug: webrtc:10335 Change-Id: If725bd498c4c3daf144bee638230fa089fdde833 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/256965 Reviewed-by: Mirko Bonadei <mbonadei@webrtc.org> Commit-Queue: Jonas Oreland <jonaso@webrtc.org> Reviewed-by: Harald Alvestrand <hta@webrtc.org> Cr-Commit-Position: refs/heads/main@{#36365}
421 lines
14 KiB
C++
421 lines
14 KiB
C++
/*
|
|
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/video_coding/jitter_estimator.h"
|
|
|
|
#include <math.h>
|
|
#include <string.h>
|
|
|
|
#include <algorithm>
|
|
#include <cstdint>
|
|
|
|
#include "absl/types/optional.h"
|
|
#include "api/field_trials_view.h"
|
|
#include "api/units/data_size.h"
|
|
#include "api/units/frequency.h"
|
|
#include "api/units/time_delta.h"
|
|
#include "api/units/timestamp.h"
|
|
#include "modules/video_coding/rtt_filter.h"
|
|
#include "rtc_base/experiments/jitter_upper_bound_experiment.h"
|
|
#include "rtc_base/numerics/safe_conversions.h"
|
|
#include "system_wrappers/include/clock.h"
|
|
|
|
namespace webrtc {
|
|
namespace {
|
|
static constexpr uint32_t kStartupDelaySamples = 30;
|
|
static constexpr int64_t kFsAccuStartupSamples = 5;
|
|
static constexpr Frequency kMaxFramerateEstimate = Frequency::Hertz(200);
|
|
static constexpr TimeDelta kNackCountTimeout = TimeDelta::Seconds(60);
|
|
static constexpr double kDefaultMaxTimestampDeviationInSigmas = 3.5;
|
|
|
|
constexpr double kPhi = 0.97;
|
|
constexpr double kPsi = 0.9999;
|
|
constexpr uint32_t kAlphaCountMax = 400;
|
|
constexpr double kThetaLow = 0.000001;
|
|
constexpr uint32_t kNackLimit = 3;
|
|
constexpr int32_t kNumStdDevDelayOutlier = 15;
|
|
constexpr int32_t kNumStdDevFrameSizeOutlier = 3;
|
|
// ~Less than 1% chance (look up in normal distribution table)...
|
|
constexpr double kNoiseStdDevs = 2.33;
|
|
// ...of getting 30 ms freezes
|
|
constexpr double kNoiseStdDevOffset = 30.0;
|
|
|
|
} // namespace
|
|
|
|
VCMJitterEstimator::VCMJitterEstimator(Clock* clock,
|
|
const FieldTrialsView& field_trials)
|
|
: fps_counter_(30), // TODO(sprang): Use an estimator with limit based on
|
|
// time, rather than number of samples.
|
|
time_deviation_upper_bound_(
|
|
JitterUpperBoundExperiment::GetUpperBoundSigmas().value_or(
|
|
kDefaultMaxTimestampDeviationInSigmas)),
|
|
enable_reduced_delay_(
|
|
!field_trials.IsEnabled("WebRTC-ReducedJitterDelayKillSwitch")),
|
|
clock_(clock) {
|
|
Reset();
|
|
}
|
|
|
|
VCMJitterEstimator::~VCMJitterEstimator() = default;
|
|
|
|
// Resets the JitterEstimate.
|
|
void VCMJitterEstimator::Reset() {
|
|
theta_[0] = 1 / (512e3 / 8);
|
|
theta_[1] = 0;
|
|
var_noise_ = 4.0;
|
|
|
|
theta_cov_[0][0] = 1e-4;
|
|
theta_cov_[1][1] = 1e2;
|
|
theta_cov_[0][1] = theta_cov_[1][0] = 0;
|
|
q_cov_[0][0] = 2.5e-10;
|
|
q_cov_[1][1] = 1e-10;
|
|
q_cov_[0][1] = q_cov_[1][0] = 0;
|
|
avg_frame_size_ = kDefaultAvgAndMaxFrameSize;
|
|
max_frame_size_ = kDefaultAvgAndMaxFrameSize;
|
|
var_frame_size_ = 100;
|
|
last_update_time_ = absl::nullopt;
|
|
prev_estimate_ = absl::nullopt;
|
|
prev_frame_size_ = absl::nullopt;
|
|
avg_noise_ = 0.0;
|
|
alpha_count_ = 1;
|
|
filter_jitter_estimate_ = TimeDelta::Zero();
|
|
latest_nack_ = Timestamp::Zero();
|
|
nack_count_ = 0;
|
|
frame_size_sum_ = DataSize::Zero();
|
|
frame_size_count_ = 0;
|
|
startup_count_ = 0;
|
|
rtt_filter_.Reset();
|
|
fps_counter_.Reset();
|
|
}
|
|
|
|
// Updates the estimates with the new measurements.
|
|
void VCMJitterEstimator::UpdateEstimate(TimeDelta frame_delay,
|
|
DataSize frame_size,
|
|
bool incomplete_frame /* = false */) {
|
|
if (frame_size.IsZero()) {
|
|
return;
|
|
}
|
|
// Can't use DataSize since this can be negative.
|
|
double delta_frame_bytes =
|
|
frame_size.bytes() - prev_frame_size_.value_or(DataSize::Zero()).bytes();
|
|
if (frame_size_count_ < kFsAccuStartupSamples) {
|
|
frame_size_sum_ += frame_size;
|
|
frame_size_count_++;
|
|
} else if (frame_size_count_ == kFsAccuStartupSamples) {
|
|
// Give the frame size filter.
|
|
avg_frame_size_ = frame_size_sum_ / static_cast<double>(frame_size_count_);
|
|
frame_size_count_++;
|
|
}
|
|
if (!incomplete_frame || frame_size > avg_frame_size_) {
|
|
DataSize avg_frame_size = kPhi * avg_frame_size_ + (1 - kPhi) * frame_size;
|
|
DataSize deviation_size = DataSize::Bytes(2 * sqrt(var_frame_size_));
|
|
if (frame_size < avg_frame_size_ + deviation_size) {
|
|
// Only update the average frame size if this sample wasn't a key frame.
|
|
avg_frame_size_ = avg_frame_size;
|
|
}
|
|
// Update the variance anyway since we want to capture cases where we only
|
|
// get key frames.
|
|
double delta_bytes = frame_size.bytes() - avg_frame_size.bytes();
|
|
var_frame_size_ = std::max(
|
|
kPhi * var_frame_size_ + (1 - kPhi) * (delta_bytes * delta_bytes), 1.0);
|
|
}
|
|
|
|
// Update max_frame_size_ estimate.
|
|
max_frame_size_ = std::max(kPsi * max_frame_size_, frame_size);
|
|
|
|
if (!prev_frame_size_) {
|
|
prev_frame_size_ = frame_size;
|
|
return;
|
|
}
|
|
prev_frame_size_ = frame_size;
|
|
|
|
// Cap frame_delay based on the current time deviation noise.
|
|
TimeDelta max_time_deviation =
|
|
TimeDelta::Millis(time_deviation_upper_bound_ * sqrt(var_noise_) + 0.5);
|
|
frame_delay.Clamp(-max_time_deviation, max_time_deviation);
|
|
|
|
// Only update the Kalman filter if the sample is not considered an extreme
|
|
// outlier. Even if it is an extreme outlier from a delay point of view, if
|
|
// the frame size also is large the deviation is probably due to an incorrect
|
|
// line slope.
|
|
double deviation = DeviationFromExpectedDelay(frame_delay, delta_frame_bytes);
|
|
|
|
if (fabs(deviation) < kNumStdDevDelayOutlier * sqrt(var_noise_) ||
|
|
frame_size.bytes() >
|
|
avg_frame_size_.bytes() +
|
|
kNumStdDevFrameSizeOutlier * sqrt(var_frame_size_)) {
|
|
// Update the variance of the deviation from the line given by the Kalman
|
|
// filter.
|
|
EstimateRandomJitter(deviation, incomplete_frame);
|
|
// Prevent updating with frames which have been congested by a large frame,
|
|
// and therefore arrives almost at the same time as that frame.
|
|
// This can occur when we receive a large frame (key frame) which has been
|
|
// delayed. The next frame is of normal size (delta frame), and thus deltaFS
|
|
// will be << 0. This removes all frame samples which arrives after a key
|
|
// frame.
|
|
if ((!incomplete_frame || deviation >= 0) &&
|
|
delta_frame_bytes > -0.25 * max_frame_size_.bytes()) {
|
|
// Update the Kalman filter with the new data
|
|
KalmanEstimateChannel(frame_delay, delta_frame_bytes);
|
|
}
|
|
} else {
|
|
int nStdDev =
|
|
(deviation >= 0) ? kNumStdDevDelayOutlier : -kNumStdDevDelayOutlier;
|
|
EstimateRandomJitter(nStdDev * sqrt(var_noise_), incomplete_frame);
|
|
}
|
|
// Post process the total estimated jitter
|
|
if (startup_count_ >= kStartupDelaySamples) {
|
|
PostProcessEstimate();
|
|
} else {
|
|
startup_count_++;
|
|
}
|
|
}
|
|
|
|
// Updates the nack/packet ratio.
|
|
void VCMJitterEstimator::FrameNacked() {
|
|
if (nack_count_ < kNackLimit) {
|
|
nack_count_++;
|
|
}
|
|
latest_nack_ = clock_->CurrentTime();
|
|
}
|
|
|
|
// Updates Kalman estimate of the channel.
|
|
// The caller is expected to sanity check the inputs.
|
|
void VCMJitterEstimator::KalmanEstimateChannel(TimeDelta frame_delay,
|
|
double delta_frame_size_bytes) {
|
|
double Mh[2];
|
|
double hMh_sigma;
|
|
double kalmanGain[2];
|
|
double measureRes;
|
|
double t00, t01;
|
|
|
|
// Kalman filtering
|
|
|
|
// Prediction
|
|
// M = M + Q
|
|
theta_cov_[0][0] += q_cov_[0][0];
|
|
theta_cov_[0][1] += q_cov_[0][1];
|
|
theta_cov_[1][0] += q_cov_[1][0];
|
|
theta_cov_[1][1] += q_cov_[1][1];
|
|
|
|
// Kalman gain
|
|
// K = M*h'/(sigma2n + h*M*h') = M*h'/(1 + h*M*h')
|
|
// h = [dFS 1]
|
|
// Mh = M*h'
|
|
// hMh_sigma = h*M*h' + R
|
|
Mh[0] = theta_cov_[0][0] * delta_frame_size_bytes + theta_cov_[0][1];
|
|
Mh[1] = theta_cov_[1][0] * delta_frame_size_bytes + theta_cov_[1][1];
|
|
// sigma weights measurements with a small deltaFS as noisy and
|
|
// measurements with large deltaFS as good
|
|
if (max_frame_size_ < DataSize::Bytes(1)) {
|
|
return;
|
|
}
|
|
double sigma = (300.0 * exp(-fabs(delta_frame_size_bytes) /
|
|
(1e0 * max_frame_size_.bytes())) +
|
|
1) *
|
|
sqrt(var_noise_);
|
|
if (sigma < 1.0) {
|
|
sigma = 1.0;
|
|
}
|
|
hMh_sigma = delta_frame_size_bytes * Mh[0] + Mh[1] + sigma;
|
|
if ((hMh_sigma < 1e-9 && hMh_sigma >= 0) ||
|
|
(hMh_sigma > -1e-9 && hMh_sigma <= 0)) {
|
|
RTC_DCHECK_NOTREACHED();
|
|
return;
|
|
}
|
|
kalmanGain[0] = Mh[0] / hMh_sigma;
|
|
kalmanGain[1] = Mh[1] / hMh_sigma;
|
|
|
|
// Correction
|
|
// theta = theta + K*(dT - h*theta)
|
|
measureRes =
|
|
frame_delay.ms() - (delta_frame_size_bytes * theta_[0] + theta_[1]);
|
|
theta_[0] += kalmanGain[0] * measureRes;
|
|
theta_[1] += kalmanGain[1] * measureRes;
|
|
|
|
if (theta_[0] < kThetaLow) {
|
|
theta_[0] = kThetaLow;
|
|
}
|
|
|
|
// M = (I - K*h)*M
|
|
t00 = theta_cov_[0][0];
|
|
t01 = theta_cov_[0][1];
|
|
theta_cov_[0][0] = (1 - kalmanGain[0] * delta_frame_size_bytes) * t00 -
|
|
kalmanGain[0] * theta_cov_[1][0];
|
|
theta_cov_[0][1] = (1 - kalmanGain[0] * delta_frame_size_bytes) * t01 -
|
|
kalmanGain[0] * theta_cov_[1][1];
|
|
theta_cov_[1][0] = theta_cov_[1][0] * (1 - kalmanGain[1]) -
|
|
kalmanGain[1] * delta_frame_size_bytes * t00;
|
|
theta_cov_[1][1] = theta_cov_[1][1] * (1 - kalmanGain[1]) -
|
|
kalmanGain[1] * delta_frame_size_bytes * t01;
|
|
|
|
// Covariance matrix, must be positive semi-definite.
|
|
RTC_DCHECK(theta_cov_[0][0] + theta_cov_[1][1] >= 0 &&
|
|
theta_cov_[0][0] * theta_cov_[1][1] -
|
|
theta_cov_[0][1] * theta_cov_[1][0] >=
|
|
0 &&
|
|
theta_cov_[0][0] >= 0);
|
|
}
|
|
|
|
// Calculate difference in delay between a sample and the expected delay
|
|
// estimated by the Kalman filter
|
|
double VCMJitterEstimator::DeviationFromExpectedDelay(
|
|
TimeDelta frame_delay,
|
|
double delta_frame_size_bytes) const {
|
|
return frame_delay.ms() - (theta_[0] * delta_frame_size_bytes + theta_[1]);
|
|
}
|
|
|
|
// Estimates the random jitter by calculating the variance of the sample
|
|
// distance from the line given by theta.
|
|
void VCMJitterEstimator::EstimateRandomJitter(double d_dT,
|
|
bool incomplete_frame) {
|
|
Timestamp now = clock_->CurrentTime();
|
|
if (last_update_time_.has_value()) {
|
|
fps_counter_.AddSample((now - *last_update_time_).us());
|
|
}
|
|
last_update_time_ = now;
|
|
|
|
if (alpha_count_ == 0) {
|
|
RTC_DCHECK_NOTREACHED();
|
|
return;
|
|
}
|
|
double alpha =
|
|
static_cast<double>(alpha_count_ - 1) / static_cast<double>(alpha_count_);
|
|
alpha_count_++;
|
|
if (alpha_count_ > kAlphaCountMax)
|
|
alpha_count_ = kAlphaCountMax;
|
|
|
|
// In order to avoid a low frame rate stream to react slower to changes,
|
|
// scale the alpha weight relative a 30 fps stream.
|
|
Frequency fps = GetFrameRate();
|
|
if (fps > Frequency::Zero()) {
|
|
constexpr Frequency k30Fps = Frequency::Hertz(30);
|
|
double rate_scale = k30Fps / fps;
|
|
// At startup, there can be a lot of noise in the fps estimate.
|
|
// Interpolate rate_scale linearly, from 1.0 at sample #1, to 30.0 / fps
|
|
// at sample #kStartupDelaySamples.
|
|
if (alpha_count_ < kStartupDelaySamples) {
|
|
rate_scale =
|
|
(alpha_count_ * rate_scale + (kStartupDelaySamples - alpha_count_)) /
|
|
kStartupDelaySamples;
|
|
}
|
|
alpha = pow(alpha, rate_scale);
|
|
}
|
|
|
|
double avgNoise = alpha * avg_noise_ + (1 - alpha) * d_dT;
|
|
double varNoise = alpha * var_noise_ +
|
|
(1 - alpha) * (d_dT - avg_noise_) * (d_dT - avg_noise_);
|
|
if (!incomplete_frame || varNoise > var_noise_) {
|
|
avg_noise_ = avgNoise;
|
|
var_noise_ = varNoise;
|
|
}
|
|
if (var_noise_ < 1.0) {
|
|
// The variance should never be zero, since we might get stuck and consider
|
|
// all samples as outliers.
|
|
var_noise_ = 1.0;
|
|
}
|
|
}
|
|
|
|
double VCMJitterEstimator::NoiseThreshold() const {
|
|
double noiseThreshold = kNoiseStdDevs * sqrt(var_noise_) - kNoiseStdDevOffset;
|
|
if (noiseThreshold < 1.0) {
|
|
noiseThreshold = 1.0;
|
|
}
|
|
return noiseThreshold;
|
|
}
|
|
|
|
// Calculates the current jitter estimate from the filtered estimates.
|
|
TimeDelta VCMJitterEstimator::CalculateEstimate() {
|
|
double retMs =
|
|
theta_[0] * (max_frame_size_.bytes() - avg_frame_size_.bytes()) +
|
|
NoiseThreshold();
|
|
|
|
TimeDelta ret = TimeDelta::Millis(retMs);
|
|
|
|
constexpr TimeDelta kMinPrevEstimate = TimeDelta::Micros(10);
|
|
constexpr TimeDelta kMaxEstimate = TimeDelta::Seconds(10);
|
|
// A very low estimate (or negative) is neglected.
|
|
if (ret < TimeDelta::Millis(1)) {
|
|
if (!prev_estimate_ || prev_estimate_ <= kMinPrevEstimate) {
|
|
ret = TimeDelta::Millis(1);
|
|
} else {
|
|
ret = *prev_estimate_;
|
|
}
|
|
}
|
|
if (ret > kMaxEstimate) { // Sanity
|
|
ret = kMaxEstimate;
|
|
}
|
|
prev_estimate_ = ret;
|
|
return ret;
|
|
}
|
|
|
|
void VCMJitterEstimator::PostProcessEstimate() {
|
|
filter_jitter_estimate_ = CalculateEstimate();
|
|
}
|
|
|
|
void VCMJitterEstimator::UpdateRtt(TimeDelta rtt) {
|
|
rtt_filter_.Update(rtt);
|
|
}
|
|
|
|
// Returns the current filtered estimate if available,
|
|
// otherwise tries to calculate an estimate.
|
|
TimeDelta VCMJitterEstimator::GetJitterEstimate(
|
|
double rtt_multiplier,
|
|
absl::optional<TimeDelta> rtt_mult_add_cap) {
|
|
TimeDelta jitter = CalculateEstimate() + OPERATING_SYSTEM_JITTER;
|
|
Timestamp now = clock_->CurrentTime();
|
|
|
|
if (now - latest_nack_ > kNackCountTimeout)
|
|
nack_count_ = 0;
|
|
|
|
if (filter_jitter_estimate_ > jitter)
|
|
jitter = filter_jitter_estimate_;
|
|
if (nack_count_ >= kNackLimit) {
|
|
if (rtt_mult_add_cap.has_value()) {
|
|
jitter += std::min(rtt_filter_.Rtt() * rtt_multiplier,
|
|
rtt_mult_add_cap.value());
|
|
} else {
|
|
jitter += rtt_filter_.Rtt() * rtt_multiplier;
|
|
}
|
|
}
|
|
|
|
if (enable_reduced_delay_) {
|
|
static const Frequency kJitterScaleLowThreshold = Frequency::Hertz(5);
|
|
static const Frequency kJitterScaleHighThreshold = Frequency::Hertz(10);
|
|
Frequency fps = GetFrameRate();
|
|
// Ignore jitter for very low fps streams.
|
|
if (fps < kJitterScaleLowThreshold) {
|
|
if (fps.IsZero()) {
|
|
return std::max(TimeDelta::Zero(), jitter);
|
|
}
|
|
return TimeDelta::Zero();
|
|
}
|
|
|
|
// Semi-low frame rate; scale by factor linearly interpolated from 0.0 at
|
|
// kJitterScaleLowThreshold to 1.0 at kJitterScaleHighThreshold.
|
|
if (fps < kJitterScaleHighThreshold) {
|
|
jitter = (1.0 / (kJitterScaleHighThreshold - kJitterScaleLowThreshold)) *
|
|
(fps - kJitterScaleLowThreshold) * jitter;
|
|
}
|
|
}
|
|
|
|
return std::max(TimeDelta::Zero(), jitter);
|
|
}
|
|
|
|
Frequency VCMJitterEstimator::GetFrameRate() const {
|
|
TimeDelta mean_frame_period = TimeDelta::Micros(fps_counter_.ComputeMean());
|
|
if (mean_frame_period <= TimeDelta::Zero())
|
|
return Frequency::Zero();
|
|
|
|
Frequency fps = 1 / mean_frame_period;
|
|
// Sanity check.
|
|
RTC_DCHECK_GE(fps, Frequency::Zero());
|
|
return std::min(fps, kMaxFramerateEstimate);
|
|
}
|
|
} // namespace webrtc
|