mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-17 15:47:53 +01:00

This CL introduces an adaptive estimation of the early reverb in the estimation for the room reverberation. The benefits of this is that for room with long early reflections there is a lower risk of underestimating the reverberation. This CL is for a landing the code in https://webrtc-review.googlesource.com/c/src/+/87420, and the review of the code was done in that CL. The author of code is devicentepena@webrtc.org Bug: webrtc:9479, chromium:865397 Change-Id: Id6f57e2a684664aef96e8c502e66775f37da59da Reviewed-on: https://webrtc-review.googlesource.com/91162 Commit-Queue: Per Åhgren <peah@webrtc.org> Reviewed-by: Sam Zackrisson <saza@webrtc.org> Cr-Commit-Position: refs/heads/master@{#24146}
320 lines
11 KiB
C++
320 lines
11 KiB
C++
|
|
/*
|
|
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/audio_processing/aec3/residual_echo_estimator.h"
|
|
|
|
#include <numeric>
|
|
#include <vector>
|
|
|
|
#include "modules/audio_processing/aec3/reverb_model.h"
|
|
#include "modules/audio_processing/aec3/reverb_model_fallback.h"
|
|
#include "rtc_base/checks.h"
|
|
#include "system_wrappers/include/field_trial.h"
|
|
|
|
namespace webrtc {
|
|
namespace {
|
|
|
|
bool EnableSoftTransparentMode() {
|
|
return !field_trial::IsEnabled("WebRTC-Aec3SoftTransparentModeKillSwitch");
|
|
}
|
|
|
|
bool OverrideEstimatedEchoPathGain() {
|
|
return !field_trial::IsEnabled("WebRTC-Aec3OverrideEchoPathGainKillSwitch");
|
|
}
|
|
|
|
bool UseFixedNonLinearReverbModel() {
|
|
return field_trial::IsEnabled(
|
|
"WebRTC-Aec3StandardNonlinearReverbModelKillSwitch");
|
|
}
|
|
|
|
// Computes the indexes that will be used for computing spectral power over
|
|
// the blocks surrounding the delay.
|
|
void GetRenderIndexesToAnalyze(
|
|
const VectorBuffer& spectrum_buffer,
|
|
const EchoCanceller3Config::EchoModel& echo_model,
|
|
int filter_delay_blocks,
|
|
bool gain_limiter_running,
|
|
int headroom,
|
|
int* idx_start,
|
|
int* idx_stop) {
|
|
RTC_DCHECK(idx_start);
|
|
RTC_DCHECK(idx_stop);
|
|
if (gain_limiter_running) {
|
|
if (static_cast<size_t>(headroom) >
|
|
echo_model.render_post_window_size_init) {
|
|
*idx_start = spectrum_buffer.OffsetIndex(
|
|
spectrum_buffer.read,
|
|
-static_cast<int>(echo_model.render_post_window_size_init));
|
|
} else {
|
|
*idx_start = spectrum_buffer.IncIndex(spectrum_buffer.write);
|
|
}
|
|
|
|
*idx_stop = spectrum_buffer.OffsetIndex(
|
|
spectrum_buffer.read, echo_model.render_pre_window_size_init);
|
|
} else {
|
|
size_t window_start;
|
|
size_t window_end;
|
|
window_start =
|
|
std::max(0, filter_delay_blocks -
|
|
static_cast<int>(echo_model.render_pre_window_size));
|
|
window_end = filter_delay_blocks +
|
|
static_cast<int>(echo_model.render_post_window_size);
|
|
*idx_start =
|
|
spectrum_buffer.OffsetIndex(spectrum_buffer.read, window_start);
|
|
*idx_stop =
|
|
spectrum_buffer.OffsetIndex(spectrum_buffer.read, window_end + 1);
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
ResidualEchoEstimator::ResidualEchoEstimator(const EchoCanceller3Config& config)
|
|
: config_(config),
|
|
soft_transparent_mode_(EnableSoftTransparentMode()),
|
|
override_estimated_echo_path_gain_(OverrideEstimatedEchoPathGain()),
|
|
use_fixed_nonlinear_reverb_model_(UseFixedNonLinearReverbModel()) {
|
|
if (config_.ep_strength.reverb_based_on_render) {
|
|
echo_reverb_.reset(new ReverbModel());
|
|
} else {
|
|
echo_reverb_fallback.reset(
|
|
new ReverbModelFallback(config_.filter.main.length_blocks));
|
|
}
|
|
Reset();
|
|
}
|
|
|
|
ResidualEchoEstimator::~ResidualEchoEstimator() = default;
|
|
|
|
void ResidualEchoEstimator::Estimate(
|
|
const AecState& aec_state,
|
|
const RenderBuffer& render_buffer,
|
|
const std::array<float, kFftLengthBy2Plus1>& S2_linear,
|
|
const std::array<float, kFftLengthBy2Plus1>& Y2,
|
|
std::array<float, kFftLengthBy2Plus1>* R2) {
|
|
RTC_DCHECK(R2);
|
|
|
|
// Estimate the power of the stationary noise in the render signal.
|
|
RenderNoisePower(render_buffer, &X2_noise_floor_, &X2_noise_floor_counter_);
|
|
|
|
// Estimate the residual echo power.
|
|
if (aec_state.UsableLinearEstimate()) {
|
|
RTC_DCHECK(!aec_state.SaturatedEcho());
|
|
LinearEstimate(S2_linear, aec_state.Erle(), aec_state.ErleUncertainty(),
|
|
R2);
|
|
// Adds the estimated unmodelled echo power to the residual echo power
|
|
// estimate.
|
|
if (echo_reverb_) {
|
|
echo_reverb_->AddReverb(
|
|
render_buffer.Spectrum(aec_state.FilterLengthBlocks() + 1),
|
|
aec_state.GetReverbFrequencyResponse(), aec_state.ReverbDecay(), *R2);
|
|
|
|
} else {
|
|
RTC_DCHECK(echo_reverb_fallback);
|
|
echo_reverb_fallback->AddEchoReverb(S2_linear,
|
|
aec_state.FilterDelayBlocks(),
|
|
aec_state.ReverbDecay(), R2);
|
|
}
|
|
|
|
} else {
|
|
// Estimate the echo generating signal power.
|
|
std::array<float, kFftLengthBy2Plus1> X2;
|
|
|
|
EchoGeneratingPower(render_buffer.GetSpectrumBuffer(), config_.echo_model,
|
|
render_buffer.Headroom(), aec_state.FilterDelayBlocks(),
|
|
aec_state.IsSuppressionGainLimitActive(),
|
|
!aec_state.UseStationaryProperties(), &X2);
|
|
|
|
// Subtract the stationary noise power to avoid stationary noise causing
|
|
// excessive echo suppression.
|
|
std::transform(X2.begin(), X2.end(), X2_noise_floor_.begin(), X2.begin(),
|
|
[&](float a, float b) {
|
|
return std::max(
|
|
0.f, a - config_.echo_model.stationary_gate_slope * b);
|
|
});
|
|
|
|
float echo_path_gain;
|
|
if (override_estimated_echo_path_gain_) {
|
|
echo_path_gain = aec_state.TransparentMode() && soft_transparent_mode_
|
|
? 0.01f
|
|
: config_.ep_strength.lf;
|
|
} else {
|
|
echo_path_gain = aec_state.TransparentMode() && soft_transparent_mode_
|
|
? 0.01f
|
|
: aec_state.EchoPathGain();
|
|
}
|
|
NonLinearEstimate(echo_path_gain, X2, Y2, R2);
|
|
|
|
// If the echo is saturated, estimate the echo power as the maximum echo
|
|
// power with a leakage factor.
|
|
if (aec_state.SaturatedEcho()) {
|
|
R2->fill((*std::max_element(R2->begin(), R2->end())) * 100.f);
|
|
}
|
|
|
|
if (!(aec_state.TransparentMode() && soft_transparent_mode_)) {
|
|
if (echo_reverb_) {
|
|
echo_reverb_->AddReverbNoFreqShaping(
|
|
render_buffer.Spectrum(aec_state.FilterDelayBlocks() + 1),
|
|
echo_path_gain * echo_path_gain, aec_state.ReverbDecay(), *R2);
|
|
} else {
|
|
RTC_DCHECK(echo_reverb_fallback);
|
|
echo_reverb_fallback->AddEchoReverb(*R2,
|
|
config_.filter.main.length_blocks,
|
|
aec_state.ReverbDecay(), R2);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (aec_state.UseStationaryProperties()) {
|
|
// Scale the echo according to echo audibility.
|
|
std::array<float, kFftLengthBy2Plus1> residual_scaling;
|
|
aec_state.GetResidualEchoScaling(residual_scaling);
|
|
for (size_t k = 0; k < R2->size(); ++k) {
|
|
(*R2)[k] *= residual_scaling[k];
|
|
if (residual_scaling[k] == 0.f) {
|
|
R2_hold_counter_[k] = 0;
|
|
}
|
|
}
|
|
}
|
|
if (!soft_transparent_mode_) {
|
|
// If the echo is deemed inaudible, set the residual echo to zero.
|
|
if (aec_state.TransparentMode()) {
|
|
R2->fill(0.f);
|
|
R2_old_.fill(0.f);
|
|
R2_hold_counter_.fill(0.f);
|
|
}
|
|
}
|
|
|
|
std::copy(R2->begin(), R2->end(), R2_old_.begin());
|
|
}
|
|
|
|
void ResidualEchoEstimator::Reset() {
|
|
if (echo_reverb_) {
|
|
echo_reverb_->Reset();
|
|
} else {
|
|
RTC_DCHECK(echo_reverb_fallback);
|
|
echo_reverb_fallback->Reset();
|
|
}
|
|
X2_noise_floor_counter_.fill(config_.echo_model.noise_floor_hold);
|
|
X2_noise_floor_.fill(config_.echo_model.min_noise_floor_power);
|
|
R2_old_.fill(0.f);
|
|
R2_hold_counter_.fill(0.f);
|
|
}
|
|
|
|
void ResidualEchoEstimator::LinearEstimate(
|
|
const std::array<float, kFftLengthBy2Plus1>& S2_linear,
|
|
const std::array<float, kFftLengthBy2Plus1>& erle,
|
|
absl::optional<float> erle_uncertainty,
|
|
std::array<float, kFftLengthBy2Plus1>* R2) {
|
|
std::fill(R2_hold_counter_.begin(), R2_hold_counter_.end(), 10.f);
|
|
if (erle_uncertainty) {
|
|
for (size_t k = 0; k < R2->size(); ++k) {
|
|
(*R2)[k] = S2_linear[k] * *erle_uncertainty;
|
|
}
|
|
} else {
|
|
std::transform(erle.begin(), erle.end(), S2_linear.begin(), R2->begin(),
|
|
[](float a, float b) {
|
|
RTC_DCHECK_LT(0.f, a);
|
|
return b / a;
|
|
});
|
|
}
|
|
}
|
|
|
|
void ResidualEchoEstimator::NonLinearEstimate(
|
|
float echo_path_gain,
|
|
const std::array<float, kFftLengthBy2Plus1>& X2,
|
|
const std::array<float, kFftLengthBy2Plus1>& Y2,
|
|
std::array<float, kFftLengthBy2Plus1>* R2) {
|
|
// Compute preliminary residual echo.
|
|
std::transform(X2.begin(), X2.end(), R2->begin(), [echo_path_gain](float a) {
|
|
return a * echo_path_gain * echo_path_gain;
|
|
});
|
|
|
|
if (use_fixed_nonlinear_reverb_model_) {
|
|
for (size_t k = 0; k < R2->size(); ++k) {
|
|
// Update hold counter.
|
|
R2_hold_counter_[k] = R2_old_[k] < (*R2)[k] ? 0 : R2_hold_counter_[k] + 1;
|
|
|
|
// Compute the residual echo by holding a maximum echo powers and an echo
|
|
// fading corresponding to a room with an RT60 value of about 50 ms.
|
|
(*R2)[k] =
|
|
R2_hold_counter_[k] < config_.echo_model.nonlinear_hold
|
|
? std::max((*R2)[k], R2_old_[k])
|
|
: std::min((*R2)[k] +
|
|
R2_old_[k] * config_.echo_model.nonlinear_release,
|
|
Y2[k]);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ResidualEchoEstimator::EchoGeneratingPower(
|
|
const VectorBuffer& spectrum_buffer,
|
|
const EchoCanceller3Config::EchoModel& echo_model,
|
|
int headroom_spectrum_buffer,
|
|
int filter_delay_blocks,
|
|
bool gain_limiter_running,
|
|
bool apply_noise_gating,
|
|
std::array<float, kFftLengthBy2Plus1>* X2) const {
|
|
int idx_stop, idx_start;
|
|
|
|
RTC_DCHECK(X2);
|
|
GetRenderIndexesToAnalyze(spectrum_buffer, config_.echo_model,
|
|
filter_delay_blocks, gain_limiter_running,
|
|
headroom_spectrum_buffer, &idx_start, &idx_stop);
|
|
|
|
X2->fill(0.f);
|
|
for (int k = idx_start; k != idx_stop; k = spectrum_buffer.IncIndex(k)) {
|
|
std::transform(X2->begin(), X2->end(), spectrum_buffer.buffer[k].begin(),
|
|
X2->begin(),
|
|
[](float a, float b) { return std::max(a, b); });
|
|
}
|
|
|
|
if (apply_noise_gating) {
|
|
// Apply soft noise gate.
|
|
std::for_each(X2->begin(), X2->end(), [&](float& a) {
|
|
if (config_.echo_model.noise_gate_power > a) {
|
|
a = std::max(0.f, a - config_.echo_model.noise_gate_slope *
|
|
(config_.echo_model.noise_gate_power - a));
|
|
}
|
|
});
|
|
}
|
|
}
|
|
|
|
void ResidualEchoEstimator::RenderNoisePower(
|
|
const RenderBuffer& render_buffer,
|
|
std::array<float, kFftLengthBy2Plus1>* X2_noise_floor,
|
|
std::array<int, kFftLengthBy2Plus1>* X2_noise_floor_counter) const {
|
|
RTC_DCHECK(X2_noise_floor);
|
|
RTC_DCHECK(X2_noise_floor_counter);
|
|
|
|
const auto render_power = render_buffer.Spectrum(0);
|
|
RTC_DCHECK_EQ(X2_noise_floor->size(), render_power.size());
|
|
RTC_DCHECK_EQ(X2_noise_floor_counter->size(), render_power.size());
|
|
|
|
// Estimate the stationary noise power in a minimum statistics manner.
|
|
for (size_t k = 0; k < render_power.size(); ++k) {
|
|
// Decrease rapidly.
|
|
if (render_power[k] < (*X2_noise_floor)[k]) {
|
|
(*X2_noise_floor)[k] = render_power[k];
|
|
(*X2_noise_floor_counter)[k] = 0;
|
|
} else {
|
|
// Increase in a delayed, leaky manner.
|
|
if ((*X2_noise_floor_counter)[k] >=
|
|
static_cast<int>(config_.echo_model.noise_floor_hold)) {
|
|
(*X2_noise_floor)[k] =
|
|
std::max((*X2_noise_floor)[k] * 1.1f,
|
|
config_.echo_model.min_noise_floor_power);
|
|
} else {
|
|
++(*X2_noise_floor_counter)[k];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace webrtc
|