mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-14 06:10:40 +01:00

Move functionality to closer where the values are used instead, as per previous CL comment. Bug: webrtc:14151 Change-Id: I6b7ca02da197420a1f5da930ba87021e6f557444 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/275204 Commit-Queue: Rasmus Brandt <brandtr@webrtc.org> Reviewed-by: Philip Eliasson <philipel@webrtc.org> Cr-Commit-Position: refs/heads/main@{#38148}
476 lines
18 KiB
C++
476 lines
18 KiB
C++
/*
|
|
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/video_coding/timing/jitter_estimator.h"
|
|
|
|
#include <math.h>
|
|
#include <string.h>
|
|
|
|
#include <algorithm>
|
|
#include <cstdint>
|
|
|
|
#include "absl/types/optional.h"
|
|
#include "api/field_trials_view.h"
|
|
#include "api/units/data_size.h"
|
|
#include "api/units/frequency.h"
|
|
#include "api/units/time_delta.h"
|
|
#include "api/units/timestamp.h"
|
|
#include "modules/video_coding/timing/rtt_filter.h"
|
|
#include "rtc_base/checks.h"
|
|
#include "rtc_base/logging.h"
|
|
#include "rtc_base/numerics/safe_conversions.h"
|
|
#include "system_wrappers/include/clock.h"
|
|
|
|
namespace webrtc {
|
|
namespace {
|
|
|
|
// Number of frames to wait for before post processing estimate. Also used in
|
|
// the frame rate estimator ramp-up.
|
|
constexpr size_t kFrameProcessingStartupCount = 30;
|
|
|
|
// Number of frames to wait for before enabling the frame size filters.
|
|
constexpr size_t kFramesUntilSizeFiltering = 5;
|
|
|
|
// Initial value for frame size filters.
|
|
constexpr double kInitialAvgAndMaxFrameSizeBytes = 500.0;
|
|
|
|
// Time constant for average frame size filter.
|
|
constexpr double kPhi = 0.97;
|
|
// Time constant for max frame size filter.
|
|
constexpr double kPsi = 0.9999;
|
|
// Default constants for percentile frame size filter.
|
|
constexpr double kDefaultMaxFrameSizePercentile = 0.95;
|
|
constexpr int kDefaultFrameSizeWindow = 30 * 10;
|
|
|
|
// Outlier rejection constants.
|
|
constexpr double kNumStdDevDelayClamp = 3.5;
|
|
constexpr double kNumStdDevDelayOutlier = 15.0;
|
|
constexpr double kNumStdDevSizeOutlier = 3.0;
|
|
constexpr double kCongestionRejectionFactor = -0.25;
|
|
|
|
// Rampup constant for deviation noise filters.
|
|
constexpr size_t kAlphaCountMax = 400;
|
|
|
|
// Noise threshold constants.
|
|
// ~Less than 1% chance (look up in normal distribution table)...
|
|
constexpr double kNoiseStdDevs = 2.33;
|
|
// ...of getting 30 ms freezes
|
|
constexpr double kNoiseStdDevOffset = 30.0;
|
|
|
|
// Jitter estimate clamping limits.
|
|
constexpr TimeDelta kMinJitterEstimate = TimeDelta::Millis(1);
|
|
constexpr TimeDelta kMaxJitterEstimate = TimeDelta::Seconds(10);
|
|
|
|
// A constant describing the delay from the jitter buffer to the delay on the
|
|
// receiving side which is not accounted for by the jitter buffer nor the
|
|
// decoding delay estimate.
|
|
constexpr TimeDelta OPERATING_SYSTEM_JITTER = TimeDelta::Millis(10);
|
|
|
|
// Time constant for reseting the NACK count.
|
|
constexpr TimeDelta kNackCountTimeout = TimeDelta::Seconds(60);
|
|
|
|
// RTT mult activation.
|
|
constexpr size_t kNackLimit = 3;
|
|
|
|
// Frame rate estimate clamping limit.
|
|
constexpr Frequency kMaxFramerateEstimate = Frequency::Hertz(200);
|
|
|
|
} // namespace
|
|
|
|
constexpr char JitterEstimator::Config::kFieldTrialsKey[];
|
|
|
|
JitterEstimator::Config JitterEstimator::Config::ParseAndValidate(
|
|
absl::string_view field_trial) {
|
|
Config config;
|
|
config.Parser()->Parse(field_trial);
|
|
|
|
// The `MovingPercentileFilter` RTC_CHECKs on the validity of the
|
|
// percentile and window length, so we'd better validate the field trial
|
|
// provided values here.
|
|
if (config.max_frame_size_percentile) {
|
|
double original = *config.max_frame_size_percentile;
|
|
config.max_frame_size_percentile = std::min(std::max(0.0, original), 1.0);
|
|
if (config.max_frame_size_percentile != original) {
|
|
RTC_LOG(LS_ERROR) << "Skipping invalid max_frame_size_percentile="
|
|
<< original;
|
|
}
|
|
}
|
|
if (config.frame_size_window && config.frame_size_window < 1) {
|
|
RTC_LOG(LS_ERROR) << "Skipping invalid frame_size_window="
|
|
<< *config.frame_size_window;
|
|
config.frame_size_window = 1;
|
|
}
|
|
|
|
// General sanity checks.
|
|
if (config.num_stddev_delay_clamp && config.num_stddev_delay_clamp < 0.0) {
|
|
RTC_LOG(LS_ERROR) << "Skipping invalid num_stddev_delay_clamp="
|
|
<< *config.num_stddev_delay_clamp;
|
|
config.num_stddev_delay_clamp = 0.0;
|
|
}
|
|
if (config.num_stddev_delay_outlier &&
|
|
config.num_stddev_delay_outlier < 0.0) {
|
|
RTC_LOG(LS_ERROR) << "Skipping invalid num_stddev_delay_outlier="
|
|
<< *config.num_stddev_delay_outlier;
|
|
config.num_stddev_delay_outlier = 0.0;
|
|
}
|
|
if (config.num_stddev_size_outlier && config.num_stddev_size_outlier < 0.0) {
|
|
RTC_LOG(LS_ERROR) << "Skipping invalid num_stddev_size_outlier="
|
|
<< *config.num_stddev_size_outlier;
|
|
config.num_stddev_size_outlier = 0.0;
|
|
}
|
|
|
|
return config;
|
|
}
|
|
|
|
JitterEstimator::JitterEstimator(Clock* clock,
|
|
const FieldTrialsView& field_trials)
|
|
: config_(Config::ParseAndValidate(
|
|
field_trials.Lookup(Config::kFieldTrialsKey))),
|
|
avg_frame_size_median_bytes_(static_cast<size_t>(
|
|
config_.frame_size_window.value_or(kDefaultFrameSizeWindow))),
|
|
max_frame_size_bytes_percentile_(
|
|
config_.max_frame_size_percentile.value_or(
|
|
kDefaultMaxFrameSizePercentile),
|
|
static_cast<size_t>(
|
|
config_.frame_size_window.value_or(kDefaultFrameSizeWindow))),
|
|
fps_counter_(30), // TODO(sprang): Use an estimator with limit based
|
|
// on time, rather than number of samples.
|
|
clock_(clock) {
|
|
Reset();
|
|
}
|
|
|
|
JitterEstimator::~JitterEstimator() = default;
|
|
|
|
// Resets the JitterEstimate.
|
|
void JitterEstimator::Reset() {
|
|
avg_frame_size_bytes_ = kInitialAvgAndMaxFrameSizeBytes;
|
|
max_frame_size_bytes_ = kInitialAvgAndMaxFrameSizeBytes;
|
|
var_frame_size_bytes2_ = 100;
|
|
avg_frame_size_median_bytes_.Reset();
|
|
max_frame_size_bytes_percentile_.Reset();
|
|
last_update_time_ = absl::nullopt;
|
|
prev_estimate_ = absl::nullopt;
|
|
prev_frame_size_ = absl::nullopt;
|
|
avg_noise_ms_ = 0.0;
|
|
var_noise_ms2_ = 4.0;
|
|
alpha_count_ = 1;
|
|
filter_jitter_estimate_ = TimeDelta::Zero();
|
|
latest_nack_ = Timestamp::Zero();
|
|
nack_count_ = 0;
|
|
startup_frame_size_sum_bytes_ = 0;
|
|
startup_frame_size_count_ = 0;
|
|
startup_count_ = 0;
|
|
rtt_filter_.Reset();
|
|
fps_counter_.Reset();
|
|
|
|
kalman_filter_ = FrameDelayVariationKalmanFilter();
|
|
}
|
|
|
|
// Updates the estimates with the new measurements.
|
|
void JitterEstimator::UpdateEstimate(TimeDelta frame_delay,
|
|
DataSize frame_size) {
|
|
if (frame_size.IsZero()) {
|
|
return;
|
|
}
|
|
// Can't use DataSize since this can be negative.
|
|
double delta_frame_bytes =
|
|
frame_size.bytes() - prev_frame_size_.value_or(DataSize::Zero()).bytes();
|
|
if (startup_frame_size_count_ < kFramesUntilSizeFiltering) {
|
|
startup_frame_size_sum_bytes_ += frame_size.bytes();
|
|
startup_frame_size_count_++;
|
|
} else if (startup_frame_size_count_ == kFramesUntilSizeFiltering) {
|
|
// Give the frame size filter.
|
|
avg_frame_size_bytes_ = startup_frame_size_sum_bytes_ /
|
|
static_cast<double>(startup_frame_size_count_);
|
|
startup_frame_size_count_++;
|
|
}
|
|
|
|
double avg_frame_size_bytes =
|
|
kPhi * avg_frame_size_bytes_ + (1 - kPhi) * frame_size.bytes();
|
|
double deviation_size_bytes = 2 * sqrt(var_frame_size_bytes2_);
|
|
if (frame_size.bytes() < avg_frame_size_bytes_ + deviation_size_bytes) {
|
|
// Only update the average frame size if this sample wasn't a key frame.
|
|
avg_frame_size_bytes_ = avg_frame_size_bytes;
|
|
}
|
|
|
|
double delta_bytes = frame_size.bytes() - avg_frame_size_bytes;
|
|
var_frame_size_bytes2_ = std::max(
|
|
kPhi * var_frame_size_bytes2_ + (1 - kPhi) * (delta_bytes * delta_bytes),
|
|
1.0);
|
|
|
|
// Update non-linear IIR estimate of max frame size.
|
|
max_frame_size_bytes_ =
|
|
std::max<double>(kPsi * max_frame_size_bytes_, frame_size.bytes());
|
|
|
|
// Maybe update percentile estimates of frame sizes.
|
|
if (config_.avg_frame_size_median) {
|
|
avg_frame_size_median_bytes_.Insert(frame_size.bytes());
|
|
}
|
|
if (config_.MaxFrameSizePercentileEnabled()) {
|
|
max_frame_size_bytes_percentile_.Insert(frame_size.bytes());
|
|
}
|
|
|
|
if (!prev_frame_size_) {
|
|
prev_frame_size_ = frame_size;
|
|
return;
|
|
}
|
|
prev_frame_size_ = frame_size;
|
|
|
|
// Cap frame_delay based on the current time deviation noise.
|
|
double num_stddev_delay_clamp =
|
|
config_.num_stddev_delay_clamp.value_or(kNumStdDevDelayClamp);
|
|
TimeDelta max_time_deviation =
|
|
TimeDelta::Millis(num_stddev_delay_clamp * sqrt(var_noise_ms2_) + 0.5);
|
|
frame_delay.Clamp(-max_time_deviation, max_time_deviation);
|
|
|
|
double delay_deviation_ms =
|
|
frame_delay.ms() -
|
|
kalman_filter_.GetFrameDelayVariationEstimateTotal(delta_frame_bytes);
|
|
|
|
// Outlier rejection: these conditions depend on filtered versions of the
|
|
// delay and frame size _means_, respectively, together with a configurable
|
|
// number of standard deviations. If a sample is large with respect to the
|
|
// corresponding mean and dispersion (defined by the number of
|
|
// standard deviations and the sample standard deviation), it is deemed an
|
|
// outlier. This "empirical rule" is further described in
|
|
// https://en.wikipedia.org/wiki/68-95-99.7_rule. Note that neither of the
|
|
// estimated means are true sample means, which implies that they are possibly
|
|
// not normally distributed. Hence, this rejection method is just a heuristic.
|
|
double num_stddev_delay_outlier =
|
|
config_.num_stddev_delay_outlier.value_or(kNumStdDevDelayOutlier);
|
|
// Delay outlier rejection is two-sided.
|
|
bool abs_delay_is_not_outlier =
|
|
fabs(delay_deviation_ms) <
|
|
num_stddev_delay_outlier * sqrt(var_noise_ms2_);
|
|
// The reasoning above means, in particular, that we should use the sample
|
|
// mean-style `avg_frame_size_bytes_` estimate, as opposed to the
|
|
// median-filtered version, even if configured to use latter for the
|
|
// calculation in `CalculateEstimate()`.
|
|
// Size outlier rejection is one-sided.
|
|
double num_stddev_size_outlier =
|
|
config_.num_stddev_size_outlier.value_or(kNumStdDevSizeOutlier);
|
|
bool size_is_positive_outlier =
|
|
frame_size.bytes() >
|
|
avg_frame_size_bytes_ +
|
|
num_stddev_size_outlier * sqrt(var_frame_size_bytes2_);
|
|
|
|
// Only update the Kalman filter if the sample is not considered an extreme
|
|
// outlier. Even if it is an extreme outlier from a delay point of view, if
|
|
// the frame size also is large the deviation is probably due to an incorrect
|
|
// line slope.
|
|
if (abs_delay_is_not_outlier || size_is_positive_outlier) {
|
|
// Prevent updating with frames which have been congested by a large frame,
|
|
// and therefore arrives almost at the same time as that frame.
|
|
// This can occur when we receive a large frame (key frame) which has been
|
|
// delayed. The next frame is of normal size (delta frame), and thus deltaFS
|
|
// will be << 0. This removes all frame samples which arrives after a key
|
|
// frame.
|
|
double congestion_rejection_factor =
|
|
config_.congestion_rejection_factor.value_or(
|
|
kCongestionRejectionFactor);
|
|
double filtered_max_frame_size_bytes =
|
|
config_.MaxFrameSizePercentileEnabled()
|
|
? max_frame_size_bytes_percentile_.GetFilteredValue()
|
|
: max_frame_size_bytes_;
|
|
bool is_not_congested =
|
|
delta_frame_bytes >
|
|
congestion_rejection_factor * filtered_max_frame_size_bytes;
|
|
|
|
if (is_not_congested || config_.estimate_noise_when_congested) {
|
|
// Update the variance of the deviation from the line given by the Kalman
|
|
// filter.
|
|
EstimateRandomJitter(delay_deviation_ms);
|
|
}
|
|
if (is_not_congested) {
|
|
// Neither a delay outlier nor a congested frame, so we can safely update
|
|
// the Kalman filter with the sample.
|
|
kalman_filter_.PredictAndUpdate(frame_delay.ms(), delta_frame_bytes,
|
|
filtered_max_frame_size_bytes,
|
|
var_noise_ms2_);
|
|
}
|
|
} else {
|
|
// Delay outliers affect the noise estimate through a value equal to the
|
|
// outlier rejection threshold.
|
|
double num_stddev = (delay_deviation_ms >= 0) ? num_stddev_delay_outlier
|
|
: -num_stddev_delay_outlier;
|
|
EstimateRandomJitter(num_stddev * sqrt(var_noise_ms2_));
|
|
}
|
|
// Post process the total estimated jitter
|
|
if (startup_count_ >= kFrameProcessingStartupCount) {
|
|
PostProcessEstimate();
|
|
} else {
|
|
startup_count_++;
|
|
}
|
|
}
|
|
|
|
// Updates the nack/packet ratio.
|
|
void JitterEstimator::FrameNacked() {
|
|
if (nack_count_ < kNackLimit) {
|
|
nack_count_++;
|
|
}
|
|
latest_nack_ = clock_->CurrentTime();
|
|
}
|
|
|
|
void JitterEstimator::UpdateRtt(TimeDelta rtt) {
|
|
rtt_filter_.Update(rtt);
|
|
}
|
|
|
|
JitterEstimator::Config JitterEstimator::GetConfigForTest() const {
|
|
return config_;
|
|
}
|
|
|
|
// Estimates the random jitter by calculating the variance of the sample
|
|
// distance from the line given by the Kalman filter.
|
|
void JitterEstimator::EstimateRandomJitter(double d_dT) {
|
|
Timestamp now = clock_->CurrentTime();
|
|
if (last_update_time_.has_value()) {
|
|
fps_counter_.AddSample((now - *last_update_time_).us());
|
|
}
|
|
last_update_time_ = now;
|
|
|
|
if (alpha_count_ == 0) {
|
|
RTC_DCHECK_NOTREACHED();
|
|
return;
|
|
}
|
|
double alpha =
|
|
static_cast<double>(alpha_count_ - 1) / static_cast<double>(alpha_count_);
|
|
alpha_count_++;
|
|
if (alpha_count_ > kAlphaCountMax)
|
|
alpha_count_ = kAlphaCountMax;
|
|
|
|
// In order to avoid a low frame rate stream to react slower to changes,
|
|
// scale the alpha weight relative a 30 fps stream.
|
|
Frequency fps = GetFrameRate();
|
|
if (fps > Frequency::Zero()) {
|
|
constexpr Frequency k30Fps = Frequency::Hertz(30);
|
|
double rate_scale = k30Fps / fps;
|
|
// At startup, there can be a lot of noise in the fps estimate.
|
|
// Interpolate rate_scale linearly, from 1.0 at sample #1, to 30.0 / fps
|
|
// at sample #kFrameProcessingStartupCount.
|
|
if (alpha_count_ < kFrameProcessingStartupCount) {
|
|
rate_scale = (alpha_count_ * rate_scale +
|
|
(kFrameProcessingStartupCount - alpha_count_)) /
|
|
kFrameProcessingStartupCount;
|
|
}
|
|
alpha = pow(alpha, rate_scale);
|
|
}
|
|
|
|
double avg_noise_ms = alpha * avg_noise_ms_ + (1 - alpha) * d_dT;
|
|
double var_noise_ms2 = alpha * var_noise_ms2_ + (1 - alpha) *
|
|
(d_dT - avg_noise_ms_) *
|
|
(d_dT - avg_noise_ms_);
|
|
avg_noise_ms_ = avg_noise_ms;
|
|
var_noise_ms2_ = var_noise_ms2;
|
|
if (var_noise_ms2_ < 1.0) {
|
|
// The variance should never be zero, since we might get stuck and consider
|
|
// all samples as outliers.
|
|
var_noise_ms2_ = 1.0;
|
|
}
|
|
}
|
|
|
|
double JitterEstimator::NoiseThreshold() const {
|
|
double noise_threshold_ms =
|
|
kNoiseStdDevs * sqrt(var_noise_ms2_) - kNoiseStdDevOffset;
|
|
if (noise_threshold_ms < 1.0) {
|
|
noise_threshold_ms = 1.0;
|
|
}
|
|
return noise_threshold_ms;
|
|
}
|
|
|
|
// Calculates the current jitter estimate from the filtered estimates.
|
|
TimeDelta JitterEstimator::CalculateEstimate() {
|
|
// Using median- and percentile-filtered versions of the frame sizes may be
|
|
// more robust than using sample mean-style estimates.
|
|
double filtered_avg_frame_size_bytes =
|
|
config_.avg_frame_size_median
|
|
? avg_frame_size_median_bytes_.GetFilteredValue()
|
|
: avg_frame_size_bytes_;
|
|
double filtered_max_frame_size_bytes =
|
|
config_.MaxFrameSizePercentileEnabled()
|
|
? max_frame_size_bytes_percentile_.GetFilteredValue()
|
|
: max_frame_size_bytes_;
|
|
double worst_case_frame_size_deviation_bytes =
|
|
filtered_max_frame_size_bytes - filtered_avg_frame_size_bytes;
|
|
double ret_ms = kalman_filter_.GetFrameDelayVariationEstimateSizeBased(
|
|
worst_case_frame_size_deviation_bytes) +
|
|
NoiseThreshold();
|
|
TimeDelta ret = TimeDelta::Millis(ret_ms);
|
|
|
|
// A very low estimate (or negative) is neglected.
|
|
if (ret < kMinJitterEstimate) {
|
|
ret = prev_estimate_.value_or(kMinJitterEstimate);
|
|
// Sanity check to make sure that no other method has set `prev_estimate_`
|
|
// to a value lower than `kMinJitterEstimate`.
|
|
RTC_DCHECK_GE(ret, kMinJitterEstimate);
|
|
} else if (ret > kMaxJitterEstimate) { // Sanity
|
|
ret = kMaxJitterEstimate;
|
|
}
|
|
prev_estimate_ = ret;
|
|
return ret;
|
|
}
|
|
|
|
void JitterEstimator::PostProcessEstimate() {
|
|
filter_jitter_estimate_ = CalculateEstimate();
|
|
}
|
|
|
|
// Returns the current filtered estimate if available,
|
|
// otherwise tries to calculate an estimate.
|
|
TimeDelta JitterEstimator::GetJitterEstimate(
|
|
double rtt_multiplier,
|
|
absl::optional<TimeDelta> rtt_mult_add_cap) {
|
|
TimeDelta jitter = CalculateEstimate() + OPERATING_SYSTEM_JITTER;
|
|
Timestamp now = clock_->CurrentTime();
|
|
|
|
if (now - latest_nack_ > kNackCountTimeout)
|
|
nack_count_ = 0;
|
|
|
|
if (filter_jitter_estimate_ > jitter)
|
|
jitter = filter_jitter_estimate_;
|
|
if (nack_count_ >= kNackLimit) {
|
|
if (rtt_mult_add_cap.has_value()) {
|
|
jitter += std::min(rtt_filter_.Rtt() * rtt_multiplier,
|
|
rtt_mult_add_cap.value());
|
|
} else {
|
|
jitter += rtt_filter_.Rtt() * rtt_multiplier;
|
|
}
|
|
}
|
|
|
|
static const Frequency kJitterScaleLowThreshold = Frequency::Hertz(5);
|
|
static const Frequency kJitterScaleHighThreshold = Frequency::Hertz(10);
|
|
Frequency fps = GetFrameRate();
|
|
// Ignore jitter for very low fps streams.
|
|
if (fps < kJitterScaleLowThreshold) {
|
|
if (fps.IsZero()) {
|
|
return std::max(TimeDelta::Zero(), jitter);
|
|
}
|
|
return TimeDelta::Zero();
|
|
}
|
|
|
|
// Semi-low frame rate; scale by factor linearly interpolated from 0.0 at
|
|
// kJitterScaleLowThreshold to 1.0 at kJitterScaleHighThreshold.
|
|
if (fps < kJitterScaleHighThreshold) {
|
|
jitter = (1.0 / (kJitterScaleHighThreshold - kJitterScaleLowThreshold)) *
|
|
(fps - kJitterScaleLowThreshold) * jitter;
|
|
}
|
|
|
|
return std::max(TimeDelta::Zero(), jitter);
|
|
}
|
|
|
|
Frequency JitterEstimator::GetFrameRate() const {
|
|
TimeDelta mean_frame_period = TimeDelta::Micros(fps_counter_.ComputeMean());
|
|
if (mean_frame_period <= TimeDelta::Zero())
|
|
return Frequency::Zero();
|
|
|
|
Frequency fps = 1 / mean_frame_period;
|
|
// Sanity check.
|
|
RTC_DCHECK_GE(fps, Frequency::Zero());
|
|
return std::min(fps, kMaxFramerateEstimate);
|
|
}
|
|
} // namespace webrtc
|