webrtc/modules/rtp_rtcp/source/rtp_sender_unittest.cc
Erik Språng cf15cb5c94 Update how FEC handles protection parameters for key vs delta frames.
This CL:
1) Updates RtpSenderVideo to actually populate the is_key_frame field
properly.

2) Updates UlpfecGenerator to:
 * Allow updating the protection parameters before adding any packet.
 * Apply keyframe protection parameter when at least one buffered
   media packet to be protected belongs to a keyframe.

Updating the parameters in the middle of a frame is allowed, at that
point they only determine how many _complete_ frames are needed in order
to trigger FEC generation. Only that requirement is met, will the
protection parameters (e.g. FEC rate and mask type) actually be applied.

This means that delta-frames adjecent to a key-frame (either ahead of
or after) may be protected in the same way as the key-frame itself.

Bug: webrtc:11340
Change-Id: Ieb84d0ae46de01c17b4ef72251a4cb37814569da
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/195620
Commit-Queue: Erik Språng <sprang@webrtc.org>
Reviewed-by: Ying Wang <yinwa@webrtc.org>
Reviewed-by: Danil Chapovalov <danilchap@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#32787}
2020-12-07 13:36:03 +00:00

2879 lines
116 KiB
C++

/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/rtp_rtcp/source/rtp_sender.h"
#include <memory>
#include <vector>
#include "api/rtc_event_log/rtc_event.h"
#include "api/transport/field_trial_based_config.h"
#include "api/video/video_codec_constants.h"
#include "api/video/video_timing.h"
#include "logging/rtc_event_log/mock/mock_rtc_event_log.h"
#include "modules/rtp_rtcp/include/rtp_cvo.h"
#include "modules/rtp_rtcp/include/rtp_header_extension_map.h"
#include "modules/rtp_rtcp/include/rtp_packet_sender.h"
#include "modules/rtp_rtcp/include/rtp_rtcp_defines.h"
#include "modules/rtp_rtcp/source/rtcp_packet/transport_feedback.h"
#include "modules/rtp_rtcp/source/rtp_format_video_generic.h"
#include "modules/rtp_rtcp/source/rtp_generic_frame_descriptor.h"
#include "modules/rtp_rtcp/source/rtp_generic_frame_descriptor_extension.h"
#include "modules/rtp_rtcp/source/rtp_header_extensions.h"
#include "modules/rtp_rtcp/source/rtp_packet_received.h"
#include "modules/rtp_rtcp/source/rtp_packet_to_send.h"
#include "modules/rtp_rtcp/source/rtp_sender_egress.h"
#include "modules/rtp_rtcp/source/rtp_sender_video.h"
#include "modules/rtp_rtcp/source/rtp_utility.h"
#include "modules/rtp_rtcp/source/video_fec_generator.h"
#include "rtc_base/arraysize.h"
#include "rtc_base/rate_limiter.h"
#include "rtc_base/strings/string_builder.h"
#include "rtc_base/task_utils/to_queued_task.h"
#include "test/field_trial.h"
#include "test/gmock.h"
#include "test/gtest.h"
#include "test/mock_transport.h"
#include "test/rtp_header_parser.h"
#include "test/time_controller/simulated_time_controller.h"
namespace webrtc {
namespace {
enum : int { // The first valid value is 1.
kAbsoluteSendTimeExtensionId = 1,
kAudioLevelExtensionId,
kGenericDescriptorId,
kMidExtensionId,
kRepairedRidExtensionId,
kRidExtensionId,
kTransmissionTimeOffsetExtensionId,
kTransportSequenceNumberExtensionId,
kVideoRotationExtensionId,
kVideoTimingExtensionId,
};
const int kPayload = 100;
const int kRtxPayload = 98;
const uint32_t kTimestamp = 10;
const uint16_t kSeqNum = 33;
const uint32_t kSsrc = 725242;
const uint32_t kRtxSsrc = 12345;
const uint32_t kFlexFecSsrc = 45678;
const uint16_t kTransportSequenceNumber = 1;
const uint64_t kStartTime = 123456789;
const size_t kMaxPaddingSize = 224u;
const uint8_t kPayloadData[] = {47, 11, 32, 93, 89};
const int64_t kDefaultExpectedRetransmissionTimeMs = 125;
const char kNoRid[] = "";
const char kNoMid[] = "";
using ::testing::_;
using ::testing::AllOf;
using ::testing::AtLeast;
using ::testing::Contains;
using ::testing::Each;
using ::testing::ElementsAreArray;
using ::testing::Eq;
using ::testing::Field;
using ::testing::Gt;
using ::testing::IsEmpty;
using ::testing::NiceMock;
using ::testing::Not;
using ::testing::Pointee;
using ::testing::Property;
using ::testing::Return;
using ::testing::SizeIs;
using ::testing::StrictMock;
uint64_t ConvertMsToAbsSendTime(int64_t time_ms) {
return (((time_ms << 18) + 500) / 1000) & 0x00ffffff;
}
class LoopbackTransportTest : public webrtc::Transport {
public:
LoopbackTransportTest() : total_bytes_sent_(0) {
receivers_extensions_.Register<TransmissionOffset>(
kTransmissionTimeOffsetExtensionId);
receivers_extensions_.Register<AbsoluteSendTime>(
kAbsoluteSendTimeExtensionId);
receivers_extensions_.Register<TransportSequenceNumber>(
kTransportSequenceNumberExtensionId);
receivers_extensions_.Register<VideoOrientation>(kVideoRotationExtensionId);
receivers_extensions_.Register<AudioLevel>(kAudioLevelExtensionId);
receivers_extensions_.Register<VideoTimingExtension>(
kVideoTimingExtensionId);
receivers_extensions_.Register<RtpMid>(kMidExtensionId);
receivers_extensions_.Register<RtpGenericFrameDescriptorExtension00>(
kGenericDescriptorId);
receivers_extensions_.Register<RtpStreamId>(kRidExtensionId);
receivers_extensions_.Register<RepairedRtpStreamId>(
kRepairedRidExtensionId);
}
bool SendRtp(const uint8_t* data,
size_t len,
const PacketOptions& options) override {
last_options_ = options;
total_bytes_sent_ += len;
sent_packets_.push_back(RtpPacketReceived(&receivers_extensions_));
EXPECT_TRUE(sent_packets_.back().Parse(data, len));
return true;
}
bool SendRtcp(const uint8_t* data, size_t len) override { return false; }
const RtpPacketReceived& last_sent_packet() { return sent_packets_.back(); }
int packets_sent() { return sent_packets_.size(); }
size_t total_bytes_sent_;
PacketOptions last_options_;
std::vector<RtpPacketReceived> sent_packets_;
private:
RtpHeaderExtensionMap receivers_extensions_;
};
MATCHER_P(SameRtcEventTypeAs, value, "") {
return value == arg->GetType();
}
struct TestConfig {
explicit TestConfig(bool with_overhead) : with_overhead(with_overhead) {}
bool with_overhead = false;
};
class MockRtpPacketPacer : public RtpPacketSender {
public:
MockRtpPacketPacer() {}
virtual ~MockRtpPacketPacer() {}
MOCK_METHOD(void,
EnqueuePackets,
(std::vector<std::unique_ptr<RtpPacketToSend>>),
(override));
};
class MockSendSideDelayObserver : public SendSideDelayObserver {
public:
MOCK_METHOD(void,
SendSideDelayUpdated,
(int, int, uint64_t, uint32_t),
(override));
};
class MockSendPacketObserver : public SendPacketObserver {
public:
MOCK_METHOD(void, OnSendPacket, (uint16_t, int64_t, uint32_t), (override));
};
class MockTransportFeedbackObserver : public TransportFeedbackObserver {
public:
MOCK_METHOD(void, OnAddPacket, (const RtpPacketSendInfo&), (override));
MOCK_METHOD(void,
OnTransportFeedback,
(const rtcp::TransportFeedback&),
(override));
};
class StreamDataTestCallback : public StreamDataCountersCallback {
public:
StreamDataTestCallback()
: StreamDataCountersCallback(), ssrc_(0), counters_() {}
~StreamDataTestCallback() override = default;
void DataCountersUpdated(const StreamDataCounters& counters,
uint32_t ssrc) override {
ssrc_ = ssrc;
counters_ = counters;
}
uint32_t ssrc_;
StreamDataCounters counters_;
void MatchPacketCounter(const RtpPacketCounter& expected,
const RtpPacketCounter& actual) {
EXPECT_EQ(expected.payload_bytes, actual.payload_bytes);
EXPECT_EQ(expected.header_bytes, actual.header_bytes);
EXPECT_EQ(expected.padding_bytes, actual.padding_bytes);
EXPECT_EQ(expected.packets, actual.packets);
}
void Matches(uint32_t ssrc, const StreamDataCounters& counters) {
EXPECT_EQ(ssrc, ssrc_);
MatchPacketCounter(counters.transmitted, counters_.transmitted);
MatchPacketCounter(counters.retransmitted, counters_.retransmitted);
EXPECT_EQ(counters.fec.packets, counters_.fec.packets);
}
};
class TaskQueuePacketSender : public RtpPacketSender {
public:
TaskQueuePacketSender(TimeController* time_controller,
std::unique_ptr<RtpPacketSender> packet_sender)
: time_controller_(time_controller),
packet_sender_(std::move(packet_sender)),
queue_(time_controller_->CreateTaskQueueFactory()->CreateTaskQueue(
"PacerQueue",
TaskQueueFactory::Priority::NORMAL)) {}
void EnqueuePackets(
std::vector<std::unique_ptr<RtpPacketToSend>> packets) override {
queue_->PostTask(ToQueuedTask([sender = packet_sender_.get(),
packets_ = std::move(packets)]() mutable {
sender->EnqueuePackets(std::move(packets_));
}));
// Trigger task we just enqueued to be executed by updating the simulated
// time controller.
time_controller_->AdvanceTime(TimeDelta::Zero());
}
TaskQueueBase* task_queue() const { return queue_.get(); }
TimeController* const time_controller_;
std::unique_ptr<RtpPacketSender> packet_sender_;
std::unique_ptr<TaskQueueBase, TaskQueueDeleter> queue_;
};
// Mimics ModuleRtpRtcp::RtpSenderContext.
// TODO(sprang): Split up unit tests and test these components individually
// wherever possible.
struct RtpSenderContext : public SequenceNumberAssigner {
RtpSenderContext(const RtpRtcpInterface::Configuration& config,
TimeController* time_controller)
: time_controller_(time_controller),
packet_history_(config.clock, config.enable_rtx_padding_prioritization),
packet_sender_(config, &packet_history_),
pacer_(time_controller,
std::make_unique<RtpSenderEgress::NonPacedPacketSender>(
&packet_sender_,
this)),
packet_generator_(config,
&packet_history_,
config.paced_sender ? config.paced_sender : &pacer_) {
}
void AssignSequenceNumber(RtpPacketToSend* packet) override {
packet_generator_.AssignSequenceNumber(packet);
}
// Inject packet straight into RtpSenderEgress without passing through the
// pacer, but while still running on the pacer task queue.
void InjectPacket(std::unique_ptr<RtpPacketToSend> packet,
const PacedPacketInfo& packet_info) {
pacer_.task_queue()->PostTask(
ToQueuedTask([sender_ = &packet_sender_, packet_ = std::move(packet),
packet_info]() mutable {
sender_->SendPacket(packet_.get(), packet_info);
}));
time_controller_->AdvanceTime(TimeDelta::Zero());
}
TimeController* time_controller_;
RtpPacketHistory packet_history_;
RtpSenderEgress packet_sender_;
TaskQueuePacketSender pacer_;
RTPSender packet_generator_;
};
class FieldTrialConfig : public WebRtcKeyValueConfig {
public:
FieldTrialConfig()
: overhead_enabled_(false),
max_padding_factor_(1200) {}
~FieldTrialConfig() override {}
void SetOverHeadEnabled(bool enabled) { overhead_enabled_ = enabled; }
void SetMaxPaddingFactor(double factor) { max_padding_factor_ = factor; }
std::string Lookup(absl::string_view key) const override {
if (key == "WebRTC-LimitPaddingSize") {
char string_buf[32];
rtc::SimpleStringBuilder ssb(string_buf);
ssb << "factor:" << max_padding_factor_;
return ssb.str();
} else if (key == "WebRTC-SendSideBwe-WithOverhead") {
return overhead_enabled_ ? "Enabled" : "Disabled";
}
return "";
}
private:
bool overhead_enabled_;
double max_padding_factor_;
};
} // namespace
class RtpSenderTest : public ::testing::TestWithParam<TestConfig> {
protected:
RtpSenderTest()
: time_controller_(Timestamp::Millis(kStartTime)),
clock_(time_controller_.GetClock()),
retransmission_rate_limiter_(clock_, 1000),
flexfec_sender_(0,
kFlexFecSsrc,
kSsrc,
"",
std::vector<RtpExtension>(),
std::vector<RtpExtensionSize>(),
nullptr,
clock_),
kMarkerBit(true) {
field_trials_.SetOverHeadEnabled(GetParam().with_overhead);
}
void SetUp() override { SetUpRtpSender(true, false, false); }
RTPSender* rtp_sender() {
RTC_DCHECK(rtp_sender_context_);
return &rtp_sender_context_->packet_generator_;
}
RtpSenderEgress* rtp_egress() {
RTC_DCHECK(rtp_sender_context_);
return &rtp_sender_context_->packet_sender_;
}
void SetUpRtpSender(bool pacer,
bool populate_network2,
bool always_send_mid_and_rid) {
SetUpRtpSender(pacer, populate_network2, always_send_mid_and_rid,
&flexfec_sender_);
}
void SetUpRtpSender(bool pacer,
bool populate_network2,
bool always_send_mid_and_rid,
VideoFecGenerator* fec_generator) {
RtpRtcpInterface::Configuration config;
config.clock = clock_;
config.outgoing_transport = &transport_;
config.local_media_ssrc = kSsrc;
config.rtx_send_ssrc = kRtxSsrc;
config.fec_generator = fec_generator;
config.event_log = &mock_rtc_event_log_;
config.send_packet_observer = &send_packet_observer_;
config.retransmission_rate_limiter = &retransmission_rate_limiter_;
config.paced_sender = pacer ? &mock_paced_sender_ : nullptr;
config.populate_network2_timestamp = populate_network2;
config.rtp_stats_callback = &rtp_stats_callback_;
config.always_send_mid_and_rid = always_send_mid_and_rid;
config.field_trials = &field_trials_;
rtp_sender_context_ =
std::make_unique<RtpSenderContext>(config, &time_controller_);
rtp_sender()->SetSequenceNumber(kSeqNum);
rtp_sender()->SetTimestampOffset(0);
}
GlobalSimulatedTimeController time_controller_;
Clock* const clock_;
NiceMock<MockRtcEventLog> mock_rtc_event_log_;
MockRtpPacketPacer mock_paced_sender_;
StrictMock<MockSendPacketObserver> send_packet_observer_;
StrictMock<MockTransportFeedbackObserver> feedback_observer_;
RateLimiter retransmission_rate_limiter_;
FlexfecSender flexfec_sender_;
std::unique_ptr<RtpSenderContext> rtp_sender_context_;
LoopbackTransportTest transport_;
const bool kMarkerBit;
FieldTrialConfig field_trials_;
StreamDataTestCallback rtp_stats_callback_;
std::unique_ptr<RtpPacketToSend> BuildRtpPacket(int payload_type,
bool marker_bit,
uint32_t timestamp,
int64_t capture_time_ms) {
auto packet = rtp_sender()->AllocatePacket();
packet->SetPayloadType(payload_type);
packet->set_packet_type(RtpPacketMediaType::kVideo);
packet->SetMarker(marker_bit);
packet->SetTimestamp(timestamp);
packet->set_capture_time_ms(capture_time_ms);
EXPECT_TRUE(rtp_sender()->AssignSequenceNumber(packet.get()));
return packet;
}
std::unique_ptr<RtpPacketToSend> SendPacket(int64_t capture_time_ms,
int payload_length) {
uint32_t timestamp = capture_time_ms * 90;
auto packet =
BuildRtpPacket(kPayload, kMarkerBit, timestamp, capture_time_ms);
packet->AllocatePayload(payload_length);
packet->set_allow_retransmission(true);
// Packet should be stored in a send bucket.
EXPECT_TRUE(rtp_sender()->SendToNetwork(
std::make_unique<RtpPacketToSend>(*packet)));
return packet;
}
std::unique_ptr<RtpPacketToSend> SendGenericPacket() {
const int64_t kCaptureTimeMs = clock_->TimeInMilliseconds();
return SendPacket(kCaptureTimeMs, sizeof(kPayloadData));
}
size_t GenerateAndSendPadding(size_t target_size_bytes) {
size_t generated_bytes = 0;
for (auto& packet :
rtp_sender()->GeneratePadding(target_size_bytes, true)) {
generated_bytes += packet->payload_size() + packet->padding_size();
rtp_sender_context_->InjectPacket(std::move(packet), PacedPacketInfo());
}
return generated_bytes;
}
// The following are helpers for configuring the RTPSender. They must be
// called before sending any packets.
// Enable the retransmission stream with sizable packet storage.
void EnableRtx() {
// RTX needs to be able to read the source packets from the packet store.
// Pick a number of packets to store big enough for any unit test.
constexpr uint16_t kNumberOfPacketsToStore = 100;
rtp_sender_context_->packet_history_.SetStorePacketsStatus(
RtpPacketHistory::StorageMode::kStoreAndCull, kNumberOfPacketsToStore);
rtp_sender()->SetRtxPayloadType(kRtxPayload, kPayload);
rtp_sender()->SetRtxStatus(kRtxRetransmitted | kRtxRedundantPayloads);
}
// Enable sending of the MID header extension for both the primary SSRC and
// the RTX SSRC.
void EnableMidSending(const std::string& mid) {
rtp_sender()->RegisterRtpHeaderExtension(kRtpExtensionMid, kMidExtensionId);
rtp_sender()->SetMid(mid);
}
// Enable sending of the RSID header extension for the primary SSRC and the
// RRSID header extension for the RTX SSRC.
void EnableRidSending(const std::string& rid) {
rtp_sender()->RegisterRtpHeaderExtension(kRtpExtensionRtpStreamId,
kRidExtensionId);
rtp_sender()->RegisterRtpHeaderExtension(kRtpExtensionRepairedRtpStreamId,
kRepairedRidExtensionId);
rtp_sender()->SetRid(rid);
}
};
// TODO(pbos): Move tests over from WithoutPacer to RtpSenderTest as this is our
// default code path.
class RtpSenderTestWithoutPacer : public RtpSenderTest {
public:
void SetUp() override { SetUpRtpSender(false, false, false); }
};
TEST_P(RtpSenderTestWithoutPacer, AllocatePacketSetCsrc) {
// Configure rtp_sender with csrc.
std::vector<uint32_t> csrcs;
csrcs.push_back(0x23456789);
rtp_sender()->SetCsrcs(csrcs);
auto packet = rtp_sender()->AllocatePacket();
ASSERT_TRUE(packet);
EXPECT_EQ(rtp_sender()->SSRC(), packet->Ssrc());
EXPECT_EQ(csrcs, packet->Csrcs());
}
TEST_P(RtpSenderTestWithoutPacer, AllocatePacketReserveExtensions) {
// Configure rtp_sender with extensions.
ASSERT_EQ(0, rtp_sender()->RegisterRtpHeaderExtension(
kRtpExtensionTransmissionTimeOffset,
kTransmissionTimeOffsetExtensionId));
ASSERT_EQ(0,
rtp_sender()->RegisterRtpHeaderExtension(
kRtpExtensionAbsoluteSendTime, kAbsoluteSendTimeExtensionId));
ASSERT_EQ(0, rtp_sender()->RegisterRtpHeaderExtension(
kRtpExtensionAudioLevel, kAudioLevelExtensionId));
ASSERT_EQ(0, rtp_sender()->RegisterRtpHeaderExtension(
kRtpExtensionTransportSequenceNumber,
kTransportSequenceNumberExtensionId));
ASSERT_EQ(0, rtp_sender()->RegisterRtpHeaderExtension(
kRtpExtensionVideoRotation, kVideoRotationExtensionId));
auto packet = rtp_sender()->AllocatePacket();
ASSERT_TRUE(packet);
// Preallocate BWE extensions RtpSender set itself.
EXPECT_TRUE(packet->HasExtension<TransmissionOffset>());
EXPECT_TRUE(packet->HasExtension<AbsoluteSendTime>());
EXPECT_TRUE(packet->HasExtension<TransportSequenceNumber>());
// Do not allocate media specific extensions.
EXPECT_FALSE(packet->HasExtension<AudioLevel>());
EXPECT_FALSE(packet->HasExtension<VideoOrientation>());
}
TEST_P(RtpSenderTestWithoutPacer, AssignSequenceNumberAdvanceSequenceNumber) {
auto packet = rtp_sender()->AllocatePacket();
ASSERT_TRUE(packet);
const uint16_t sequence_number = rtp_sender()->SequenceNumber();
EXPECT_TRUE(rtp_sender()->AssignSequenceNumber(packet.get()));
EXPECT_EQ(sequence_number, packet->SequenceNumber());
EXPECT_EQ(sequence_number + 1, rtp_sender()->SequenceNumber());
}
TEST_P(RtpSenderTestWithoutPacer, AssignSequenceNumberFailsOnNotSending) {
auto packet = rtp_sender()->AllocatePacket();
ASSERT_TRUE(packet);
rtp_sender()->SetSendingMediaStatus(false);
EXPECT_FALSE(rtp_sender()->AssignSequenceNumber(packet.get()));
}
TEST_P(RtpSenderTestWithoutPacer, AssignSequenceNumberMayAllowPaddingOnVideo) {
constexpr size_t kPaddingSize = 100;
auto packet = rtp_sender()->AllocatePacket();
ASSERT_TRUE(packet);
ASSERT_TRUE(rtp_sender()->GeneratePadding(kPaddingSize, true).empty());
packet->SetMarker(false);
ASSERT_TRUE(rtp_sender()->AssignSequenceNumber(packet.get()));
// Packet without marker bit doesn't allow padding on video stream.
ASSERT_TRUE(rtp_sender()->GeneratePadding(kPaddingSize, true).empty());
packet->SetMarker(true);
ASSERT_TRUE(rtp_sender()->AssignSequenceNumber(packet.get()));
// Packet with marker bit allows send padding.
ASSERT_FALSE(rtp_sender()->GeneratePadding(kPaddingSize, true).empty());
}
TEST_P(RtpSenderTest, AssignSequenceNumberAllowsPaddingOnAudio) {
MockTransport transport;
RtpRtcpInterface::Configuration config;
config.audio = true;
config.clock = clock_;
config.outgoing_transport = &transport;
config.paced_sender = &mock_paced_sender_;
config.local_media_ssrc = kSsrc;
config.event_log = &mock_rtc_event_log_;
config.retransmission_rate_limiter = &retransmission_rate_limiter_;
rtp_sender_context_ =
std::make_unique<RtpSenderContext>(config, &time_controller_);
rtp_sender()->SetTimestampOffset(0);
std::unique_ptr<RtpPacketToSend> audio_packet =
rtp_sender()->AllocatePacket();
// Padding on audio stream allowed regardless of marker in the last packet.
audio_packet->SetMarker(false);
audio_packet->SetPayloadType(kPayload);
rtp_sender()->AssignSequenceNumber(audio_packet.get());
const size_t kPaddingSize = 59;
EXPECT_CALL(transport, SendRtp(_, kPaddingSize + kRtpHeaderSize, _))
.WillOnce(Return(true));
EXPECT_EQ(kPaddingSize, GenerateAndSendPadding(kPaddingSize));
// Requested padding size is too small, will send a larger one.
const size_t kMinPaddingSize = 50;
EXPECT_CALL(transport, SendRtp(_, kMinPaddingSize + kRtpHeaderSize, _))
.WillOnce(Return(true));
EXPECT_EQ(kMinPaddingSize, GenerateAndSendPadding(kMinPaddingSize - 5));
}
TEST_P(RtpSenderTestWithoutPacer, AssignSequenceNumberSetPaddingTimestamps) {
constexpr size_t kPaddingSize = 100;
auto packet = rtp_sender()->AllocatePacket();
ASSERT_TRUE(packet);
packet->SetMarker(true);
packet->SetTimestamp(kTimestamp);
ASSERT_TRUE(rtp_sender()->AssignSequenceNumber(packet.get()));
auto padding_packets = rtp_sender()->GeneratePadding(kPaddingSize, true);
ASSERT_EQ(1u, padding_packets.size());
// Verify padding packet timestamp.
EXPECT_EQ(kTimestamp, padding_packets[0]->Timestamp());
}
TEST_P(RtpSenderTestWithoutPacer,
TransportFeedbackObserverGetsCorrectByteCount) {
constexpr size_t kRtpOverheadBytesPerPacket = 12 + 8;
RtpRtcpInterface::Configuration config;
config.clock = clock_;
config.outgoing_transport = &transport_;
config.local_media_ssrc = kSsrc;
config.transport_feedback_callback = &feedback_observer_;
config.event_log = &mock_rtc_event_log_;
config.retransmission_rate_limiter = &retransmission_rate_limiter_;
config.field_trials = &field_trials_;
rtp_sender_context_ =
std::make_unique<RtpSenderContext>(config, &time_controller_);
EXPECT_EQ(0, rtp_sender()->RegisterRtpHeaderExtension(
kRtpExtensionTransportSequenceNumber,
kTransportSequenceNumberExtensionId));
const size_t expected_bytes =
GetParam().with_overhead
? sizeof(kPayloadData) + kRtpOverheadBytesPerPacket
: sizeof(kPayloadData);
EXPECT_CALL(feedback_observer_,
OnAddPacket(AllOf(
Field(&RtpPacketSendInfo::ssrc, rtp_sender()->SSRC()),
Field(&RtpPacketSendInfo::transport_sequence_number,
kTransportSequenceNumber),
Field(&RtpPacketSendInfo::rtp_sequence_number,
rtp_sender()->SequenceNumber()),
Field(&RtpPacketSendInfo::length, expected_bytes),
Field(&RtpPacketSendInfo::pacing_info, PacedPacketInfo()))))
.Times(1);
EXPECT_EQ(rtp_sender()->ExpectedPerPacketOverhead(),
kRtpOverheadBytesPerPacket);
SendGenericPacket();
}
TEST_P(RtpSenderTestWithoutPacer, SendsPacketsWithTransportSequenceNumber) {
RtpRtcpInterface::Configuration config;
config.clock = clock_;
config.outgoing_transport = &transport_;
config.local_media_ssrc = kSsrc;
config.transport_feedback_callback = &feedback_observer_;
config.event_log = &mock_rtc_event_log_;
config.send_packet_observer = &send_packet_observer_;
config.retransmission_rate_limiter = &retransmission_rate_limiter_;
rtp_sender_context_ =
std::make_unique<RtpSenderContext>(config, &time_controller_);
EXPECT_EQ(0, rtp_sender()->RegisterRtpHeaderExtension(
kRtpExtensionTransportSequenceNumber,
kTransportSequenceNumberExtensionId));
EXPECT_CALL(send_packet_observer_,
OnSendPacket(kTransportSequenceNumber, _, _))
.Times(1);
EXPECT_CALL(feedback_observer_,
OnAddPacket(AllOf(
Field(&RtpPacketSendInfo::ssrc, rtp_sender()->SSRC()),
Field(&RtpPacketSendInfo::transport_sequence_number,
kTransportSequenceNumber),
Field(&RtpPacketSendInfo::rtp_sequence_number,
rtp_sender()->SequenceNumber()),
Field(&RtpPacketSendInfo::pacing_info, PacedPacketInfo()))))
.Times(1);
SendGenericPacket();
const auto& packet = transport_.last_sent_packet();
uint16_t transport_seq_no;
ASSERT_TRUE(packet.GetExtension<TransportSequenceNumber>(&transport_seq_no));
EXPECT_EQ(kTransportSequenceNumber, transport_seq_no);
EXPECT_EQ(transport_.last_options_.packet_id, transport_seq_no);
EXPECT_TRUE(transport_.last_options_.included_in_allocation);
}
TEST_P(RtpSenderTestWithoutPacer, PacketOptionsNoRetransmission) {
RtpRtcpInterface::Configuration config;
config.clock = clock_;
config.outgoing_transport = &transport_;
config.local_media_ssrc = kSsrc;
config.transport_feedback_callback = &feedback_observer_;
config.event_log = &mock_rtc_event_log_;
config.send_packet_observer = &send_packet_observer_;
config.retransmission_rate_limiter = &retransmission_rate_limiter_;
rtp_sender_context_ =
std::make_unique<RtpSenderContext>(config, &time_controller_);
SendGenericPacket();
EXPECT_FALSE(transport_.last_options_.is_retransmit);
}
TEST_P(RtpSenderTestWithoutPacer,
SetsIncludedInFeedbackWhenTransportSequenceNumberExtensionIsRegistered) {
SetUpRtpSender(false, false, false);
rtp_sender()->RegisterRtpHeaderExtension(kRtpExtensionTransportSequenceNumber,
kTransportSequenceNumberExtensionId);
EXPECT_CALL(send_packet_observer_, OnSendPacket).Times(1);
SendGenericPacket();
EXPECT_TRUE(transport_.last_options_.included_in_feedback);
}
TEST_P(
RtpSenderTestWithoutPacer,
SetsIncludedInAllocationWhenTransportSequenceNumberExtensionIsRegistered) {
SetUpRtpSender(false, false, false);
rtp_sender()->RegisterRtpHeaderExtension(kRtpExtensionTransportSequenceNumber,
kTransportSequenceNumberExtensionId);
EXPECT_CALL(send_packet_observer_, OnSendPacket).Times(1);
SendGenericPacket();
EXPECT_TRUE(transport_.last_options_.included_in_allocation);
}
TEST_P(RtpSenderTestWithoutPacer,
SetsIncludedInAllocationWhenForcedAsPartOfAllocation) {
SetUpRtpSender(false, false, false);
rtp_egress()->ForceIncludeSendPacketsInAllocation(true);
SendGenericPacket();
EXPECT_FALSE(transport_.last_options_.included_in_feedback);
EXPECT_TRUE(transport_.last_options_.included_in_allocation);
}
TEST_P(RtpSenderTestWithoutPacer, DoesnSetIncludedInAllocationByDefault) {
SetUpRtpSender(false, false, false);
SendGenericPacket();
EXPECT_FALSE(transport_.last_options_.included_in_feedback);
EXPECT_FALSE(transport_.last_options_.included_in_allocation);
}
TEST_P(RtpSenderTestWithoutPacer, OnSendSideDelayUpdated) {
StrictMock<MockSendSideDelayObserver> send_side_delay_observer_;
RtpRtcpInterface::Configuration config;
config.clock = clock_;
config.outgoing_transport = &transport_;
config.local_media_ssrc = kSsrc;
config.send_side_delay_observer = &send_side_delay_observer_;
config.event_log = &mock_rtc_event_log_;
rtp_sender_context_ =
std::make_unique<RtpSenderContext>(config, &time_controller_);
FieldTrialBasedConfig field_trials;
RTPSenderVideo::Config video_config;
video_config.clock = clock_;
video_config.rtp_sender = rtp_sender();
video_config.field_trials = &field_trials;
RTPSenderVideo rtp_sender_video(video_config);
const uint8_t kPayloadType = 127;
const absl::optional<VideoCodecType> kCodecType =
VideoCodecType::kVideoCodecGeneric;
const uint32_t kCaptureTimeMsToRtpTimestamp = 90; // 90 kHz clock
RTPVideoHeader video_header;
// Send packet with 10 ms send-side delay. The average, max and total should
// be 10 ms.
EXPECT_CALL(send_side_delay_observer_,
SendSideDelayUpdated(10, 10, 10, kSsrc))
.Times(1);
int64_t capture_time_ms = clock_->TimeInMilliseconds();
time_controller_.AdvanceTime(TimeDelta::Millis(10));
video_header.frame_type = VideoFrameType::kVideoFrameKey;
EXPECT_TRUE(rtp_sender_video.SendVideo(
kPayloadType, kCodecType, capture_time_ms * kCaptureTimeMsToRtpTimestamp,
capture_time_ms, kPayloadData, video_header,
kDefaultExpectedRetransmissionTimeMs));
// Send another packet with 20 ms delay. The average, max and total should be
// 15, 20 and 30 ms respectively.
EXPECT_CALL(send_side_delay_observer_,
SendSideDelayUpdated(15, 20, 30, kSsrc))
.Times(1);
time_controller_.AdvanceTime(TimeDelta::Millis(10));
video_header.frame_type = VideoFrameType::kVideoFrameKey;
EXPECT_TRUE(rtp_sender_video.SendVideo(
kPayloadType, kCodecType, capture_time_ms * kCaptureTimeMsToRtpTimestamp,
capture_time_ms, kPayloadData, video_header,
kDefaultExpectedRetransmissionTimeMs));
// Send another packet at the same time, which replaces the last packet.
// Since this packet has 0 ms delay, the average is now 5 ms and max is 10 ms.
// The total counter stays the same though.
// TODO(terelius): Is is not clear that this is the right behavior.
EXPECT_CALL(send_side_delay_observer_, SendSideDelayUpdated(5, 10, 30, kSsrc))
.Times(1);
capture_time_ms = clock_->TimeInMilliseconds();
video_header.frame_type = VideoFrameType::kVideoFrameKey;
EXPECT_TRUE(rtp_sender_video.SendVideo(
kPayloadType, kCodecType, capture_time_ms * kCaptureTimeMsToRtpTimestamp,
capture_time_ms, kPayloadData, video_header,
kDefaultExpectedRetransmissionTimeMs));
// Send a packet 1 second later. The earlier packets should have timed
// out, so both max and average should be the delay of this packet. The total
// keeps increasing.
time_controller_.AdvanceTime(TimeDelta::Millis(1000));
capture_time_ms = clock_->TimeInMilliseconds();
time_controller_.AdvanceTime(TimeDelta::Millis(1));
EXPECT_CALL(send_side_delay_observer_, SendSideDelayUpdated(1, 1, 31, kSsrc))
.Times(1);
video_header.frame_type = VideoFrameType::kVideoFrameKey;
EXPECT_TRUE(rtp_sender_video.SendVideo(
kPayloadType, kCodecType, capture_time_ms * kCaptureTimeMsToRtpTimestamp,
capture_time_ms, kPayloadData, video_header,
kDefaultExpectedRetransmissionTimeMs));
}
TEST_P(RtpSenderTestWithoutPacer, OnSendPacketUpdated) {
EXPECT_EQ(0, rtp_sender()->RegisterRtpHeaderExtension(
kRtpExtensionTransportSequenceNumber,
kTransportSequenceNumberExtensionId));
EXPECT_CALL(send_packet_observer_,
OnSendPacket(kTransportSequenceNumber, _, _))
.Times(1);
SendGenericPacket();
}
TEST_P(RtpSenderTest, SendsPacketsWithTransportSequenceNumber) {
RtpRtcpInterface::Configuration config;
config.clock = clock_;
config.outgoing_transport = &transport_;
config.paced_sender = &mock_paced_sender_;
config.local_media_ssrc = kSsrc;
config.transport_feedback_callback = &feedback_observer_;
config.event_log = &mock_rtc_event_log_;
config.send_packet_observer = &send_packet_observer_;
config.retransmission_rate_limiter = &retransmission_rate_limiter_;
rtp_sender_context_ =
std::make_unique<RtpSenderContext>(config, &time_controller_);
rtp_sender()->SetSequenceNumber(kSeqNum);
rtp_sender_context_->packet_history_.SetStorePacketsStatus(
RtpPacketHistory::StorageMode::kStoreAndCull, 10);
EXPECT_EQ(0, rtp_sender()->RegisterRtpHeaderExtension(
kRtpExtensionTransportSequenceNumber,
kTransportSequenceNumberExtensionId));
EXPECT_CALL(send_packet_observer_,
OnSendPacket(kTransportSequenceNumber, _, _))
.Times(1);
EXPECT_CALL(feedback_observer_,
OnAddPacket(AllOf(
Field(&RtpPacketSendInfo::ssrc, rtp_sender()->SSRC()),
Field(&RtpPacketSendInfo::transport_sequence_number,
kTransportSequenceNumber),
Field(&RtpPacketSendInfo::rtp_sequence_number,
rtp_sender()->SequenceNumber()),
Field(&RtpPacketSendInfo::pacing_info, PacedPacketInfo()))))
.Times(1);
EXPECT_CALL(
mock_paced_sender_,
EnqueuePackets(Contains(AllOf(
Pointee(Property(&RtpPacketToSend::Ssrc, kSsrc)),
Pointee(Property(&RtpPacketToSend::SequenceNumber, kSeqNum))))));
auto packet = SendGenericPacket();
packet->set_packet_type(RtpPacketMediaType::kVideo);
// Transport sequence number is set by PacketRouter, before SendPacket().
packet->SetExtension<TransportSequenceNumber>(kTransportSequenceNumber);
rtp_sender_context_->InjectPacket(std::move(packet), PacedPacketInfo());
uint16_t transport_seq_no;
EXPECT_TRUE(
transport_.last_sent_packet().GetExtension<TransportSequenceNumber>(
&transport_seq_no));
EXPECT_EQ(kTransportSequenceNumber, transport_seq_no);
EXPECT_EQ(transport_.last_options_.packet_id, transport_seq_no);
}
TEST_P(RtpSenderTest, WritesPacerExitToTimingExtension) {
rtp_sender_context_->packet_history_.SetStorePacketsStatus(
RtpPacketHistory::StorageMode::kStoreAndCull, 10);
EXPECT_EQ(0, rtp_sender()->RegisterRtpHeaderExtension(
kRtpExtensionVideoTiming, kVideoTimingExtensionId));
int64_t capture_time_ms = clock_->TimeInMilliseconds();
auto packet = rtp_sender()->AllocatePacket();
packet->SetPayloadType(kPayload);
packet->SetMarker(true);
packet->SetTimestamp(kTimestamp);
packet->set_capture_time_ms(capture_time_ms);
const VideoSendTiming kVideoTiming = {0u, 0u, 0u, 0u, 0u, 0u, true};
packet->SetExtension<VideoTimingExtension>(kVideoTiming);
EXPECT_TRUE(rtp_sender()->AssignSequenceNumber(packet.get()));
size_t packet_size = packet->size();
const int kStoredTimeInMs = 100;
packet->set_packet_type(RtpPacketMediaType::kVideo);
packet->set_allow_retransmission(true);
EXPECT_CALL(mock_paced_sender_, EnqueuePackets(Contains(Pointee(Property(
&RtpPacketToSend::Ssrc, kSsrc)))));
EXPECT_TRUE(
rtp_sender()->SendToNetwork(std::make_unique<RtpPacketToSend>(*packet)));
time_controller_.AdvanceTime(TimeDelta::Millis(kStoredTimeInMs));
rtp_sender_context_->InjectPacket(std::move(packet), PacedPacketInfo());
EXPECT_EQ(1, transport_.packets_sent());
EXPECT_EQ(packet_size, transport_.last_sent_packet().size());
VideoSendTiming video_timing;
EXPECT_TRUE(transport_.last_sent_packet().GetExtension<VideoTimingExtension>(
&video_timing));
EXPECT_EQ(kStoredTimeInMs, video_timing.pacer_exit_delta_ms);
}
TEST_P(RtpSenderTest, WritesNetwork2ToTimingExtensionWithPacer) {
SetUpRtpSender(/*pacer=*/true, /*populate_network2=*/true, false);
rtp_sender_context_->packet_history_.SetStorePacketsStatus(
RtpPacketHistory::StorageMode::kStoreAndCull, 10);
EXPECT_EQ(0, rtp_sender()->RegisterRtpHeaderExtension(
kRtpExtensionVideoTiming, kVideoTimingExtensionId));
int64_t capture_time_ms = clock_->TimeInMilliseconds();
auto packet = rtp_sender()->AllocatePacket();
packet->SetPayloadType(kPayload);
packet->SetMarker(true);
packet->SetTimestamp(kTimestamp);
packet->set_capture_time_ms(capture_time_ms);
const uint16_t kPacerExitMs = 1234u;
const VideoSendTiming kVideoTiming = {0u, 0u, 0u, kPacerExitMs, 0u, 0u, true};
packet->SetExtension<VideoTimingExtension>(kVideoTiming);
EXPECT_TRUE(rtp_sender()->AssignSequenceNumber(packet.get()));
size_t packet_size = packet->size();
const int kStoredTimeInMs = 100;
packet->set_packet_type(RtpPacketMediaType::kVideo);
packet->set_allow_retransmission(true);
EXPECT_CALL(mock_paced_sender_, EnqueuePackets(Contains(Pointee(Property(
&RtpPacketToSend::Ssrc, kSsrc)))));
EXPECT_TRUE(
rtp_sender()->SendToNetwork(std::make_unique<RtpPacketToSend>(*packet)));
time_controller_.AdvanceTime(TimeDelta::Millis(kStoredTimeInMs));
rtp_sender_context_->InjectPacket(std::move(packet), PacedPacketInfo());
EXPECT_EQ(1, transport_.packets_sent());
EXPECT_EQ(packet_size, transport_.last_sent_packet().size());
VideoSendTiming video_timing;
EXPECT_TRUE(transport_.last_sent_packet().GetExtension<VideoTimingExtension>(
&video_timing));
EXPECT_EQ(kStoredTimeInMs, video_timing.network2_timestamp_delta_ms);
EXPECT_EQ(kPacerExitMs, video_timing.pacer_exit_delta_ms);
}
TEST_P(RtpSenderTest, WritesNetwork2ToTimingExtensionWithoutPacer) {
SetUpRtpSender(/*pacer=*/false, /*populate_network2=*/true, false);
EXPECT_EQ(0, rtp_sender()->RegisterRtpHeaderExtension(
kRtpExtensionVideoTiming, kVideoTimingExtensionId));
auto packet = rtp_sender()->AllocatePacket();
packet->SetMarker(true);
packet->set_capture_time_ms(clock_->TimeInMilliseconds());
const VideoSendTiming kVideoTiming = {0u, 0u, 0u, 0u, 0u, 0u, true};
packet->SetExtension<VideoTimingExtension>(kVideoTiming);
packet->set_allow_retransmission(true);
EXPECT_TRUE(rtp_sender()->AssignSequenceNumber(packet.get()));
packet->set_packet_type(RtpPacketMediaType::kVideo);
const int kPropagateTimeMs = 10;
time_controller_.AdvanceTime(TimeDelta::Millis(kPropagateTimeMs));
EXPECT_TRUE(rtp_sender()->SendToNetwork(std::move(packet)));
EXPECT_EQ(1, transport_.packets_sent());
absl::optional<VideoSendTiming> video_timing =
transport_.last_sent_packet().GetExtension<VideoTimingExtension>();
ASSERT_TRUE(video_timing);
EXPECT_EQ(kPropagateTimeMs, video_timing->network2_timestamp_delta_ms);
}
TEST_P(RtpSenderTest, TrafficSmoothingWithExtensions) {
EXPECT_CALL(mock_rtc_event_log_,
LogProxy(SameRtcEventTypeAs(RtcEvent::Type::RtpPacketOutgoing)));
rtp_sender_context_->packet_history_.SetStorePacketsStatus(
RtpPacketHistory::StorageMode::kStoreAndCull, 10);
EXPECT_EQ(0, rtp_sender()->RegisterRtpHeaderExtension(
kRtpExtensionTransmissionTimeOffset,
kTransmissionTimeOffsetExtensionId));
EXPECT_EQ(0,
rtp_sender()->RegisterRtpHeaderExtension(
kRtpExtensionAbsoluteSendTime, kAbsoluteSendTimeExtensionId));
int64_t capture_time_ms = clock_->TimeInMilliseconds();
auto packet =
BuildRtpPacket(kPayload, kMarkerBit, kTimestamp, capture_time_ms);
size_t packet_size = packet->size();
const int kStoredTimeInMs = 100;
EXPECT_CALL(
mock_paced_sender_,
EnqueuePackets(Contains(AllOf(
Pointee(Property(&RtpPacketToSend::Ssrc, kSsrc)),
Pointee(Property(&RtpPacketToSend::SequenceNumber, kSeqNum))))));
packet->set_packet_type(RtpPacketMediaType::kVideo);
packet->set_allow_retransmission(true);
EXPECT_TRUE(
rtp_sender()->SendToNetwork(std::make_unique<RtpPacketToSend>(*packet)));
EXPECT_EQ(0, transport_.packets_sent());
time_controller_.AdvanceTime(TimeDelta::Millis(kStoredTimeInMs));
rtp_sender_context_->InjectPacket(std::move(packet), PacedPacketInfo());
// Process send bucket. Packet should now be sent.
EXPECT_EQ(1, transport_.packets_sent());
EXPECT_EQ(packet_size, transport_.last_sent_packet().size());
webrtc::RTPHeader rtp_header;
transport_.last_sent_packet().GetHeader(&rtp_header);
// Verify transmission time offset.
EXPECT_EQ(kStoredTimeInMs * 90, rtp_header.extension.transmissionTimeOffset);
uint64_t expected_send_time =
ConvertMsToAbsSendTime(clock_->TimeInMilliseconds());
EXPECT_EQ(expected_send_time, rtp_header.extension.absoluteSendTime);
}
TEST_P(RtpSenderTest, TrafficSmoothingRetransmits) {
EXPECT_CALL(mock_rtc_event_log_,
LogProxy(SameRtcEventTypeAs(RtcEvent::Type::RtpPacketOutgoing)));
rtp_sender_context_->packet_history_.SetStorePacketsStatus(
RtpPacketHistory::StorageMode::kStoreAndCull, 10);
EXPECT_EQ(0, rtp_sender()->RegisterRtpHeaderExtension(
kRtpExtensionTransmissionTimeOffset,
kTransmissionTimeOffsetExtensionId));
EXPECT_EQ(0,
rtp_sender()->RegisterRtpHeaderExtension(
kRtpExtensionAbsoluteSendTime, kAbsoluteSendTimeExtensionId));
int64_t capture_time_ms = clock_->TimeInMilliseconds();
auto packet =
BuildRtpPacket(kPayload, kMarkerBit, kTimestamp, capture_time_ms);
size_t packet_size = packet->size();
// Packet should be stored in a send bucket.
EXPECT_CALL(
mock_paced_sender_,
EnqueuePackets(Contains(AllOf(
Pointee(Property(&RtpPacketToSend::Ssrc, kSsrc)),
Pointee(Property(&RtpPacketToSend::SequenceNumber, kSeqNum))))));
packet->set_packet_type(RtpPacketMediaType::kVideo);
packet->set_allow_retransmission(true);
EXPECT_TRUE(
rtp_sender()->SendToNetwork(std::make_unique<RtpPacketToSend>(*packet)));
// Immediately process send bucket and send packet.
rtp_sender_context_->InjectPacket(std::make_unique<RtpPacketToSend>(*packet),
PacedPacketInfo());
EXPECT_EQ(1, transport_.packets_sent());
// Retransmit packet.
const int kStoredTimeInMs = 100;
time_controller_.AdvanceTime(TimeDelta::Millis(kStoredTimeInMs));
EXPECT_CALL(mock_rtc_event_log_,
LogProxy(SameRtcEventTypeAs(RtcEvent::Type::RtpPacketOutgoing)));
packet->set_packet_type(RtpPacketMediaType::kRetransmission);
packet->set_retransmitted_sequence_number(kSeqNum);
EXPECT_CALL(
mock_paced_sender_,
EnqueuePackets(Contains(AllOf(
Pointee(Property(&RtpPacketToSend::Ssrc, kSsrc)),
Pointee(Property(&RtpPacketToSend::SequenceNumber, kSeqNum))))));
EXPECT_EQ(static_cast<int>(packet_size), rtp_sender()->ReSendPacket(kSeqNum));
EXPECT_EQ(1, transport_.packets_sent());
rtp_sender_context_->InjectPacket(std::move(packet), PacedPacketInfo());
// Process send bucket. Packet should now be sent.
EXPECT_EQ(2, transport_.packets_sent());
EXPECT_EQ(packet_size, transport_.last_sent_packet().size());
webrtc::RTPHeader rtp_header;
transport_.last_sent_packet().GetHeader(&rtp_header);
// Verify transmission time offset.
EXPECT_EQ(kStoredTimeInMs * 90, rtp_header.extension.transmissionTimeOffset);
uint64_t expected_send_time =
ConvertMsToAbsSendTime(clock_->TimeInMilliseconds());
EXPECT_EQ(expected_send_time, rtp_header.extension.absoluteSendTime);
}
// This test sends 1 regular video packet, then 4 padding packets, and then
// 1 more regular packet.
TEST_P(RtpSenderTest, SendPadding) {
// Make all (non-padding) packets go to send queue.
EXPECT_CALL(mock_rtc_event_log_,
LogProxy(SameRtcEventTypeAs(RtcEvent::Type::RtpPacketOutgoing)))
.Times(1 + 4 + 1);
uint16_t seq_num = kSeqNum;
uint32_t timestamp = kTimestamp;
rtp_sender_context_->packet_history_.SetStorePacketsStatus(
RtpPacketHistory::StorageMode::kStoreAndCull, 10);
size_t rtp_header_len = kRtpHeaderSize;
EXPECT_EQ(0, rtp_sender()->RegisterRtpHeaderExtension(
kRtpExtensionTransmissionTimeOffset,
kTransmissionTimeOffsetExtensionId));
rtp_header_len += 4; // 4 bytes extension.
EXPECT_EQ(0,
rtp_sender()->RegisterRtpHeaderExtension(
kRtpExtensionAbsoluteSendTime, kAbsoluteSendTimeExtensionId));
rtp_header_len += 4; // 4 bytes extension.
rtp_header_len += 4; // 4 extra bytes common to all extension headers.
webrtc::RTPHeader rtp_header;
int64_t capture_time_ms = clock_->TimeInMilliseconds();
auto packet =
BuildRtpPacket(kPayload, kMarkerBit, timestamp, capture_time_ms);
const uint32_t media_packet_timestamp = timestamp;
size_t packet_size = packet->size();
int total_packets_sent = 0;
const int kStoredTimeInMs = 100;
// Packet should be stored in a send bucket.
EXPECT_CALL(
mock_paced_sender_,
EnqueuePackets(Contains(AllOf(
Pointee(Property(&RtpPacketToSend::Ssrc, kSsrc)),
Pointee(Property(&RtpPacketToSend::SequenceNumber, kSeqNum))))));
packet->set_packet_type(RtpPacketMediaType::kVideo);
packet->set_allow_retransmission(true);
EXPECT_TRUE(
rtp_sender()->SendToNetwork(std::make_unique<RtpPacketToSend>(*packet)));
EXPECT_EQ(total_packets_sent, transport_.packets_sent());
time_controller_.AdvanceTime(TimeDelta::Millis(kStoredTimeInMs));
rtp_sender_context_->InjectPacket(std::move(packet), PacedPacketInfo());
++seq_num;
// Packet should now be sent. This test doesn't verify the regular video
// packet, since it is tested in another test.
EXPECT_EQ(++total_packets_sent, transport_.packets_sent());
timestamp += 90 * kStoredTimeInMs;
// Send padding 4 times, waiting 50 ms between each.
for (int i = 0; i < 4; ++i) {
const int kPaddingPeriodMs = 50;
const size_t kPaddingBytes = 100;
const size_t kMaxPaddingLength = 224; // Value taken from rtp_sender.cc.
// Padding will be forced to full packets.
EXPECT_EQ(kMaxPaddingLength, GenerateAndSendPadding(kPaddingBytes));
// Process send bucket. Padding should now be sent.
EXPECT_EQ(++total_packets_sent, transport_.packets_sent());
EXPECT_EQ(kMaxPaddingLength + rtp_header_len,
transport_.last_sent_packet().size());
transport_.last_sent_packet().GetHeader(&rtp_header);
EXPECT_EQ(kMaxPaddingLength, rtp_header.paddingLength);
// Verify sequence number and timestamp. The timestamp should be the same
// as the last media packet.
EXPECT_EQ(seq_num++, rtp_header.sequenceNumber);
EXPECT_EQ(media_packet_timestamp, rtp_header.timestamp);
// Verify transmission time offset.
int offset = timestamp - media_packet_timestamp;
EXPECT_EQ(offset, rtp_header.extension.transmissionTimeOffset);
uint64_t expected_send_time =
ConvertMsToAbsSendTime(clock_->TimeInMilliseconds());
EXPECT_EQ(expected_send_time, rtp_header.extension.absoluteSendTime);
time_controller_.AdvanceTime(TimeDelta::Millis(kPaddingPeriodMs));
timestamp += 90 * kPaddingPeriodMs;
}
// Send a regular video packet again.
capture_time_ms = clock_->TimeInMilliseconds();
packet = BuildRtpPacket(kPayload, kMarkerBit, timestamp, capture_time_ms);
packet_size = packet->size();
packet->set_packet_type(RtpPacketMediaType::kVideo);
packet->set_allow_retransmission(true);
EXPECT_CALL(
mock_paced_sender_,
EnqueuePackets(Contains(AllOf(
Pointee(Property(&RtpPacketToSend::Ssrc, kSsrc)),
Pointee(Property(&RtpPacketToSend::SequenceNumber, seq_num))))));
EXPECT_TRUE(
rtp_sender()->SendToNetwork(std::make_unique<RtpPacketToSend>(*packet)));
rtp_sender_context_->InjectPacket(std::move(packet), PacedPacketInfo());
// Process send bucket.
EXPECT_EQ(++total_packets_sent, transport_.packets_sent());
EXPECT_EQ(packet_size, transport_.last_sent_packet().size());
transport_.last_sent_packet().GetHeader(&rtp_header);
// Verify sequence number and timestamp.
EXPECT_EQ(seq_num, rtp_header.sequenceNumber);
EXPECT_EQ(timestamp, rtp_header.timestamp);
// Verify transmission time offset. This packet is sent without delay.
EXPECT_EQ(0, rtp_header.extension.transmissionTimeOffset);
uint64_t expected_send_time =
ConvertMsToAbsSendTime(clock_->TimeInMilliseconds());
EXPECT_EQ(expected_send_time, rtp_header.extension.absoluteSendTime);
}
TEST_P(RtpSenderTest, OnSendPacketUpdated) {
EXPECT_EQ(0, rtp_sender()->RegisterRtpHeaderExtension(
kRtpExtensionTransportSequenceNumber,
kTransportSequenceNumberExtensionId));
rtp_sender_context_->packet_history_.SetStorePacketsStatus(
RtpPacketHistory::StorageMode::kStoreAndCull, 10);
EXPECT_CALL(send_packet_observer_,
OnSendPacket(kTransportSequenceNumber, _, _))
.Times(1);
EXPECT_CALL(
mock_paced_sender_,
EnqueuePackets(Contains(AllOf(
Pointee(Property(&RtpPacketToSend::Ssrc, kSsrc)),
Pointee(Property(&RtpPacketToSend::SequenceNumber, kSeqNum))))));
auto packet = SendGenericPacket();
packet->set_packet_type(RtpPacketMediaType::kVideo);
packet->SetExtension<TransportSequenceNumber>(kTransportSequenceNumber);
rtp_sender_context_->InjectPacket(std::move(packet), PacedPacketInfo());
EXPECT_EQ(1, transport_.packets_sent());
}
TEST_P(RtpSenderTest, OnSendPacketNotUpdatedForRetransmits) {
EXPECT_EQ(0, rtp_sender()->RegisterRtpHeaderExtension(
kRtpExtensionTransportSequenceNumber,
kTransportSequenceNumberExtensionId));
rtp_sender_context_->packet_history_.SetStorePacketsStatus(
RtpPacketHistory::StorageMode::kStoreAndCull, 10);
EXPECT_CALL(send_packet_observer_, OnSendPacket(_, _, _)).Times(0);
EXPECT_CALL(
mock_paced_sender_,
EnqueuePackets(Contains(AllOf(
Pointee(Property(&RtpPacketToSend::Ssrc, kSsrc)),
Pointee(Property(&RtpPacketToSend::SequenceNumber, kSeqNum))))));
auto packet = SendGenericPacket();
packet->set_packet_type(RtpPacketMediaType::kRetransmission);
packet->SetExtension<TransportSequenceNumber>(kTransportSequenceNumber);
rtp_sender_context_->InjectPacket(std::move(packet), PacedPacketInfo());
EXPECT_EQ(1, transport_.packets_sent());
EXPECT_TRUE(transport_.last_options_.is_retransmit);
}
TEST_P(RtpSenderTestWithoutPacer, SendGenericVideo) {
const uint8_t kPayloadType = 127;
const VideoCodecType kCodecType = VideoCodecType::kVideoCodecGeneric;
FieldTrialBasedConfig field_trials;
RTPSenderVideo::Config video_config;
video_config.clock = clock_;
video_config.rtp_sender = rtp_sender();
video_config.field_trials = &field_trials;
RTPSenderVideo rtp_sender_video(video_config);
uint8_t payload[] = {47, 11, 32, 93, 89};
// Send keyframe
RTPVideoHeader video_header;
video_header.frame_type = VideoFrameType::kVideoFrameKey;
ASSERT_TRUE(rtp_sender_video.SendVideo(kPayloadType, kCodecType, 1234, 4321,
payload, video_header,
kDefaultExpectedRetransmissionTimeMs));
auto sent_payload = transport_.last_sent_packet().payload();
uint8_t generic_header = sent_payload[0];
EXPECT_TRUE(generic_header & RtpFormatVideoGeneric::kKeyFrameBit);
EXPECT_TRUE(generic_header & RtpFormatVideoGeneric::kFirstPacketBit);
EXPECT_THAT(sent_payload.subview(1), ElementsAreArray(payload));
// Send delta frame
payload[0] = 13;
payload[1] = 42;
payload[4] = 13;
video_header.frame_type = VideoFrameType::kVideoFrameDelta;
ASSERT_TRUE(rtp_sender_video.SendVideo(kPayloadType, kCodecType, 1234, 4321,
payload, video_header,
kDefaultExpectedRetransmissionTimeMs));
sent_payload = transport_.last_sent_packet().payload();
generic_header = sent_payload[0];
EXPECT_FALSE(generic_header & RtpFormatVideoGeneric::kKeyFrameBit);
EXPECT_TRUE(generic_header & RtpFormatVideoGeneric::kFirstPacketBit);
EXPECT_THAT(sent_payload.subview(1), ElementsAreArray(payload));
}
TEST_P(RtpSenderTestWithoutPacer, SendRawVideo) {
const uint8_t kPayloadType = 111;
const uint8_t payload[] = {11, 22, 33, 44, 55};
FieldTrialBasedConfig field_trials;
RTPSenderVideo::Config video_config;
video_config.clock = clock_;
video_config.rtp_sender = rtp_sender();
video_config.field_trials = &field_trials;
RTPSenderVideo rtp_sender_video(video_config);
// Send a frame.
RTPVideoHeader video_header;
video_header.frame_type = VideoFrameType::kVideoFrameKey;
ASSERT_TRUE(rtp_sender_video.SendVideo(kPayloadType, absl::nullopt, 1234,
4321, payload, video_header,
kDefaultExpectedRetransmissionTimeMs));
auto sent_payload = transport_.last_sent_packet().payload();
EXPECT_THAT(sent_payload, ElementsAreArray(payload));
}
TEST_P(RtpSenderTest, SendFlexfecPackets) {
constexpr uint32_t kTimestamp = 1234;
constexpr int kMediaPayloadType = 127;
constexpr VideoCodecType kCodecType = VideoCodecType::kVideoCodecGeneric;
constexpr int kFlexfecPayloadType = 118;
const std::vector<RtpExtension> kNoRtpExtensions;
const std::vector<RtpExtensionSize> kNoRtpExtensionSizes;
FlexfecSender flexfec_sender(kFlexfecPayloadType, kFlexFecSsrc, kSsrc, kNoMid,
kNoRtpExtensions, kNoRtpExtensionSizes,
nullptr /* rtp_state */, clock_);
// Reset |rtp_sender_| to use FlexFEC.
RtpRtcpInterface::Configuration config;
config.clock = clock_;
config.outgoing_transport = &transport_;
config.paced_sender = &mock_paced_sender_;
config.local_media_ssrc = kSsrc;
config.fec_generator = &flexfec_sender_;
config.event_log = &mock_rtc_event_log_;
config.send_packet_observer = &send_packet_observer_;
config.retransmission_rate_limiter = &retransmission_rate_limiter_;
config.field_trials = &field_trials_;
rtp_sender_context_ =
std::make_unique<RtpSenderContext>(config, &time_controller_);
rtp_sender()->SetSequenceNumber(kSeqNum);
rtp_sender_context_->packet_history_.SetStorePacketsStatus(
RtpPacketHistory::StorageMode::kStoreAndCull, 10);
FieldTrialBasedConfig field_trials;
RTPSenderVideo::Config video_config;
video_config.clock = clock_;
video_config.rtp_sender = rtp_sender();
video_config.fec_type = flexfec_sender.GetFecType();
video_config.fec_overhead_bytes = flexfec_sender.MaxPacketOverhead();
video_config.fec_type = flexfec_sender.GetFecType();
video_config.fec_overhead_bytes = flexfec_sender.MaxPacketOverhead();
video_config.field_trials = &field_trials;
RTPSenderVideo rtp_sender_video(video_config);
// Parameters selected to generate a single FEC packet per media packet.
FecProtectionParams params;
params.fec_rate = 15;
params.max_fec_frames = 1;
params.fec_mask_type = kFecMaskRandom;
flexfec_sender.SetProtectionParameters(params, params);
uint16_t flexfec_seq_num;
RTPVideoHeader video_header;
std::unique_ptr<RtpPacketToSend> media_packet;
std::unique_ptr<RtpPacketToSend> fec_packet;
EXPECT_CALL(mock_paced_sender_, EnqueuePackets)
.WillOnce([&](std::vector<std::unique_ptr<RtpPacketToSend>> packets) {
for (auto& packet : packets) {
if (packet->packet_type() == RtpPacketMediaType::kVideo) {
EXPECT_EQ(packet->Ssrc(), kSsrc);
EXPECT_EQ(packet->SequenceNumber(), kSeqNum);
media_packet = std::move(packet);
// Simulate RtpSenderEgress adding packet to fec generator.
flexfec_sender.AddPacketAndGenerateFec(*media_packet);
auto fec_packets = flexfec_sender.GetFecPackets();
EXPECT_EQ(fec_packets.size(), 1u);
fec_packet = std::move(fec_packets[0]);
EXPECT_EQ(fec_packet->packet_type(),
RtpPacketMediaType::kForwardErrorCorrection);
EXPECT_EQ(fec_packet->Ssrc(), kFlexFecSsrc);
} else {
EXPECT_EQ(packet->packet_type(),
RtpPacketMediaType::kForwardErrorCorrection);
fec_packet = std::move(packet);
EXPECT_EQ(fec_packet->Ssrc(), kFlexFecSsrc);
}
}
});
video_header.frame_type = VideoFrameType::kVideoFrameKey;
EXPECT_TRUE(rtp_sender_video.SendVideo(
kMediaPayloadType, kCodecType, kTimestamp, clock_->TimeInMilliseconds(),
kPayloadData, video_header, kDefaultExpectedRetransmissionTimeMs));
ASSERT_TRUE(media_packet != nullptr);
ASSERT_TRUE(fec_packet != nullptr);
flexfec_seq_num = fec_packet->SequenceNumber();
rtp_sender_context_->InjectPacket(std::move(media_packet), PacedPacketInfo());
rtp_sender_context_->InjectPacket(std::move(fec_packet), PacedPacketInfo());
ASSERT_EQ(2, transport_.packets_sent());
const RtpPacketReceived& sent_media_packet = transport_.sent_packets_[0];
EXPECT_EQ(kMediaPayloadType, sent_media_packet.PayloadType());
EXPECT_EQ(kSeqNum, sent_media_packet.SequenceNumber());
EXPECT_EQ(kSsrc, sent_media_packet.Ssrc());
const RtpPacketReceived& sent_flexfec_packet = transport_.sent_packets_[1];
EXPECT_EQ(kFlexfecPayloadType, sent_flexfec_packet.PayloadType());
EXPECT_EQ(flexfec_seq_num, sent_flexfec_packet.SequenceNumber());
EXPECT_EQ(kFlexFecSsrc, sent_flexfec_packet.Ssrc());
}
TEST_P(RtpSenderTestWithoutPacer, SendFlexfecPackets) {
constexpr uint32_t kTimestamp = 1234;
constexpr int kMediaPayloadType = 127;
constexpr VideoCodecType kCodecType = VideoCodecType::kVideoCodecGeneric;
constexpr int kFlexfecPayloadType = 118;
const std::vector<RtpExtension> kNoRtpExtensions;
const std::vector<RtpExtensionSize> kNoRtpExtensionSizes;
FlexfecSender flexfec_sender(kFlexfecPayloadType, kFlexFecSsrc, kSsrc, kNoMid,
kNoRtpExtensions, kNoRtpExtensionSizes,
nullptr /* rtp_state */, clock_);
// Reset |rtp_sender_| to use FlexFEC.
RtpRtcpInterface::Configuration config;
config.clock = clock_;
config.outgoing_transport = &transport_;
config.local_media_ssrc = kSsrc;
config.fec_generator = &flexfec_sender;
config.event_log = &mock_rtc_event_log_;
config.send_packet_observer = &send_packet_observer_;
config.retransmission_rate_limiter = &retransmission_rate_limiter_;
config.field_trials = &field_trials_;
rtp_sender_context_ =
std::make_unique<RtpSenderContext>(config, &time_controller_);
rtp_sender()->SetSequenceNumber(kSeqNum);
FieldTrialBasedConfig field_trials;
RTPSenderVideo::Config video_config;
video_config.clock = clock_;
video_config.rtp_sender = rtp_sender();
video_config.fec_type = flexfec_sender.GetFecType();
video_config.fec_overhead_bytes = flexfec_sender_.MaxPacketOverhead();
video_config.field_trials = &field_trials;
RTPSenderVideo rtp_sender_video(video_config);
// Parameters selected to generate a single FEC packet per media packet.
FecProtectionParams params;
params.fec_rate = 15;
params.max_fec_frames = 1;
params.fec_mask_type = kFecMaskRandom;
rtp_egress()->SetFecProtectionParameters(params, params);
EXPECT_CALL(mock_rtc_event_log_,
LogProxy(SameRtcEventTypeAs(RtcEvent::Type::RtpPacketOutgoing)))
.Times(2);
RTPVideoHeader video_header;
video_header.frame_type = VideoFrameType::kVideoFrameKey;
EXPECT_TRUE(rtp_sender_video.SendVideo(
kMediaPayloadType, kCodecType, kTimestamp, clock_->TimeInMilliseconds(),
kPayloadData, video_header, kDefaultExpectedRetransmissionTimeMs));
ASSERT_EQ(2, transport_.packets_sent());
const RtpPacketReceived& media_packet = transport_.sent_packets_[0];
EXPECT_EQ(kMediaPayloadType, media_packet.PayloadType());
EXPECT_EQ(kSsrc, media_packet.Ssrc());
const RtpPacketReceived& flexfec_packet = transport_.sent_packets_[1];
EXPECT_EQ(kFlexfecPayloadType, flexfec_packet.PayloadType());
EXPECT_EQ(kFlexFecSsrc, flexfec_packet.Ssrc());
}
// Test that the MID header extension is included on sent packets when
// configured.
TEST_P(RtpSenderTestWithoutPacer, MidIncludedOnSentPackets) {
const char kMid[] = "mid";
EnableMidSending(kMid);
// Send a couple packets.
SendGenericPacket();
SendGenericPacket();
// Expect both packets to have the MID set.
ASSERT_EQ(2u, transport_.sent_packets_.size());
for (const RtpPacketReceived& packet : transport_.sent_packets_) {
std::string mid;
ASSERT_TRUE(packet.GetExtension<RtpMid>(&mid));
EXPECT_EQ(kMid, mid);
}
}
TEST_P(RtpSenderTestWithoutPacer, RidIncludedOnSentPackets) {
const char kRid[] = "f";
EnableRidSending(kRid);
SendGenericPacket();
ASSERT_EQ(1u, transport_.sent_packets_.size());
const RtpPacketReceived& packet = transport_.sent_packets_[0];
std::string rid;
ASSERT_TRUE(packet.GetExtension<RtpStreamId>(&rid));
EXPECT_EQ(kRid, rid);
}
TEST_P(RtpSenderTestWithoutPacer, RidIncludedOnRtxSentPackets) {
const char kRid[] = "f";
EnableRtx();
EnableRidSending(kRid);
SendGenericPacket();
ASSERT_EQ(1u, transport_.sent_packets_.size());
const RtpPacketReceived& packet = transport_.sent_packets_[0];
std::string rid;
ASSERT_TRUE(packet.GetExtension<RtpStreamId>(&rid));
EXPECT_EQ(kRid, rid);
rid = kNoRid;
EXPECT_FALSE(packet.HasExtension<RepairedRtpStreamId>());
uint16_t packet_id = packet.SequenceNumber();
rtp_sender()->ReSendPacket(packet_id);
ASSERT_EQ(2u, transport_.sent_packets_.size());
const RtpPacketReceived& rtx_packet = transport_.sent_packets_[1];
ASSERT_TRUE(rtx_packet.GetExtension<RepairedRtpStreamId>(&rid));
EXPECT_EQ(kRid, rid);
EXPECT_FALSE(rtx_packet.HasExtension<RtpStreamId>());
}
TEST_P(RtpSenderTestWithoutPacer, MidAndRidNotIncludedOnSentPacketsAfterAck) {
const char kMid[] = "mid";
const char kRid[] = "f";
EnableMidSending(kMid);
EnableRidSending(kRid);
// This first packet should include both MID and RID.
auto first_built_packet = SendGenericPacket();
rtp_sender()->OnReceivedAckOnSsrc(first_built_packet->SequenceNumber());
// The second packet should include neither since an ack was received.
SendGenericPacket();
ASSERT_EQ(2u, transport_.sent_packets_.size());
const RtpPacketReceived& first_packet = transport_.sent_packets_[0];
std::string mid, rid;
ASSERT_TRUE(first_packet.GetExtension<RtpMid>(&mid));
EXPECT_EQ(kMid, mid);
ASSERT_TRUE(first_packet.GetExtension<RtpStreamId>(&rid));
EXPECT_EQ(kRid, rid);
const RtpPacketReceived& second_packet = transport_.sent_packets_[1];
EXPECT_FALSE(second_packet.HasExtension<RtpMid>());
EXPECT_FALSE(second_packet.HasExtension<RtpStreamId>());
}
TEST_P(RtpSenderTestWithoutPacer,
MidAndRidAlwaysIncludedOnSentPacketsWhenConfigured) {
SetUpRtpSender(false, false, /*always_send_mid_and_rid=*/true);
const char kMid[] = "mid";
const char kRid[] = "f";
EnableMidSending(kMid);
EnableRidSending(kRid);
// Send two media packets: one before and one after the ack.
auto first_packet = SendGenericPacket();
rtp_sender()->OnReceivedAckOnSsrc(first_packet->SequenceNumber());
SendGenericPacket();
// Due to the configuration, both sent packets should contain MID and RID.
ASSERT_EQ(2u, transport_.sent_packets_.size());
for (const RtpPacketReceived& packet : transport_.sent_packets_) {
EXPECT_EQ(packet.GetExtension<RtpMid>(), kMid);
EXPECT_EQ(packet.GetExtension<RtpStreamId>(), kRid);
}
}
// Test that the first RTX packet includes both MID and RRID even if the packet
// being retransmitted did not have MID or RID. The MID and RID are needed on
// the first packets for a given SSRC, and RTX packets are sent on a separate
// SSRC.
TEST_P(RtpSenderTestWithoutPacer, MidAndRidIncludedOnFirstRtxPacket) {
const char kMid[] = "mid";
const char kRid[] = "f";
EnableRtx();
EnableMidSending(kMid);
EnableRidSending(kRid);
// This first packet will include both MID and RID.
auto first_built_packet = SendGenericPacket();
rtp_sender()->OnReceivedAckOnSsrc(first_built_packet->SequenceNumber());
// The second packet will include neither since an ack was received.
auto second_built_packet = SendGenericPacket();
// The first RTX packet should include MID and RRID.
ASSERT_LT(0,
rtp_sender()->ReSendPacket(second_built_packet->SequenceNumber()));
ASSERT_EQ(3u, transport_.sent_packets_.size());
const RtpPacketReceived& rtx_packet = transport_.sent_packets_[2];
std::string mid, rrid;
ASSERT_TRUE(rtx_packet.GetExtension<RtpMid>(&mid));
EXPECT_EQ(kMid, mid);
ASSERT_TRUE(rtx_packet.GetExtension<RepairedRtpStreamId>(&rrid));
EXPECT_EQ(kRid, rrid);
}
// Test that the RTX packets sent after receving an ACK on the RTX SSRC does
// not include either MID or RRID even if the packet being retransmitted did
// had a MID or RID.
TEST_P(RtpSenderTestWithoutPacer, MidAndRidNotIncludedOnRtxPacketsAfterAck) {
const char kMid[] = "mid";
const char kRid[] = "f";
EnableRtx();
EnableMidSending(kMid);
EnableRidSending(kRid);
// This first packet will include both MID and RID.
auto first_built_packet = SendGenericPacket();
rtp_sender()->OnReceivedAckOnSsrc(first_built_packet->SequenceNumber());
// The second packet will include neither since an ack was received.
auto second_built_packet = SendGenericPacket();
// The first RTX packet will include MID and RRID.
ASSERT_LT(0,
rtp_sender()->ReSendPacket(second_built_packet->SequenceNumber()));
ASSERT_EQ(3u, transport_.sent_packets_.size());
const RtpPacketReceived& first_rtx_packet = transport_.sent_packets_[2];
rtp_sender()->OnReceivedAckOnRtxSsrc(first_rtx_packet.SequenceNumber());
// The second and third RTX packets should not include MID nor RRID.
ASSERT_LT(0,
rtp_sender()->ReSendPacket(first_built_packet->SequenceNumber()));
ASSERT_LT(0,
rtp_sender()->ReSendPacket(second_built_packet->SequenceNumber()));
ASSERT_EQ(5u, transport_.sent_packets_.size());
const RtpPacketReceived& second_rtx_packet = transport_.sent_packets_[3];
EXPECT_FALSE(second_rtx_packet.HasExtension<RtpMid>());
EXPECT_FALSE(second_rtx_packet.HasExtension<RepairedRtpStreamId>());
const RtpPacketReceived& third_rtx_packet = transport_.sent_packets_[4];
EXPECT_FALSE(third_rtx_packet.HasExtension<RtpMid>());
EXPECT_FALSE(third_rtx_packet.HasExtension<RepairedRtpStreamId>());
}
TEST_P(RtpSenderTestWithoutPacer,
MidAndRidAlwaysIncludedOnRtxPacketsWhenConfigured) {
SetUpRtpSender(false, false, /*always_send_mid_and_rid=*/true);
const char kMid[] = "mid";
const char kRid[] = "f";
EnableRtx();
EnableMidSending(kMid);
EnableRidSending(kRid);
// Send two media packets: one before and one after the ack.
auto media_packet1 = SendGenericPacket();
rtp_sender()->OnReceivedAckOnSsrc(media_packet1->SequenceNumber());
auto media_packet2 = SendGenericPacket();
// Send three RTX packets with different combinations of orders w.r.t. the
// media and RTX acks.
ASSERT_LT(0, rtp_sender()->ReSendPacket(media_packet2->SequenceNumber()));
ASSERT_EQ(3u, transport_.sent_packets_.size());
rtp_sender()->OnReceivedAckOnRtxSsrc(
transport_.sent_packets_[2].SequenceNumber());
ASSERT_LT(0, rtp_sender()->ReSendPacket(media_packet1->SequenceNumber()));
ASSERT_LT(0, rtp_sender()->ReSendPacket(media_packet2->SequenceNumber()));
// Due to the configuration, all sent packets should contain MID
// and either RID (media) or RRID (RTX).
ASSERT_EQ(5u, transport_.sent_packets_.size());
for (const auto& packet : transport_.sent_packets_) {
EXPECT_EQ(packet.GetExtension<RtpMid>(), kMid);
}
for (size_t i = 0; i < 2; ++i) {
const RtpPacketReceived& packet = transport_.sent_packets_[i];
EXPECT_EQ(packet.GetExtension<RtpStreamId>(), kRid);
}
for (size_t i = 2; i < transport_.sent_packets_.size(); ++i) {
const RtpPacketReceived& packet = transport_.sent_packets_[i];
EXPECT_EQ(packet.GetExtension<RepairedRtpStreamId>(), kRid);
}
}
// Test that if the RtpState indicates an ACK has been received on that SSRC
// then neither the MID nor RID header extensions will be sent.
TEST_P(RtpSenderTestWithoutPacer,
MidAndRidNotIncludedOnSentPacketsAfterRtpStateRestored) {
const char kMid[] = "mid";
const char kRid[] = "f";
EnableMidSending(kMid);
EnableRidSending(kRid);
RtpState state = rtp_sender()->GetRtpState();
EXPECT_FALSE(state.ssrc_has_acked);
state.ssrc_has_acked = true;
rtp_sender()->SetRtpState(state);
SendGenericPacket();
ASSERT_EQ(1u, transport_.sent_packets_.size());
const RtpPacketReceived& packet = transport_.sent_packets_[0];
EXPECT_FALSE(packet.HasExtension<RtpMid>());
EXPECT_FALSE(packet.HasExtension<RtpStreamId>());
}
// Test that if the RTX RtpState indicates an ACK has been received on that
// RTX SSRC then neither the MID nor RRID header extensions will be sent on
// RTX packets.
TEST_P(RtpSenderTestWithoutPacer,
MidAndRridNotIncludedOnRtxPacketsAfterRtpStateRestored) {
const char kMid[] = "mid";
const char kRid[] = "f";
EnableRtx();
EnableMidSending(kMid);
EnableRidSending(kRid);
RtpState rtx_state = rtp_sender()->GetRtxRtpState();
EXPECT_FALSE(rtx_state.ssrc_has_acked);
rtx_state.ssrc_has_acked = true;
rtp_sender()->SetRtxRtpState(rtx_state);
auto built_packet = SendGenericPacket();
ASSERT_LT(0, rtp_sender()->ReSendPacket(built_packet->SequenceNumber()));
ASSERT_EQ(2u, transport_.sent_packets_.size());
const RtpPacketReceived& rtx_packet = transport_.sent_packets_[1];
EXPECT_FALSE(rtx_packet.HasExtension<RtpMid>());
EXPECT_FALSE(rtx_packet.HasExtension<RepairedRtpStreamId>());
}
TEST_P(RtpSenderTest, FecOverheadRate) {
constexpr uint32_t kTimestamp = 1234;
constexpr int kMediaPayloadType = 127;
constexpr VideoCodecType kCodecType = VideoCodecType::kVideoCodecGeneric;
constexpr int kFlexfecPayloadType = 118;
const std::vector<RtpExtension> kNoRtpExtensions;
const std::vector<RtpExtensionSize> kNoRtpExtensionSizes;
FlexfecSender flexfec_sender(kFlexfecPayloadType, kFlexFecSsrc, kSsrc, kNoMid,
kNoRtpExtensions, kNoRtpExtensionSizes,
nullptr /* rtp_state */, clock_);
// Reset |rtp_sender_| to use this FlexFEC instance.
SetUpRtpSender(false, false, false, &flexfec_sender);
FieldTrialBasedConfig field_trials;
RTPSenderVideo::Config video_config;
video_config.clock = clock_;
video_config.rtp_sender = rtp_sender();
video_config.fec_type = flexfec_sender.GetFecType();
video_config.fec_overhead_bytes = flexfec_sender.MaxPacketOverhead();
video_config.field_trials = &field_trials;
RTPSenderVideo rtp_sender_video(video_config);
// Parameters selected to generate a single FEC packet per media packet.
FecProtectionParams params;
params.fec_rate = 15;
params.max_fec_frames = 1;
params.fec_mask_type = kFecMaskRandom;
rtp_egress()->SetFecProtectionParameters(params, params);
constexpr size_t kNumMediaPackets = 10;
constexpr size_t kNumFecPackets = kNumMediaPackets;
constexpr int64_t kTimeBetweenPacketsMs = 10;
for (size_t i = 0; i < kNumMediaPackets; ++i) {
RTPVideoHeader video_header;
video_header.frame_type = VideoFrameType::kVideoFrameKey;
EXPECT_TRUE(rtp_sender_video.SendVideo(
kMediaPayloadType, kCodecType, kTimestamp, clock_->TimeInMilliseconds(),
kPayloadData, video_header, kDefaultExpectedRetransmissionTimeMs));
time_controller_.AdvanceTime(TimeDelta::Millis(kTimeBetweenPacketsMs));
}
constexpr size_t kRtpHeaderLength = 12;
constexpr size_t kFlexfecHeaderLength = 20;
constexpr size_t kGenericCodecHeaderLength = 1;
constexpr size_t kPayloadLength = sizeof(kPayloadData);
constexpr size_t kPacketLength = kRtpHeaderLength + kFlexfecHeaderLength +
kGenericCodecHeaderLength + kPayloadLength;
EXPECT_NEAR(
kNumFecPackets * kPacketLength * 8 /
(kNumFecPackets * kTimeBetweenPacketsMs / 1000.0f),
rtp_egress()
->GetSendRates()[RtpPacketMediaType::kForwardErrorCorrection]
.bps<double>(),
500);
}
TEST_P(RtpSenderTest, BitrateCallbacks) {
class TestCallback : public BitrateStatisticsObserver {
public:
TestCallback()
: BitrateStatisticsObserver(),
num_calls_(0),
ssrc_(0),
total_bitrate_(0),
retransmit_bitrate_(0) {}
~TestCallback() override = default;
void Notify(uint32_t total_bitrate,
uint32_t retransmit_bitrate,
uint32_t ssrc) override {
++num_calls_;
ssrc_ = ssrc;
total_bitrate_ = total_bitrate;
retransmit_bitrate_ = retransmit_bitrate;
}
uint32_t num_calls_;
uint32_t ssrc_;
uint32_t total_bitrate_;
uint32_t retransmit_bitrate_;
} callback;
RtpRtcpInterface::Configuration config;
config.clock = clock_;
config.outgoing_transport = &transport_;
config.local_media_ssrc = kSsrc;
config.send_bitrate_observer = &callback;
config.retransmission_rate_limiter = &retransmission_rate_limiter_;
rtp_sender_context_ =
std::make_unique<RtpSenderContext>(config, &time_controller_);
FieldTrialBasedConfig field_trials;
RTPSenderVideo::Config video_config;
video_config.clock = clock_;
video_config.rtp_sender = rtp_sender();
video_config.field_trials = &field_trials;
RTPSenderVideo rtp_sender_video(video_config);
const VideoCodecType kCodecType = VideoCodecType::kVideoCodecGeneric;
const uint8_t kPayloadType = 127;
// Simulate kNumPackets sent with kPacketInterval ms intervals, with the
// number of packets selected so that we fill (but don't overflow) the one
// second averaging window.
const uint32_t kWindowSizeMs = 1000;
const uint32_t kPacketInterval = 20;
const uint32_t kNumPackets =
(kWindowSizeMs - kPacketInterval) / kPacketInterval;
// Overhead = 12 bytes RTP header + 1 byte generic header.
const uint32_t kPacketOverhead = 13;
uint8_t payload[] = {47, 11, 32, 93, 89};
rtp_sender_context_->packet_history_.SetStorePacketsStatus(
RtpPacketHistory::StorageMode::kStoreAndCull, 1);
uint32_t ssrc = rtp_sender()->SSRC();
// Send a few frames.
RTPVideoHeader video_header;
for (uint32_t i = 0; i < kNumPackets; ++i) {
video_header.frame_type = VideoFrameType::kVideoFrameKey;
ASSERT_TRUE(rtp_sender_video.SendVideo(
kPayloadType, kCodecType, 1234, 4321, payload, video_header,
kDefaultExpectedRetransmissionTimeMs));
time_controller_.AdvanceTime(TimeDelta::Millis(kPacketInterval));
}
// We get one call for every stats updated, thus two calls since both the
// stream stats and the retransmit stats are updated once.
EXPECT_EQ(kNumPackets, callback.num_calls_);
EXPECT_EQ(ssrc, callback.ssrc_);
const uint32_t kTotalPacketSize = kPacketOverhead + sizeof(payload);
// Bitrate measured over delta between last and first timestamp, plus one.
const uint32_t kExpectedWindowMs = (kNumPackets - 1) * kPacketInterval + 1;
const uint32_t kExpectedBitsAccumulated = kTotalPacketSize * kNumPackets * 8;
const uint32_t kExpectedRateBps =
(kExpectedBitsAccumulated * 1000 + (kExpectedWindowMs / 2)) /
kExpectedWindowMs;
EXPECT_EQ(kExpectedRateBps, callback.total_bitrate_);
}
TEST_P(RtpSenderTestWithoutPacer, StreamDataCountersCallbacks) {
const uint8_t kPayloadType = 127;
const VideoCodecType kCodecType = VideoCodecType::kVideoCodecGeneric;
FieldTrialBasedConfig field_trials;
RTPSenderVideo::Config video_config;
video_config.clock = clock_;
video_config.rtp_sender = rtp_sender();
video_config.field_trials = &field_trials;
RTPSenderVideo rtp_sender_video(video_config);
uint8_t payload[] = {47, 11, 32, 93, 89};
rtp_sender_context_->packet_history_.SetStorePacketsStatus(
RtpPacketHistory::StorageMode::kStoreAndCull, 1);
uint32_t ssrc = rtp_sender()->SSRC();
// Send a frame.
RTPVideoHeader video_header;
video_header.frame_type = VideoFrameType::kVideoFrameKey;
ASSERT_TRUE(rtp_sender_video.SendVideo(kPayloadType, kCodecType, 1234, 4321,
payload, video_header,
kDefaultExpectedRetransmissionTimeMs));
StreamDataCounters expected;
expected.transmitted.payload_bytes = 6;
expected.transmitted.header_bytes = 12;
expected.transmitted.padding_bytes = 0;
expected.transmitted.packets = 1;
expected.retransmitted.payload_bytes = 0;
expected.retransmitted.header_bytes = 0;
expected.retransmitted.padding_bytes = 0;
expected.retransmitted.packets = 0;
expected.fec.packets = 0;
rtp_stats_callback_.Matches(ssrc, expected);
// Retransmit a frame.
uint16_t seqno = rtp_sender()->SequenceNumber() - 1;
rtp_sender()->ReSendPacket(seqno);
expected.transmitted.payload_bytes = 12;
expected.transmitted.header_bytes = 24;
expected.transmitted.packets = 2;
expected.retransmitted.payload_bytes = 6;
expected.retransmitted.header_bytes = 12;
expected.retransmitted.padding_bytes = 0;
expected.retransmitted.packets = 1;
rtp_stats_callback_.Matches(ssrc, expected);
// Send padding.
GenerateAndSendPadding(kMaxPaddingSize);
expected.transmitted.payload_bytes = 12;
expected.transmitted.header_bytes = 36;
expected.transmitted.padding_bytes = kMaxPaddingSize;
expected.transmitted.packets = 3;
rtp_stats_callback_.Matches(ssrc, expected);
}
TEST_P(RtpSenderTestWithoutPacer, StreamDataCountersCallbacksUlpfec) {
const uint8_t kRedPayloadType = 96;
const uint8_t kUlpfecPayloadType = 97;
const uint8_t kPayloadType = 127;
const VideoCodecType kCodecType = VideoCodecType::kVideoCodecGeneric;
UlpfecGenerator ulpfec_generator(kRedPayloadType, kUlpfecPayloadType, clock_);
SetUpRtpSender(false, false, false, &ulpfec_generator);
RTPSenderVideo::Config video_config;
video_config.clock = clock_;
video_config.rtp_sender = rtp_sender();
video_config.field_trials = &field_trials_;
video_config.red_payload_type = kRedPayloadType;
video_config.fec_type = ulpfec_generator.GetFecType();
video_config.fec_overhead_bytes = ulpfec_generator.MaxPacketOverhead();
RTPSenderVideo rtp_sender_video(video_config);
uint8_t payload[] = {47, 11, 32, 93, 89};
rtp_sender_context_->packet_history_.SetStorePacketsStatus(
RtpPacketHistory::StorageMode::kStoreAndCull, 1);
uint32_t ssrc = rtp_sender()->SSRC();
RTPVideoHeader video_header;
StreamDataCounters expected;
// Send ULPFEC.
FecProtectionParams fec_params;
fec_params.fec_mask_type = kFecMaskRandom;
fec_params.fec_rate = 1;
fec_params.max_fec_frames = 1;
rtp_egress()->SetFecProtectionParameters(fec_params, fec_params);
video_header.frame_type = VideoFrameType::kVideoFrameDelta;
ASSERT_TRUE(rtp_sender_video.SendVideo(kPayloadType, kCodecType, 1234, 4321,
payload, video_header,
kDefaultExpectedRetransmissionTimeMs));
expected.transmitted.payload_bytes = 28;
expected.transmitted.header_bytes = 24;
expected.transmitted.packets = 2;
expected.fec.packets = 1;
rtp_stats_callback_.Matches(ssrc, expected);
}
TEST_P(RtpSenderTestWithoutPacer, BytesReportedCorrectly) {
// XXX const char* kPayloadName = "GENERIC";
const uint8_t kPayloadType = 127;
rtp_sender()->SetRtxPayloadType(kPayloadType - 1, kPayloadType);
rtp_sender()->SetRtxStatus(kRtxRetransmitted | kRtxRedundantPayloads);
SendGenericPacket();
// Will send 2 full-size padding packets.
GenerateAndSendPadding(1);
GenerateAndSendPadding(1);
StreamDataCounters rtp_stats;
StreamDataCounters rtx_stats;
rtp_egress()->GetDataCounters(&rtp_stats, &rtx_stats);
// Payload
EXPECT_GT(rtp_stats.first_packet_time_ms, -1);
EXPECT_EQ(rtp_stats.transmitted.payload_bytes, sizeof(kPayloadData));
EXPECT_EQ(rtp_stats.transmitted.header_bytes, 12u);
EXPECT_EQ(rtp_stats.transmitted.padding_bytes, 0u);
EXPECT_EQ(rtx_stats.transmitted.payload_bytes, 0u);
EXPECT_EQ(rtx_stats.transmitted.header_bytes, 24u);
EXPECT_EQ(rtx_stats.transmitted.padding_bytes, 2 * kMaxPaddingSize);
EXPECT_EQ(rtp_stats.transmitted.TotalBytes(),
rtp_stats.transmitted.payload_bytes +
rtp_stats.transmitted.header_bytes +
rtp_stats.transmitted.padding_bytes);
EXPECT_EQ(rtx_stats.transmitted.TotalBytes(),
rtx_stats.transmitted.payload_bytes +
rtx_stats.transmitted.header_bytes +
rtx_stats.transmitted.padding_bytes);
EXPECT_EQ(
transport_.total_bytes_sent_,
rtp_stats.transmitted.TotalBytes() + rtx_stats.transmitted.TotalBytes());
}
TEST_P(RtpSenderTestWithoutPacer, RespectsNackBitrateLimit) {
const int32_t kPacketSize = 1400;
const int32_t kNumPackets = 30;
retransmission_rate_limiter_.SetMaxRate(kPacketSize * kNumPackets * 8);
rtp_sender_context_->packet_history_.SetStorePacketsStatus(
RtpPacketHistory::StorageMode::kStoreAndCull, kNumPackets);
const uint16_t kStartSequenceNumber = rtp_sender()->SequenceNumber();
std::vector<uint16_t> sequence_numbers;
for (int32_t i = 0; i < kNumPackets; ++i) {
sequence_numbers.push_back(kStartSequenceNumber + i);
time_controller_.AdvanceTime(TimeDelta::Millis(1));
SendPacket(clock_->TimeInMilliseconds(), kPacketSize);
}
EXPECT_EQ(kNumPackets, transport_.packets_sent());
time_controller_.AdvanceTime(TimeDelta::Millis(1000 - kNumPackets));
// Resending should work - brings the bandwidth up to the limit.
// NACK bitrate is capped to the same bitrate as the encoder, since the max
// protection overhead is 50% (see MediaOptimization::SetTargetRates).
rtp_sender()->OnReceivedNack(sequence_numbers, 0);
EXPECT_EQ(kNumPackets * 2, transport_.packets_sent());
// Must be at least 5ms in between retransmission attempts.
time_controller_.AdvanceTime(TimeDelta::Millis(5));
// Resending should not work, bandwidth exceeded.
rtp_sender()->OnReceivedNack(sequence_numbers, 0);
EXPECT_EQ(kNumPackets * 2, transport_.packets_sent());
}
TEST_P(RtpSenderTest, UpdatingCsrcsUpdatedOverhead) {
RtpRtcpInterface::Configuration config;
config.clock = clock_;
config.outgoing_transport = &transport_;
config.local_media_ssrc = kSsrc;
config.retransmission_rate_limiter = &retransmission_rate_limiter_;
rtp_sender_context_ =
std::make_unique<RtpSenderContext>(config, &time_controller_);
// Base RTP overhead is 12B.
EXPECT_EQ(rtp_sender()->ExpectedPerPacketOverhead(), 12u);
// Adding two csrcs adds 2*4 bytes to the header.
rtp_sender()->SetCsrcs({1, 2});
EXPECT_EQ(rtp_sender()->ExpectedPerPacketOverhead(), 20u);
}
TEST_P(RtpSenderTest, OnOverheadChanged) {
RtpRtcpInterface::Configuration config;
config.clock = clock_;
config.outgoing_transport = &transport_;
config.local_media_ssrc = kSsrc;
config.retransmission_rate_limiter = &retransmission_rate_limiter_;
rtp_sender_context_ =
std::make_unique<RtpSenderContext>(config, &time_controller_);
// Base RTP overhead is 12B.
EXPECT_EQ(rtp_sender()->ExpectedPerPacketOverhead(), 12u);
rtp_sender()->RegisterRtpHeaderExtension(kRtpExtensionTransmissionTimeOffset,
kTransmissionTimeOffsetExtensionId);
// TransmissionTimeOffset extension has a size of 3B, but with the addition
// of header index and rounding to 4 byte boundary we end up with 20B total.
EXPECT_EQ(rtp_sender()->ExpectedPerPacketOverhead(), 20u);
}
TEST_P(RtpSenderTest, CountMidOnlyUntilAcked) {
RtpRtcpInterface::Configuration config;
config.clock = clock_;
config.outgoing_transport = &transport_;
config.local_media_ssrc = kSsrc;
config.retransmission_rate_limiter = &retransmission_rate_limiter_;
rtp_sender_context_ =
std::make_unique<RtpSenderContext>(config, &time_controller_);
// Base RTP overhead is 12B.
EXPECT_EQ(rtp_sender()->ExpectedPerPacketOverhead(), 12u);
rtp_sender()->RegisterRtpHeaderExtension(kRtpExtensionMid, kMidExtensionId);
rtp_sender()->RegisterRtpHeaderExtension(kRtpExtensionRtpStreamId,
kRidExtensionId);
// Counted only if set.
EXPECT_EQ(rtp_sender()->ExpectedPerPacketOverhead(), 12u);
rtp_sender()->SetMid("foo");
EXPECT_EQ(rtp_sender()->ExpectedPerPacketOverhead(), 36u);
rtp_sender()->SetRid("bar");
EXPECT_EQ(rtp_sender()->ExpectedPerPacketOverhead(), 52u);
// Ack received, mid/rid no longer sent.
rtp_sender()->OnReceivedAckOnSsrc(0);
EXPECT_EQ(rtp_sender()->ExpectedPerPacketOverhead(), 12u);
}
TEST_P(RtpSenderTest, DontCountVolatileExtensionsIntoOverhead) {
RtpRtcpInterface::Configuration config;
config.clock = clock_;
config.outgoing_transport = &transport_;
config.local_media_ssrc = kSsrc;
config.retransmission_rate_limiter = &retransmission_rate_limiter_;
rtp_sender_context_ =
std::make_unique<RtpSenderContext>(config, &time_controller_);
// Base RTP overhead is 12B.
EXPECT_EQ(rtp_sender()->ExpectedPerPacketOverhead(), 12u);
rtp_sender()->RegisterRtpHeaderExtension(kRtpExtensionInbandComfortNoise, 1);
rtp_sender()->RegisterRtpHeaderExtension(kRtpExtensionAbsoluteCaptureTime, 2);
rtp_sender()->RegisterRtpHeaderExtension(kRtpExtensionVideoRotation, 3);
rtp_sender()->RegisterRtpHeaderExtension(kRtpExtensionPlayoutDelay, 4);
rtp_sender()->RegisterRtpHeaderExtension(kRtpExtensionVideoContentType, 5);
rtp_sender()->RegisterRtpHeaderExtension(kRtpExtensionVideoTiming, 6);
rtp_sender()->RegisterRtpHeaderExtension(kRtpExtensionRepairedRtpStreamId, 7);
rtp_sender()->RegisterRtpHeaderExtension(kRtpExtensionColorSpace, 8);
// Still only 12B counted since can't count on above being sent.
EXPECT_EQ(rtp_sender()->ExpectedPerPacketOverhead(), 12u);
}
TEST_P(RtpSenderTest, SendPacketMatchesVideo) {
std::unique_ptr<RtpPacketToSend> packet =
BuildRtpPacket(kPayload, true, 0, clock_->TimeInMilliseconds());
packet->set_packet_type(RtpPacketMediaType::kVideo);
// Verify sent with correct SSRC.
packet = BuildRtpPacket(kPayload, true, 0, clock_->TimeInMilliseconds());
packet->SetSsrc(kSsrc);
packet->set_packet_type(RtpPacketMediaType::kVideo);
rtp_sender_context_->InjectPacket(std::move(packet), PacedPacketInfo());
EXPECT_EQ(transport_.packets_sent(), 1);
}
TEST_P(RtpSenderTest, SendPacketMatchesAudio) {
std::unique_ptr<RtpPacketToSend> packet =
BuildRtpPacket(kPayload, true, 0, clock_->TimeInMilliseconds());
packet->set_packet_type(RtpPacketMediaType::kAudio);
// Verify sent with correct SSRC.
packet = BuildRtpPacket(kPayload, true, 0, clock_->TimeInMilliseconds());
packet->SetSsrc(kSsrc);
packet->set_packet_type(RtpPacketMediaType::kAudio);
rtp_sender_context_->InjectPacket(std::move(packet), PacedPacketInfo());
EXPECT_EQ(transport_.packets_sent(), 1);
}
TEST_P(RtpSenderTest, SendPacketMatchesRetransmissions) {
std::unique_ptr<RtpPacketToSend> packet =
BuildRtpPacket(kPayload, true, 0, clock_->TimeInMilliseconds());
packet->set_packet_type(RtpPacketMediaType::kRetransmission);
// Verify sent with correct SSRC (non-RTX).
packet = BuildRtpPacket(kPayload, true, 0, clock_->TimeInMilliseconds());
packet->SetSsrc(kSsrc);
packet->set_packet_type(RtpPacketMediaType::kRetransmission);
rtp_sender_context_->InjectPacket(std::move(packet), PacedPacketInfo());
EXPECT_EQ(transport_.packets_sent(), 1);
// RTX retransmission.
packet = BuildRtpPacket(kPayload, true, 0, clock_->TimeInMilliseconds());
packet->SetSsrc(kRtxSsrc);
packet->set_packet_type(RtpPacketMediaType::kRetransmission);
rtp_sender_context_->InjectPacket(std::move(packet), PacedPacketInfo());
EXPECT_EQ(transport_.packets_sent(), 2);
}
TEST_P(RtpSenderTest, SendPacketMatchesPadding) {
std::unique_ptr<RtpPacketToSend> packet =
BuildRtpPacket(kPayload, true, 0, clock_->TimeInMilliseconds());
packet->set_packet_type(RtpPacketMediaType::kPadding);
// Verify sent with correct SSRC (non-RTX).
packet = BuildRtpPacket(kPayload, true, 0, clock_->TimeInMilliseconds());
packet->SetSsrc(kSsrc);
packet->set_packet_type(RtpPacketMediaType::kPadding);
rtp_sender_context_->InjectPacket(std::move(packet), PacedPacketInfo());
EXPECT_EQ(transport_.packets_sent(), 1);
// RTX padding.
packet = BuildRtpPacket(kPayload, true, 0, clock_->TimeInMilliseconds());
packet->SetSsrc(kRtxSsrc);
packet->set_packet_type(RtpPacketMediaType::kPadding);
rtp_sender_context_->InjectPacket(std::move(packet), PacedPacketInfo());
EXPECT_EQ(transport_.packets_sent(), 2);
}
TEST_P(RtpSenderTest, SendPacketMatchesFlexfec) {
std::unique_ptr<RtpPacketToSend> packet =
BuildRtpPacket(kPayload, true, 0, clock_->TimeInMilliseconds());
packet->set_packet_type(RtpPacketMediaType::kForwardErrorCorrection);
// Verify sent with correct SSRC.
packet = BuildRtpPacket(kPayload, true, 0, clock_->TimeInMilliseconds());
packet->SetSsrc(kFlexFecSsrc);
packet->set_packet_type(RtpPacketMediaType::kForwardErrorCorrection);
rtp_sender_context_->InjectPacket(std::move(packet), PacedPacketInfo());
EXPECT_EQ(transport_.packets_sent(), 1);
}
TEST_P(RtpSenderTest, SendPacketMatchesUlpfec) {
std::unique_ptr<RtpPacketToSend> packet =
BuildRtpPacket(kPayload, true, 0, clock_->TimeInMilliseconds());
packet->set_packet_type(RtpPacketMediaType::kForwardErrorCorrection);
// Verify sent with correct SSRC.
packet = BuildRtpPacket(kPayload, true, 0, clock_->TimeInMilliseconds());
packet->SetSsrc(kSsrc);
packet->set_packet_type(RtpPacketMediaType::kForwardErrorCorrection);
rtp_sender_context_->InjectPacket(std::move(packet), PacedPacketInfo());
EXPECT_EQ(transport_.packets_sent(), 1);
}
TEST_P(RtpSenderTest, SendPacketHandlesRetransmissionHistory) {
rtp_sender_context_->packet_history_.SetStorePacketsStatus(
RtpPacketHistory::StorageMode::kStoreAndCull, 10);
// Ignore calls to EnqueuePackets() for this test.
EXPECT_CALL(mock_paced_sender_, EnqueuePackets).WillRepeatedly(Return());
// Build a media packet and send it.
std::unique_ptr<RtpPacketToSend> packet =
BuildRtpPacket(kPayload, true, 0, clock_->TimeInMilliseconds());
const uint16_t media_sequence_number = packet->SequenceNumber();
packet->set_packet_type(RtpPacketMediaType::kVideo);
packet->set_allow_retransmission(true);
rtp_sender_context_->InjectPacket(std::move(packet), PacedPacketInfo());
// Simulate retransmission request.
time_controller_.AdvanceTime(TimeDelta::Millis(30));
EXPECT_GT(rtp_sender()->ReSendPacket(media_sequence_number), 0);
// Packet already pending, retransmission not allowed.
time_controller_.AdvanceTime(TimeDelta::Millis(30));
EXPECT_EQ(rtp_sender()->ReSendPacket(media_sequence_number), 0);
// Packet exiting pacer, mark as not longer pending.
packet = BuildRtpPacket(kPayload, true, 0, clock_->TimeInMilliseconds());
EXPECT_NE(packet->SequenceNumber(), media_sequence_number);
packet->set_packet_type(RtpPacketMediaType::kRetransmission);
packet->SetSsrc(kRtxSsrc);
packet->set_retransmitted_sequence_number(media_sequence_number);
packet->set_allow_retransmission(false);
uint16_t seq_no = packet->SequenceNumber();
rtp_sender_context_->InjectPacket(std::move(packet), PacedPacketInfo());
// Retransmissions allowed again.
time_controller_.AdvanceTime(TimeDelta::Millis(30));
EXPECT_GT(rtp_sender()->ReSendPacket(media_sequence_number), 0);
// Retransmission of RTX packet should not be allowed.
EXPECT_EQ(rtp_sender()->ReSendPacket(seq_no), 0);
}
TEST_P(RtpSenderTest, SendPacketUpdatesExtensions) {
ASSERT_EQ(rtp_sender()->RegisterRtpHeaderExtension(
kRtpExtensionTransmissionTimeOffset,
kTransmissionTimeOffsetExtensionId),
0);
ASSERT_EQ(rtp_sender()->RegisterRtpHeaderExtension(
kRtpExtensionAbsoluteSendTime, kAbsoluteSendTimeExtensionId),
0);
ASSERT_EQ(rtp_sender()->RegisterRtpHeaderExtension(kRtpExtensionVideoTiming,
kVideoTimingExtensionId),
0);
std::unique_ptr<RtpPacketToSend> packet =
BuildRtpPacket(kPayload, true, 0, clock_->TimeInMilliseconds());
packet->set_packetization_finish_time_ms(clock_->TimeInMilliseconds());
const int32_t kDiffMs = 10;
time_controller_.AdvanceTime(TimeDelta::Millis(kDiffMs));
packet->set_packet_type(RtpPacketMediaType::kVideo);
rtp_sender_context_->InjectPacket(std::move(packet), PacedPacketInfo());
const RtpPacketReceived& received_packet = transport_.last_sent_packet();
EXPECT_EQ(received_packet.GetExtension<TransmissionOffset>(), kDiffMs * 90);
EXPECT_EQ(received_packet.GetExtension<AbsoluteSendTime>(),
AbsoluteSendTime::MsTo24Bits(clock_->TimeInMilliseconds()));
VideoSendTiming timing;
EXPECT_TRUE(received_packet.GetExtension<VideoTimingExtension>(&timing));
EXPECT_EQ(timing.pacer_exit_delta_ms, kDiffMs);
}
TEST_P(RtpSenderTest, SendPacketSetsPacketOptions) {
const uint16_t kPacketId = 42;
ASSERT_EQ(rtp_sender()->RegisterRtpHeaderExtension(
kRtpExtensionTransportSequenceNumber,
kTransportSequenceNumberExtensionId),
0);
std::unique_ptr<RtpPacketToSend> packet =
BuildRtpPacket(kPayload, true, 0, clock_->TimeInMilliseconds());
packet->SetExtension<TransportSequenceNumber>(kPacketId);
packet->set_packet_type(RtpPacketMediaType::kVideo);
EXPECT_CALL(send_packet_observer_, OnSendPacket);
rtp_sender_context_->InjectPacket(std::move(packet), PacedPacketInfo());
EXPECT_EQ(transport_.last_options_.packet_id, kPacketId);
EXPECT_TRUE(transport_.last_options_.included_in_allocation);
EXPECT_TRUE(transport_.last_options_.included_in_feedback);
EXPECT_FALSE(transport_.last_options_.is_retransmit);
// Send another packet as retransmission, verify options are populated.
packet = BuildRtpPacket(kPayload, true, 0, clock_->TimeInMilliseconds());
packet->SetExtension<TransportSequenceNumber>(kPacketId + 1);
packet->set_packet_type(RtpPacketMediaType::kRetransmission);
rtp_sender_context_->InjectPacket(std::move(packet), PacedPacketInfo());
EXPECT_TRUE(transport_.last_options_.is_retransmit);
}
TEST_P(RtpSenderTest, SendPacketUpdatesStats) {
const size_t kPayloadSize = 1000;
StrictMock<MockSendSideDelayObserver> send_side_delay_observer;
RtpRtcpInterface::Configuration config;
config.clock = clock_;
config.outgoing_transport = &transport_;
config.local_media_ssrc = kSsrc;
config.rtx_send_ssrc = kRtxSsrc;
config.fec_generator = &flexfec_sender_;
config.send_side_delay_observer = &send_side_delay_observer;
config.event_log = &mock_rtc_event_log_;
config.send_packet_observer = &send_packet_observer_;
rtp_sender_context_ =
std::make_unique<RtpSenderContext>(config, &time_controller_);
ASSERT_EQ(0, rtp_sender()->RegisterRtpHeaderExtension(
kRtpExtensionTransportSequenceNumber,
kTransportSequenceNumberExtensionId));
const int64_t capture_time_ms = clock_->TimeInMilliseconds();
std::unique_ptr<RtpPacketToSend> video_packet =
BuildRtpPacket(kPayload, true, 0, clock_->TimeInMilliseconds());
video_packet->set_packet_type(RtpPacketMediaType::kVideo);
video_packet->SetPayloadSize(kPayloadSize);
video_packet->SetExtension<TransportSequenceNumber>(1);
std::unique_ptr<RtpPacketToSend> rtx_packet =
BuildRtpPacket(kPayload, true, 0, clock_->TimeInMilliseconds());
rtx_packet->SetSsrc(kRtxSsrc);
rtx_packet->set_packet_type(RtpPacketMediaType::kRetransmission);
rtx_packet->SetPayloadSize(kPayloadSize);
rtx_packet->SetExtension<TransportSequenceNumber>(2);
std::unique_ptr<RtpPacketToSend> fec_packet =
BuildRtpPacket(kPayload, true, 0, clock_->TimeInMilliseconds());
fec_packet->SetSsrc(kFlexFecSsrc);
fec_packet->set_packet_type(RtpPacketMediaType::kForwardErrorCorrection);
fec_packet->SetPayloadSize(kPayloadSize);
fec_packet->SetExtension<TransportSequenceNumber>(3);
const int64_t kDiffMs = 25;
time_controller_.AdvanceTime(TimeDelta::Millis(kDiffMs));
EXPECT_CALL(send_side_delay_observer,
SendSideDelayUpdated(kDiffMs, kDiffMs, kDiffMs, kSsrc));
EXPECT_CALL(
send_side_delay_observer,
SendSideDelayUpdated(kDiffMs, kDiffMs, 2 * kDiffMs, kFlexFecSsrc));
EXPECT_CALL(send_packet_observer_, OnSendPacket(1, capture_time_ms, kSsrc));
rtp_sender_context_->InjectPacket(std::move(video_packet), PacedPacketInfo());
// Send packet observer not called for padding/retransmissions.
EXPECT_CALL(send_packet_observer_, OnSendPacket(2, _, _)).Times(0);
rtp_sender_context_->InjectPacket(std::move(rtx_packet), PacedPacketInfo());
EXPECT_CALL(send_packet_observer_,
OnSendPacket(3, capture_time_ms, kFlexFecSsrc));
rtp_sender_context_->InjectPacket(std::move(fec_packet), PacedPacketInfo());
StreamDataCounters rtp_stats;
StreamDataCounters rtx_stats;
rtp_egress()->GetDataCounters(&rtp_stats, &rtx_stats);
EXPECT_EQ(rtp_stats.transmitted.packets, 2u);
EXPECT_EQ(rtp_stats.fec.packets, 1u);
EXPECT_EQ(rtx_stats.retransmitted.packets, 1u);
}
TEST_P(RtpSenderTest, GeneratedPaddingHasBweExtensions) {
// Min requested size in order to use RTX payload.
const size_t kMinPaddingSize = 50;
rtp_sender()->SetRtxStatus(kRtxRetransmitted | kRtxRedundantPayloads);
rtp_sender()->SetRtxPayloadType(kRtxPayload, kPayload);
rtp_sender_context_->packet_history_.SetStorePacketsStatus(
RtpPacketHistory::StorageMode::kStoreAndCull, 1);
ASSERT_EQ(0, rtp_sender()->RegisterRtpHeaderExtension(
kRtpExtensionTransmissionTimeOffset,
kTransmissionTimeOffsetExtensionId));
ASSERT_EQ(0,
rtp_sender()->RegisterRtpHeaderExtension(
kRtpExtensionAbsoluteSendTime, kAbsoluteSendTimeExtensionId));
ASSERT_EQ(0, rtp_sender()->RegisterRtpHeaderExtension(
kRtpExtensionTransportSequenceNumber,
kTransportSequenceNumberExtensionId));
// Send a payload packet first, to enable padding and populate the packet
// history.
std::unique_ptr<RtpPacketToSend> packet =
BuildRtpPacket(kPayload, true, 0, clock_->TimeInMilliseconds());
packet->set_allow_retransmission(true);
packet->SetPayloadSize(kMinPaddingSize);
packet->set_packet_type(RtpPacketMediaType::kVideo);
EXPECT_CALL(send_packet_observer_, OnSendPacket).Times(1);
rtp_sender_context_->InjectPacket(std::move(packet), PacedPacketInfo());
// Generate a plain padding packet, check that extensions are registered.
std::vector<std::unique_ptr<RtpPacketToSend>> generated_packets =
rtp_sender()->GeneratePadding(/*target_size_bytes=*/1, true);
ASSERT_THAT(generated_packets, SizeIs(1));
auto& plain_padding = generated_packets.front();
EXPECT_GT(plain_padding->padding_size(), 0u);
EXPECT_TRUE(plain_padding->HasExtension<TransportSequenceNumber>());
EXPECT_TRUE(plain_padding->HasExtension<AbsoluteSendTime>());
EXPECT_TRUE(plain_padding->HasExtension<TransmissionOffset>());
// Verify all header extensions have been written.
rtp_sender_context_->InjectPacket(std::move(plain_padding),
PacedPacketInfo());
const auto& sent_plain_padding = transport_.last_sent_packet();
EXPECT_TRUE(sent_plain_padding.HasExtension<TransportSequenceNumber>());
EXPECT_TRUE(sent_plain_padding.HasExtension<AbsoluteSendTime>());
EXPECT_TRUE(sent_plain_padding.HasExtension<TransmissionOffset>());
webrtc::RTPHeader rtp_header;
sent_plain_padding.GetHeader(&rtp_header);
EXPECT_TRUE(rtp_header.extension.hasAbsoluteSendTime);
EXPECT_TRUE(rtp_header.extension.hasTransmissionTimeOffset);
EXPECT_TRUE(rtp_header.extension.hasTransportSequenceNumber);
// Generate a payload padding packets, check that extensions are registered.
generated_packets = rtp_sender()->GeneratePadding(kMinPaddingSize, true);
ASSERT_EQ(generated_packets.size(), 1u);
auto& payload_padding = generated_packets.front();
EXPECT_EQ(payload_padding->padding_size(), 0u);
EXPECT_TRUE(payload_padding->HasExtension<TransportSequenceNumber>());
EXPECT_TRUE(payload_padding->HasExtension<AbsoluteSendTime>());
EXPECT_TRUE(payload_padding->HasExtension<TransmissionOffset>());
// Verify all header extensions have been written.
rtp_sender_context_->InjectPacket(std::move(payload_padding),
PacedPacketInfo());
const auto& sent_payload_padding = transport_.last_sent_packet();
EXPECT_TRUE(sent_payload_padding.HasExtension<TransportSequenceNumber>());
EXPECT_TRUE(sent_payload_padding.HasExtension<AbsoluteSendTime>());
EXPECT_TRUE(sent_payload_padding.HasExtension<TransmissionOffset>());
sent_payload_padding.GetHeader(&rtp_header);
EXPECT_TRUE(rtp_header.extension.hasAbsoluteSendTime);
EXPECT_TRUE(rtp_header.extension.hasTransmissionTimeOffset);
EXPECT_TRUE(rtp_header.extension.hasTransportSequenceNumber);
}
TEST_P(RtpSenderTest, GeneratePaddingResendsOldPacketsWithRtx) {
// Min requested size in order to use RTX payload.
const size_t kMinPaddingSize = 50;
rtp_sender()->SetRtxStatus(kRtxRetransmitted | kRtxRedundantPayloads);
rtp_sender()->SetRtxPayloadType(kRtxPayload, kPayload);
rtp_sender_context_->packet_history_.SetStorePacketsStatus(
RtpPacketHistory::StorageMode::kStoreAndCull, 1);
ASSERT_EQ(0, rtp_sender()->RegisterRtpHeaderExtension(
kRtpExtensionTransportSequenceNumber,
kTransportSequenceNumberExtensionId));
const size_t kPayloadPacketSize = kMinPaddingSize;
std::unique_ptr<RtpPacketToSend> packet =
BuildRtpPacket(kPayload, true, 0, clock_->TimeInMilliseconds());
packet->set_allow_retransmission(true);
packet->SetPayloadSize(kPayloadPacketSize);
packet->set_packet_type(RtpPacketMediaType::kVideo);
// Send a dummy video packet so it ends up in the packet history.
EXPECT_CALL(send_packet_observer_, OnSendPacket).Times(1);
rtp_sender_context_->InjectPacket(std::move(packet), PacedPacketInfo());
// Generated padding has large enough budget that the video packet should be
// retransmitted as padding.
std::vector<std::unique_ptr<RtpPacketToSend>> generated_packets =
rtp_sender()->GeneratePadding(kMinPaddingSize, true);
ASSERT_EQ(generated_packets.size(), 1u);
auto& padding_packet = generated_packets.front();
EXPECT_EQ(padding_packet->packet_type(), RtpPacketMediaType::kPadding);
EXPECT_EQ(padding_packet->Ssrc(), kRtxSsrc);
EXPECT_EQ(padding_packet->payload_size(),
kPayloadPacketSize + kRtxHeaderSize);
// Not enough budged for payload padding, use plain padding instead.
const size_t kPaddingBytesRequested = kMinPaddingSize - 1;
size_t padding_bytes_generated = 0;
generated_packets =
rtp_sender()->GeneratePadding(kPaddingBytesRequested, true);
EXPECT_EQ(generated_packets.size(), 1u);
for (auto& packet : generated_packets) {
EXPECT_EQ(packet->packet_type(), RtpPacketMediaType::kPadding);
EXPECT_EQ(packet->Ssrc(), kRtxSsrc);
EXPECT_EQ(packet->payload_size(), 0u);
EXPECT_GT(packet->padding_size(), 0u);
padding_bytes_generated += packet->padding_size();
}
EXPECT_EQ(padding_bytes_generated, kMaxPaddingSize);
}
TEST_P(RtpSenderTest, LimitsPayloadPaddingSize) {
// Limit RTX payload padding to 2x target size.
const double kFactor = 2.0;
field_trials_.SetMaxPaddingFactor(kFactor);
SetUpRtpSender(true, false, false);
rtp_sender()->SetRtxStatus(kRtxRetransmitted | kRtxRedundantPayloads);
rtp_sender()->SetRtxPayloadType(kRtxPayload, kPayload);
rtp_sender_context_->packet_history_.SetStorePacketsStatus(
RtpPacketHistory::StorageMode::kStoreAndCull, 1);
ASSERT_EQ(0, rtp_sender()->RegisterRtpHeaderExtension(
kRtpExtensionTransportSequenceNumber,
kTransportSequenceNumberExtensionId));
// Send a dummy video packet so it ends up in the packet history.
const size_t kPayloadPacketSize = 1234u;
std::unique_ptr<RtpPacketToSend> packet =
BuildRtpPacket(kPayload, true, 0, clock_->TimeInMilliseconds());
packet->set_allow_retransmission(true);
packet->SetPayloadSize(kPayloadPacketSize);
packet->set_packet_type(RtpPacketMediaType::kVideo);
EXPECT_CALL(send_packet_observer_, OnSendPacket).Times(1);
rtp_sender_context_->InjectPacket(std::move(packet), PacedPacketInfo());
// Smallest target size that will result in the sent packet being returned as
// padding.
const size_t kMinTargerSizeForPayload =
(kPayloadPacketSize + kRtxHeaderSize) / kFactor;
// Generated padding has large enough budget that the video packet should be
// retransmitted as padding.
EXPECT_THAT(
rtp_sender()->GeneratePadding(kMinTargerSizeForPayload, true),
AllOf(Not(IsEmpty()),
Each(Pointee(Property(&RtpPacketToSend::padding_size, Eq(0u))))));
// If payload padding is > 2x requested size, plain padding is returned
// instead.
EXPECT_THAT(
rtp_sender()->GeneratePadding(kMinTargerSizeForPayload - 1, true),
AllOf(Not(IsEmpty()),
Each(Pointee(Property(&RtpPacketToSend::padding_size, Gt(0u))))));
}
TEST_P(RtpSenderTest, GeneratePaddingCreatesPurePaddingWithoutRtx) {
rtp_sender_context_->packet_history_.SetStorePacketsStatus(
RtpPacketHistory::StorageMode::kStoreAndCull, 1);
ASSERT_EQ(0, rtp_sender()->RegisterRtpHeaderExtension(
kRtpExtensionTransmissionTimeOffset,
kTransmissionTimeOffsetExtensionId));
ASSERT_EQ(0,
rtp_sender()->RegisterRtpHeaderExtension(
kRtpExtensionAbsoluteSendTime, kAbsoluteSendTimeExtensionId));
ASSERT_EQ(0, rtp_sender()->RegisterRtpHeaderExtension(
kRtpExtensionTransportSequenceNumber,
kTransportSequenceNumberExtensionId));
const size_t kPayloadPacketSize = 1234;
// Send a dummy video packet so it ends up in the packet history. Since we
// are not using RTX, it should never be used as padding.
std::unique_ptr<RtpPacketToSend> packet =
BuildRtpPacket(kPayload, true, 0, clock_->TimeInMilliseconds());
packet->set_allow_retransmission(true);
packet->SetPayloadSize(kPayloadPacketSize);
packet->set_packet_type(RtpPacketMediaType::kVideo);
EXPECT_CALL(send_packet_observer_, OnSendPacket).Times(1);
rtp_sender_context_->InjectPacket(std::move(packet), PacedPacketInfo());
// Payload padding not available without RTX, only generate plain padding on
// the media SSRC.
// Number of padding packets is the requested padding size divided by max
// padding packet size, rounded up. Pure padding packets are always of the
// maximum size.
const size_t kPaddingBytesRequested = kPayloadPacketSize + kRtxHeaderSize;
const size_t kExpectedNumPaddingPackets =
(kPaddingBytesRequested + kMaxPaddingSize - 1) / kMaxPaddingSize;
size_t padding_bytes_generated = 0;
std::vector<std::unique_ptr<RtpPacketToSend>> padding_packets =
rtp_sender()->GeneratePadding(kPaddingBytesRequested, true);
EXPECT_EQ(padding_packets.size(), kExpectedNumPaddingPackets);
for (auto& packet : padding_packets) {
EXPECT_EQ(packet->packet_type(), RtpPacketMediaType::kPadding);
EXPECT_EQ(packet->Ssrc(), kSsrc);
EXPECT_EQ(packet->payload_size(), 0u);
EXPECT_GT(packet->padding_size(), 0u);
padding_bytes_generated += packet->padding_size();
EXPECT_TRUE(packet->HasExtension<TransportSequenceNumber>());
EXPECT_TRUE(packet->HasExtension<AbsoluteSendTime>());
EXPECT_TRUE(packet->HasExtension<TransmissionOffset>());
// Verify all header extensions are received.
rtp_sender_context_->InjectPacket(std::move(packet), PacedPacketInfo());
webrtc::RTPHeader rtp_header;
transport_.last_sent_packet().GetHeader(&rtp_header);
EXPECT_TRUE(rtp_header.extension.hasAbsoluteSendTime);
EXPECT_TRUE(rtp_header.extension.hasTransmissionTimeOffset);
EXPECT_TRUE(rtp_header.extension.hasTransportSequenceNumber);
}
EXPECT_EQ(padding_bytes_generated,
kExpectedNumPaddingPackets * kMaxPaddingSize);
}
TEST_P(RtpSenderTest, SupportsPadding) {
bool kSendingMediaStats[] = {true, false};
bool kEnableRedundantPayloads[] = {true, false};
RTPExtensionType kBweExtensionTypes[] = {
kRtpExtensionTransportSequenceNumber,
kRtpExtensionTransportSequenceNumber02, kRtpExtensionAbsoluteSendTime,
kRtpExtensionTransmissionTimeOffset};
const int kExtensionsId = 7;
for (bool sending_media : kSendingMediaStats) {
rtp_sender()->SetSendingMediaStatus(sending_media);
for (bool redundant_payloads : kEnableRedundantPayloads) {
int rtx_mode = kRtxRetransmitted;
if (redundant_payloads) {
rtx_mode |= kRtxRedundantPayloads;
}
rtp_sender()->SetRtxStatus(rtx_mode);
for (auto extension_type : kBweExtensionTypes) {
EXPECT_FALSE(rtp_sender()->SupportsPadding());
rtp_sender()->RegisterRtpHeaderExtension(extension_type, kExtensionsId);
if (!sending_media) {
EXPECT_FALSE(rtp_sender()->SupportsPadding());
} else {
EXPECT_TRUE(rtp_sender()->SupportsPadding());
if (redundant_payloads) {
EXPECT_TRUE(rtp_sender()->SupportsRtxPayloadPadding());
} else {
EXPECT_FALSE(rtp_sender()->SupportsRtxPayloadPadding());
}
}
rtp_sender()->DeregisterRtpHeaderExtension(extension_type);
EXPECT_FALSE(rtp_sender()->SupportsPadding());
}
}
}
}
TEST_P(RtpSenderTest, SetsCaptureTimeAndPopulatesTransmissionOffset) {
rtp_sender()->RegisterRtpHeaderExtension(kRtpExtensionTransmissionTimeOffset,
kTransmissionTimeOffsetExtensionId);
rtp_sender()->SetSendingMediaStatus(true);
rtp_sender()->SetRtxStatus(kRtxRetransmitted | kRtxRedundantPayloads);
rtp_sender()->SetRtxPayloadType(kRtxPayload, kPayload);
rtp_sender_context_->packet_history_.SetStorePacketsStatus(
RtpPacketHistory::StorageMode::kStoreAndCull, 10);
const int64_t kMissingCaptureTimeMs = 0;
const uint32_t kTimestampTicksPerMs = 90;
const int64_t kOffsetMs = 10;
auto packet =
BuildRtpPacket(kPayload, kMarkerBit, clock_->TimeInMilliseconds(),
kMissingCaptureTimeMs);
packet->set_packet_type(RtpPacketMediaType::kVideo);
packet->ReserveExtension<TransmissionOffset>();
packet->AllocatePayload(sizeof(kPayloadData));
std::unique_ptr<RtpPacketToSend> packet_to_pace;
EXPECT_CALL(mock_paced_sender_, EnqueuePackets)
.WillOnce([&](std::vector<std::unique_ptr<RtpPacketToSend>> packets) {
EXPECT_EQ(packets.size(), 1u);
EXPECT_GT(packets[0]->capture_time_ms(), 0);
packet_to_pace = std::move(packets[0]);
});
packet->set_allow_retransmission(true);
EXPECT_TRUE(rtp_sender()->SendToNetwork(std::move(packet)));
time_controller_.AdvanceTime(TimeDelta::Millis(kOffsetMs));
rtp_sender_context_->InjectPacket(std::move(packet_to_pace),
PacedPacketInfo());
EXPECT_EQ(1, transport_.packets_sent());
absl::optional<int32_t> transmission_time_extension =
transport_.sent_packets_.back().GetExtension<TransmissionOffset>();
ASSERT_TRUE(transmission_time_extension.has_value());
EXPECT_EQ(*transmission_time_extension, kOffsetMs * kTimestampTicksPerMs);
// Retransmit packet. The RTX packet should get the same capture time as the
// original packet, so offset is delta from original packet to now.
time_controller_.AdvanceTime(TimeDelta::Millis(kOffsetMs));
std::unique_ptr<RtpPacketToSend> rtx_packet_to_pace;
EXPECT_CALL(mock_paced_sender_, EnqueuePackets)
.WillOnce([&](std::vector<std::unique_ptr<RtpPacketToSend>> packets) {
EXPECT_GT(packets[0]->capture_time_ms(), 0);
rtx_packet_to_pace = std::move(packets[0]);
});
EXPECT_GT(rtp_sender()->ReSendPacket(kSeqNum), 0);
rtp_sender_context_->InjectPacket(std::move(rtx_packet_to_pace),
PacedPacketInfo());
EXPECT_EQ(2, transport_.packets_sent());
transmission_time_extension =
transport_.sent_packets_.back().GetExtension<TransmissionOffset>();
ASSERT_TRUE(transmission_time_extension.has_value());
EXPECT_EQ(*transmission_time_extension, 2 * kOffsetMs * kTimestampTicksPerMs);
}
TEST_P(RtpSenderTestWithoutPacer, ClearHistoryOnSequenceNumberCange) {
const int64_t kRtt = 10;
rtp_sender()->SetSendingMediaStatus(true);
rtp_sender()->SetRtxStatus(kRtxRetransmitted | kRtxRedundantPayloads);
rtp_sender()->SetRtxPayloadType(kRtxPayload, kPayload);
rtp_sender_context_->packet_history_.SetStorePacketsStatus(
RtpPacketHistory::StorageMode::kStoreAndCull, 10);
rtp_sender_context_->packet_history_.SetRtt(kRtt);
// Send a packet and record its sequence numbers.
SendGenericPacket();
ASSERT_EQ(1u, transport_.sent_packets_.size());
const uint16_t packet_seqence_number =
transport_.sent_packets_.back().SequenceNumber();
// Advance time and make sure it can be retransmitted, even if we try to set
// the ssrc the what it already is.
rtp_sender()->SetSequenceNumber(rtp_sender()->SequenceNumber());
time_controller_.AdvanceTime(TimeDelta::Millis(kRtt));
EXPECT_GT(rtp_sender()->ReSendPacket(packet_seqence_number), 0);
// Change the sequence number, then move the time and try to retransmit again.
// The old packet should now be gone.
rtp_sender()->SetSequenceNumber(rtp_sender()->SequenceNumber() - 1);
time_controller_.AdvanceTime(TimeDelta::Millis(kRtt));
EXPECT_EQ(rtp_sender()->ReSendPacket(packet_seqence_number), 0);
}
TEST_P(RtpSenderTest, IgnoresNackAfterDisablingMedia) {
const int64_t kRtt = 10;
rtp_sender()->SetSendingMediaStatus(true);
rtp_sender()->SetRtxStatus(kRtxRetransmitted | kRtxRedundantPayloads);
rtp_sender()->SetRtxPayloadType(kRtxPayload, kPayload);
rtp_sender_context_->packet_history_.SetStorePacketsStatus(
RtpPacketHistory::StorageMode::kStoreAndCull, 10);
rtp_sender_context_->packet_history_.SetRtt(kRtt);
// Send a packet so it is in the packet history.
std::unique_ptr<RtpPacketToSend> packet_to_pace;
EXPECT_CALL(mock_paced_sender_, EnqueuePackets)
.WillOnce([&](std::vector<std::unique_ptr<RtpPacketToSend>> packets) {
packet_to_pace = std::move(packets[0]);
});
SendGenericPacket();
rtp_sender_context_->InjectPacket(std::move(packet_to_pace),
PacedPacketInfo());
ASSERT_EQ(1u, transport_.sent_packets_.size());
// Disable media sending and try to retransmit the packet, it should fail.
rtp_sender()->SetSendingMediaStatus(false);
time_controller_.AdvanceTime(TimeDelta::Millis(kRtt));
EXPECT_LT(rtp_sender()->ReSendPacket(kSeqNum), 0);
}
TEST_P(RtpSenderTest, DoesntFecProtectRetransmissions) {
// Set up retranmission without RTX, so that a plain copy of the old packet is
// re-sent instead.
const int64_t kRtt = 10;
rtp_sender()->SetSendingMediaStatus(true);
rtp_sender()->SetRtxStatus(kRtxOff);
rtp_sender_context_->packet_history_.SetStorePacketsStatus(
RtpPacketHistory::StorageMode::kStoreAndCull, 10);
rtp_sender_context_->packet_history_.SetRtt(kRtt);
// Send a packet so it is in the packet history, make sure to mark it for
// FEC protection.
std::unique_ptr<RtpPacketToSend> packet_to_pace;
EXPECT_CALL(mock_paced_sender_, EnqueuePackets)
.WillOnce([&](std::vector<std::unique_ptr<RtpPacketToSend>> packets) {
packet_to_pace = std::move(packets[0]);
});
SendGenericPacket();
packet_to_pace->set_fec_protect_packet(true);
rtp_sender_context_->InjectPacket(std::move(packet_to_pace),
PacedPacketInfo());
ASSERT_EQ(1u, transport_.sent_packets_.size());
// Re-send packet, the retransmitted packet should not have the FEC protection
// flag set.
EXPECT_CALL(mock_paced_sender_,
EnqueuePackets(Each(Pointee(
Property(&RtpPacketToSend::fec_protect_packet, false)))));
time_controller_.AdvanceTime(TimeDelta::Millis(kRtt));
EXPECT_GT(rtp_sender()->ReSendPacket(kSeqNum), 0);
}
TEST_P(RtpSenderTest, MarksPacketsWithKeyframeStatus) {
FieldTrialBasedConfig field_trials;
RTPSenderVideo::Config video_config;
video_config.clock = clock_;
video_config.rtp_sender = rtp_sender();
video_config.field_trials = &field_trials;
RTPSenderVideo rtp_sender_video(video_config);
const uint8_t kPayloadType = 127;
const absl::optional<VideoCodecType> kCodecType =
VideoCodecType::kVideoCodecGeneric;
const uint32_t kCaptureTimeMsToRtpTimestamp = 90; // 90 kHz clock
{
EXPECT_CALL(mock_paced_sender_,
EnqueuePackets(Each(
Pointee(Property(&RtpPacketToSend::is_key_frame, true)))))
.Times(AtLeast(1));
RTPVideoHeader video_header;
video_header.frame_type = VideoFrameType::kVideoFrameKey;
int64_t capture_time_ms = clock_->TimeInMilliseconds();
EXPECT_TRUE(rtp_sender_video.SendVideo(
kPayloadType, kCodecType,
capture_time_ms * kCaptureTimeMsToRtpTimestamp, capture_time_ms,
kPayloadData, video_header, kDefaultExpectedRetransmissionTimeMs));
time_controller_.AdvanceTime(TimeDelta::Millis(33));
}
{
EXPECT_CALL(mock_paced_sender_,
EnqueuePackets(Each(
Pointee(Property(&RtpPacketToSend::is_key_frame, false)))))
.Times(AtLeast(1));
RTPVideoHeader video_header;
video_header.frame_type = VideoFrameType::kVideoFrameDelta;
int64_t capture_time_ms = clock_->TimeInMilliseconds();
EXPECT_TRUE(rtp_sender_video.SendVideo(
kPayloadType, kCodecType,
capture_time_ms * kCaptureTimeMsToRtpTimestamp, capture_time_ms,
kPayloadData, video_header, kDefaultExpectedRetransmissionTimeMs));
time_controller_.AdvanceTime(TimeDelta::Millis(33));
}
}
INSTANTIATE_TEST_SUITE_P(WithAndWithoutOverhead,
RtpSenderTest,
::testing::Values(TestConfig{false},
TestConfig{true}));
INSTANTIATE_TEST_SUITE_P(WithAndWithoutOverhead,
RtpSenderTestWithoutPacer,
::testing::Values(TestConfig{false},
TestConfig{true}));
} // namespace webrtc