webrtc/modules/rtp_rtcp/source/ulpfec_generator_unittest.cc
Erik Språng cf15cb5c94 Update how FEC handles protection parameters for key vs delta frames.
This CL:
1) Updates RtpSenderVideo to actually populate the is_key_frame field
properly.

2) Updates UlpfecGenerator to:
 * Allow updating the protection parameters before adding any packet.
 * Apply keyframe protection parameter when at least one buffered
   media packet to be protected belongs to a keyframe.

Updating the parameters in the middle of a frame is allowed, at that
point they only determine how many _complete_ frames are needed in order
to trigger FEC generation. Only that requirement is met, will the
protection parameters (e.g. FEC rate and mask type) actually be applied.

This means that delta-frames adjecent to a key-frame (either ahead of
or after) may be protected in the same way as the key-frame itself.

Bug: webrtc:11340
Change-Id: Ieb84d0ae46de01c17b4ef72251a4cb37814569da
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/195620
Commit-Queue: Erik Språng <sprang@webrtc.org>
Reviewed-by: Ying Wang <yinwa@webrtc.org>
Reviewed-by: Danil Chapovalov <danilchap@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#32787}
2020-12-07 13:36:03 +00:00

273 lines
11 KiB
C++

/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/rtp_rtcp/source/ulpfec_generator.h"
#include <list>
#include <memory>
#include <utility>
#include <vector>
#include "modules/rtp_rtcp/source/byte_io.h"
#include "modules/rtp_rtcp/source/fec_test_helper.h"
#include "modules/rtp_rtcp/source/forward_error_correction.h"
#include "test/gtest.h"
namespace webrtc {
namespace {
using test::fec::AugmentedPacket;
using test::fec::AugmentedPacketGenerator;
constexpr int kFecPayloadType = 96;
constexpr int kRedPayloadType = 97;
constexpr uint32_t kMediaSsrc = 835424;
} // namespace
void VerifyHeader(uint16_t seq_num,
uint32_t timestamp,
int red_payload_type,
int fec_payload_type,
bool marker_bit,
const rtc::CopyOnWriteBuffer& data) {
// Marker bit not set.
EXPECT_EQ(marker_bit ? 0x80 : 0, data[1] & 0x80);
EXPECT_EQ(red_payload_type, data[1] & 0x7F);
EXPECT_EQ(seq_num, (data[2] << 8) + data[3]);
uint32_t parsed_timestamp =
(data[4] << 24) + (data[5] << 16) + (data[6] << 8) + data[7];
EXPECT_EQ(timestamp, parsed_timestamp);
EXPECT_EQ(static_cast<uint8_t>(fec_payload_type), data[kRtpHeaderSize]);
}
class UlpfecGeneratorTest : public ::testing::Test {
protected:
UlpfecGeneratorTest()
: fake_clock_(1),
ulpfec_generator_(kRedPayloadType, kFecPayloadType, &fake_clock_),
packet_generator_(kMediaSsrc) {}
SimulatedClock fake_clock_;
UlpfecGenerator ulpfec_generator_;
AugmentedPacketGenerator packet_generator_;
};
// Verifies bug found via fuzzing, where a gap in the packet sequence caused us
// to move past the end of the current FEC packet mask byte without moving to
// the next byte. That likely caused us to repeatedly read from the same byte,
// and if that byte didn't protect packets we would generate empty FEC.
TEST_F(UlpfecGeneratorTest, NoEmptyFecWithSeqNumGaps) {
struct Packet {
size_t header_size;
size_t payload_size;
uint16_t seq_num;
bool marker_bit;
};
std::vector<Packet> protected_packets;
protected_packets.push_back({15, 3, 41, 0});
protected_packets.push_back({14, 1, 43, 0});
protected_packets.push_back({19, 0, 48, 0});
protected_packets.push_back({19, 0, 50, 0});
protected_packets.push_back({14, 3, 51, 0});
protected_packets.push_back({13, 8, 52, 0});
protected_packets.push_back({19, 2, 53, 0});
protected_packets.push_back({12, 3, 54, 0});
protected_packets.push_back({21, 0, 55, 0});
protected_packets.push_back({13, 3, 57, 1});
FecProtectionParams params = {117, 3, kFecMaskBursty};
ulpfec_generator_.SetProtectionParameters(params, params);
for (Packet p : protected_packets) {
RtpPacketToSend packet(nullptr);
packet.SetMarker(p.marker_bit);
packet.AllocateExtension(RTPExtensionType::kRtpExtensionMid,
p.header_size - packet.headers_size());
packet.SetSequenceNumber(p.seq_num);
packet.AllocatePayload(p.payload_size);
ulpfec_generator_.AddPacketAndGenerateFec(packet);
std::vector<std::unique_ptr<RtpPacketToSend>> fec_packets =
ulpfec_generator_.GetFecPackets();
if (!p.marker_bit) {
EXPECT_TRUE(fec_packets.empty());
} else {
EXPECT_FALSE(fec_packets.empty());
}
}
}
TEST_F(UlpfecGeneratorTest, OneFrameFec) {
// The number of media packets (|kNumPackets|), number of frames (one for
// this test), and the protection factor (|params->fec_rate|) are set to make
// sure the conditions for generating FEC are satisfied. This means:
// (1) protection factor is high enough so that actual overhead over 1 frame
// of packets is within |kMaxExcessOverhead|, and (2) the total number of
// media packets for 1 frame is at least |minimum_media_packets_fec_|.
constexpr size_t kNumPackets = 4;
FecProtectionParams params = {15, 3, kFecMaskRandom};
packet_generator_.NewFrame(kNumPackets);
// Expecting one FEC packet.
ulpfec_generator_.SetProtectionParameters(params, params);
uint32_t last_timestamp = 0;
for (size_t i = 0; i < kNumPackets; ++i) {
std::unique_ptr<AugmentedPacket> packet =
packet_generator_.NextPacket(i, 10);
RtpPacketToSend rtp_packet(nullptr);
EXPECT_TRUE(rtp_packet.Parse(packet->data.data(), packet->data.size()));
ulpfec_generator_.AddPacketAndGenerateFec(rtp_packet);
last_timestamp = packet->header.timestamp;
}
std::vector<std::unique_ptr<RtpPacketToSend>> fec_packets =
ulpfec_generator_.GetFecPackets();
EXPECT_EQ(fec_packets.size(), 1u);
uint16_t seq_num = packet_generator_.NextPacketSeqNum();
fec_packets[0]->SetSequenceNumber(seq_num);
EXPECT_TRUE(ulpfec_generator_.GetFecPackets().empty());
EXPECT_EQ(fec_packets[0]->headers_size(), kRtpHeaderSize);
VerifyHeader(seq_num, last_timestamp, kRedPayloadType, kFecPayloadType, false,
fec_packets[0]->Buffer());
}
TEST_F(UlpfecGeneratorTest, TwoFrameFec) {
// The number of media packets/frame (|kNumPackets|), the number of frames
// (|kNumFrames|), and the protection factor (|params->fec_rate|) are set to
// make sure the conditions for generating FEC are satisfied. This means:
// (1) protection factor is high enough so that actual overhead over
// |kNumFrames| is within |kMaxExcessOverhead|, and (2) the total number of
// media packets for |kNumFrames| frames is at least
// |minimum_media_packets_fec_|.
constexpr size_t kNumPackets = 2;
constexpr size_t kNumFrames = 2;
FecProtectionParams params = {15, 3, kFecMaskRandom};
// Expecting one FEC packet.
ulpfec_generator_.SetProtectionParameters(params, params);
uint32_t last_timestamp = 0;
for (size_t i = 0; i < kNumFrames; ++i) {
packet_generator_.NewFrame(kNumPackets);
for (size_t j = 0; j < kNumPackets; ++j) {
std::unique_ptr<AugmentedPacket> packet =
packet_generator_.NextPacket(i * kNumPackets + j, 10);
RtpPacketToSend rtp_packet(nullptr);
EXPECT_TRUE(rtp_packet.Parse(packet->data.data(), packet->data.size()));
ulpfec_generator_.AddPacketAndGenerateFec(rtp_packet);
last_timestamp = packet->header.timestamp;
}
}
std::vector<std::unique_ptr<RtpPacketToSend>> fec_packets =
ulpfec_generator_.GetFecPackets();
EXPECT_EQ(fec_packets.size(), 1u);
const uint16_t seq_num = packet_generator_.NextPacketSeqNum();
fec_packets[0]->SetSequenceNumber(seq_num);
VerifyHeader(seq_num, last_timestamp, kRedPayloadType, kFecPayloadType, false,
fec_packets[0]->Buffer());
}
TEST_F(UlpfecGeneratorTest, MixedMediaRtpHeaderLengths) {
constexpr size_t kShortRtpHeaderLength = 12;
constexpr size_t kLongRtpHeaderLength = 16;
// Only one frame required to generate FEC.
FecProtectionParams params = {127, 1, kFecMaskRandom};
ulpfec_generator_.SetProtectionParameters(params, params);
// Fill up internal buffer with media packets with short RTP header length.
packet_generator_.NewFrame(kUlpfecMaxMediaPackets + 1);
for (size_t i = 0; i < kUlpfecMaxMediaPackets; ++i) {
std::unique_ptr<AugmentedPacket> packet =
packet_generator_.NextPacket(i, 10);
RtpPacketToSend rtp_packet(nullptr);
EXPECT_TRUE(rtp_packet.Parse(packet->data.data(), packet->data.size()));
EXPECT_EQ(rtp_packet.headers_size(), kShortRtpHeaderLength);
ulpfec_generator_.AddPacketAndGenerateFec(rtp_packet);
EXPECT_TRUE(ulpfec_generator_.GetFecPackets().empty());
}
// Kick off FEC generation with media packet with long RTP header length.
// Since the internal buffer is full, this packet will not be protected.
std::unique_ptr<AugmentedPacket> packet =
packet_generator_.NextPacket(kUlpfecMaxMediaPackets, 10);
RtpPacketToSend rtp_packet(nullptr);
EXPECT_TRUE(rtp_packet.Parse(packet->data.data(), packet->data.size()));
EXPECT_TRUE(rtp_packet.SetPayloadSize(0) != nullptr);
const uint32_t csrcs[]{1};
rtp_packet.SetCsrcs(csrcs);
EXPECT_EQ(rtp_packet.headers_size(), kLongRtpHeaderLength);
ulpfec_generator_.AddPacketAndGenerateFec(rtp_packet);
std::vector<std::unique_ptr<RtpPacketToSend>> fec_packets =
ulpfec_generator_.GetFecPackets();
EXPECT_FALSE(fec_packets.empty());
// Ensure that the RED header is placed correctly, i.e. the correct
// RTP header length was used in the RED packet creation.
uint16_t seq_num = packet_generator_.NextPacketSeqNum();
for (const auto& fec_packet : fec_packets) {
fec_packet->SetSequenceNumber(seq_num++);
EXPECT_EQ(kFecPayloadType, fec_packet->data()[kShortRtpHeaderLength]);
}
}
TEST_F(UlpfecGeneratorTest, UpdatesProtectionParameters) {
const FecProtectionParams kKeyFrameParams = {25, /*max_fec_frames=*/2,
kFecMaskRandom};
const FecProtectionParams kDeltaFrameParams = {25, /*max_fec_frames=*/5,
kFecMaskRandom};
ulpfec_generator_.SetProtectionParameters(kDeltaFrameParams, kKeyFrameParams);
// No params applied yet.
EXPECT_EQ(ulpfec_generator_.CurrentParams().max_fec_frames, 0);
// Helper function to add a single-packet frame market as either key-frame
// or delta-frame.
auto add_frame = [&](bool is_keyframe) {
packet_generator_.NewFrame(1);
std::unique_ptr<AugmentedPacket> packet =
packet_generator_.NextPacket(0, 10);
RtpPacketToSend rtp_packet(nullptr);
EXPECT_TRUE(rtp_packet.Parse(packet->data.data(), packet->data.size()));
rtp_packet.set_is_key_frame(is_keyframe);
ulpfec_generator_.AddPacketAndGenerateFec(rtp_packet);
};
// Add key-frame, keyframe params should apply, no FEC generated yet.
add_frame(true);
EXPECT_EQ(ulpfec_generator_.CurrentParams().max_fec_frames, 2);
EXPECT_TRUE(ulpfec_generator_.GetFecPackets().empty());
// Add delta-frame, generated FEC packet. Params will not be updated until
// next added packet though.
add_frame(false);
EXPECT_EQ(ulpfec_generator_.CurrentParams().max_fec_frames, 2);
EXPECT_FALSE(ulpfec_generator_.GetFecPackets().empty());
// Add delta-frame, now params get updated.
add_frame(false);
EXPECT_EQ(ulpfec_generator_.CurrentParams().max_fec_frames, 5);
EXPECT_TRUE(ulpfec_generator_.GetFecPackets().empty());
// Add yet another delta-frame.
add_frame(false);
EXPECT_EQ(ulpfec_generator_.CurrentParams().max_fec_frames, 5);
EXPECT_TRUE(ulpfec_generator_.GetFecPackets().empty());
// Add key-frame, params immediately switch to key-frame ones. The two
// buffered frames plus the key-frame is protected and fec emitted,
// even though the frame count is technically over the keyframe frame count
// threshold.
add_frame(true);
EXPECT_EQ(ulpfec_generator_.CurrentParams().max_fec_frames, 2);
EXPECT_FALSE(ulpfec_generator_.GetFecPackets().empty());
}
} // namespace webrtc