mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-13 05:40:42 +01:00

The goal of this work is to make it easier to experiment with the bandwidth estimation implementation. For this reason network control functionality is moved from SendSideCongestionController(SSCC), PacedSender and BitrateController to the newly created GoogCcNetworkController which implements the newly created NetworkControllerInterface. This allows the implementation to be replaced at runtime in the future. This is the first part of a split of a larger CL, see: https://webrtc-review.googlesource.com/c/src/+/39788/8 For further explanations. Bug: webrtc:8415 Change-Id: I770189c04cc31b313bd4e57821acff55fbcb1ad3 Reviewed-on: https://webrtc-review.googlesource.com/43840 Commit-Queue: Sebastian Jansson <srte@webrtc.org> Reviewed-by: Björn Terelius <terelius@webrtc.org> Reviewed-by: Stefan Holmer <stefan@webrtc.org> Cr-Commit-Position: refs/heads/master@{#21868}
2149 lines
88 KiB
C++
2149 lines
88 KiB
C++
/*
|
|
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "rtc_tools/event_log_visualizer/analyzer.h"
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <limits>
|
|
#include <map>
|
|
#include <sstream>
|
|
#include <string>
|
|
#include <utility>
|
|
|
|
#include "call/audio_receive_stream.h"
|
|
#include "call/audio_send_stream.h"
|
|
#include "call/call.h"
|
|
#include "call/video_receive_stream.h"
|
|
#include "call/video_send_stream.h"
|
|
#include "common_types.h" // NOLINT(build/include)
|
|
#include "logging/rtc_event_log/rtc_stream_config.h"
|
|
#include "modules/audio_coding/neteq/tools/audio_sink.h"
|
|
#include "modules/audio_coding/neteq/tools/fake_decode_from_file.h"
|
|
#include "modules/audio_coding/neteq/tools/neteq_delay_analyzer.h"
|
|
#include "modules/audio_coding/neteq/tools/neteq_replacement_input.h"
|
|
#include "modules/audio_coding/neteq/tools/neteq_test.h"
|
|
#include "modules/audio_coding/neteq/tools/resample_input_audio_file.h"
|
|
#include "modules/congestion_controller/acknowledged_bitrate_estimator.h"
|
|
#include "modules/congestion_controller/bitrate_estimator.h"
|
|
#include "modules/congestion_controller/delay_based_bwe.h"
|
|
#include "modules/congestion_controller/include/receive_side_congestion_controller.h"
|
|
#include "modules/congestion_controller/include/send_side_congestion_controller.h"
|
|
#include "modules/include/module_common_types.h"
|
|
#include "modules/pacing/packet_router.h"
|
|
#include "modules/rtp_rtcp/include/rtp_rtcp.h"
|
|
#include "modules/rtp_rtcp/include/rtp_rtcp_defines.h"
|
|
#include "modules/rtp_rtcp/source/rtcp_packet/common_header.h"
|
|
#include "modules/rtp_rtcp/source/rtcp_packet/receiver_report.h"
|
|
#include "modules/rtp_rtcp/source/rtcp_packet/remb.h"
|
|
#include "modules/rtp_rtcp/source/rtcp_packet/sender_report.h"
|
|
#include "modules/rtp_rtcp/source/rtcp_packet/transport_feedback.h"
|
|
#include "modules/rtp_rtcp/source/rtp_header_extensions.h"
|
|
#include "modules/rtp_rtcp/source/rtp_utility.h"
|
|
#include "rtc_base/checks.h"
|
|
#include "rtc_base/format_macros.h"
|
|
#include "rtc_base/logging.h"
|
|
#include "rtc_base/numerics/sequence_number_util.h"
|
|
#include "rtc_base/ptr_util.h"
|
|
#include "rtc_base/rate_statistics.h"
|
|
|
|
#ifndef BWE_TEST_LOGGING_COMPILE_TIME_ENABLE
|
|
#define BWE_TEST_LOGGING_COMPILE_TIME_ENABLE 0
|
|
#endif // BWE_TEST_LOGGING_COMPILE_TIME_ENABLE
|
|
|
|
namespace webrtc {
|
|
namespace plotting {
|
|
|
|
namespace {
|
|
|
|
void SortPacketFeedbackVector(std::vector<PacketFeedback>* vec) {
|
|
auto pred = [](const PacketFeedback& packet_feedback) {
|
|
return packet_feedback.arrival_time_ms == PacketFeedback::kNotReceived;
|
|
};
|
|
vec->erase(std::remove_if(vec->begin(), vec->end(), pred), vec->end());
|
|
std::sort(vec->begin(), vec->end(), PacketFeedbackComparator());
|
|
}
|
|
|
|
std::string SsrcToString(uint32_t ssrc) {
|
|
std::stringstream ss;
|
|
ss << "SSRC " << ssrc;
|
|
return ss.str();
|
|
}
|
|
|
|
// Checks whether an SSRC is contained in the list of desired SSRCs.
|
|
// Note that an empty SSRC list matches every SSRC.
|
|
bool MatchingSsrc(uint32_t ssrc, const std::vector<uint32_t>& desired_ssrc) {
|
|
if (desired_ssrc.size() == 0)
|
|
return true;
|
|
return std::find(desired_ssrc.begin(), desired_ssrc.end(), ssrc) !=
|
|
desired_ssrc.end();
|
|
}
|
|
|
|
double AbsSendTimeToMicroseconds(int64_t abs_send_time) {
|
|
// The timestamp is a fixed point representation with 6 bits for seconds
|
|
// and 18 bits for fractions of a second. Thus, we divide by 2^18 to get the
|
|
// time in seconds and then multiply by 1000000 to convert to microseconds.
|
|
static constexpr double kTimestampToMicroSec =
|
|
1000000.0 / static_cast<double>(1ul << 18);
|
|
return abs_send_time * kTimestampToMicroSec;
|
|
}
|
|
|
|
// Computes the difference |later| - |earlier| where |later| and |earlier|
|
|
// are counters that wrap at |modulus|. The difference is chosen to have the
|
|
// least absolute value. For example if |modulus| is 8, then the difference will
|
|
// be chosen in the range [-3, 4]. If |modulus| is 9, then the difference will
|
|
// be in [-4, 4].
|
|
int64_t WrappingDifference(uint32_t later, uint32_t earlier, int64_t modulus) {
|
|
RTC_DCHECK_LE(1, modulus);
|
|
RTC_DCHECK_LT(later, modulus);
|
|
RTC_DCHECK_LT(earlier, modulus);
|
|
int64_t difference =
|
|
static_cast<int64_t>(later) - static_cast<int64_t>(earlier);
|
|
int64_t max_difference = modulus / 2;
|
|
int64_t min_difference = max_difference - modulus + 1;
|
|
if (difference > max_difference) {
|
|
difference -= modulus;
|
|
}
|
|
if (difference < min_difference) {
|
|
difference += modulus;
|
|
}
|
|
if (difference > max_difference / 2 || difference < min_difference / 2) {
|
|
RTC_LOG(LS_WARNING) << "Difference between" << later << " and " << earlier
|
|
<< " expected to be in the range ("
|
|
<< min_difference / 2 << "," << max_difference / 2
|
|
<< ") but is " << difference
|
|
<< ". Correct unwrapping is uncertain.";
|
|
}
|
|
return difference;
|
|
}
|
|
|
|
// Return default values for header extensions, to use on streams without stored
|
|
// mapping data. Currently this only applies to audio streams, since the mapping
|
|
// is not stored in the event log.
|
|
// TODO(ivoc): Remove this once this mapping is stored in the event log for
|
|
// audio streams. Tracking bug: webrtc:6399
|
|
webrtc::RtpHeaderExtensionMap GetDefaultHeaderExtensionMap() {
|
|
webrtc::RtpHeaderExtensionMap default_map;
|
|
default_map.Register<AudioLevel>(webrtc::RtpExtension::kAudioLevelDefaultId);
|
|
default_map.Register<TransmissionOffset>(
|
|
webrtc::RtpExtension::kTimestampOffsetDefaultId);
|
|
default_map.Register<AbsoluteSendTime>(
|
|
webrtc::RtpExtension::kAbsSendTimeDefaultId);
|
|
default_map.Register<VideoOrientation>(
|
|
webrtc::RtpExtension::kVideoRotationDefaultId);
|
|
default_map.Register<VideoContentTypeExtension>(
|
|
webrtc::RtpExtension::kVideoContentTypeDefaultId);
|
|
default_map.Register<VideoTimingExtension>(
|
|
webrtc::RtpExtension::kVideoTimingDefaultId);
|
|
default_map.Register<TransportSequenceNumber>(
|
|
webrtc::RtpExtension::kTransportSequenceNumberDefaultId);
|
|
default_map.Register<PlayoutDelayLimits>(
|
|
webrtc::RtpExtension::kPlayoutDelayDefaultId);
|
|
return default_map;
|
|
}
|
|
|
|
constexpr float kLeftMargin = 0.01f;
|
|
constexpr float kRightMargin = 0.02f;
|
|
constexpr float kBottomMargin = 0.02f;
|
|
constexpr float kTopMargin = 0.05f;
|
|
|
|
rtc::Optional<double> NetworkDelayDiff_AbsSendTime(
|
|
const LoggedRtpPacket& old_packet,
|
|
const LoggedRtpPacket& new_packet) {
|
|
if (old_packet.header.extension.hasAbsoluteSendTime &&
|
|
new_packet.header.extension.hasAbsoluteSendTime) {
|
|
int64_t send_time_diff = WrappingDifference(
|
|
new_packet.header.extension.absoluteSendTime,
|
|
old_packet.header.extension.absoluteSendTime, 1ul << 24);
|
|
int64_t recv_time_diff = new_packet.timestamp - old_packet.timestamp;
|
|
double delay_change_us =
|
|
recv_time_diff - AbsSendTimeToMicroseconds(send_time_diff);
|
|
return delay_change_us / 1000;
|
|
} else {
|
|
return rtc::nullopt;
|
|
}
|
|
}
|
|
|
|
rtc::Optional<double> NetworkDelayDiff_CaptureTime(
|
|
const LoggedRtpPacket& old_packet,
|
|
const LoggedRtpPacket& new_packet) {
|
|
int64_t send_time_diff = WrappingDifference(
|
|
new_packet.header.timestamp, old_packet.header.timestamp, 1ull << 32);
|
|
int64_t recv_time_diff = new_packet.timestamp - old_packet.timestamp;
|
|
|
|
const double kVideoSampleRate = 90000;
|
|
// TODO(terelius): We treat all streams as video for now, even though
|
|
// audio might be sampled at e.g. 16kHz, because it is really difficult to
|
|
// figure out the true sampling rate of a stream. The effect is that the
|
|
// delay will be scaled incorrectly for non-video streams.
|
|
|
|
double delay_change =
|
|
static_cast<double>(recv_time_diff) / 1000 -
|
|
static_cast<double>(send_time_diff) / kVideoSampleRate * 1000;
|
|
if (delay_change < -10000 || 10000 < delay_change) {
|
|
RTC_LOG(LS_WARNING) << "Very large delay change. Timestamps correct?";
|
|
RTC_LOG(LS_WARNING) << "Old capture time " << old_packet.header.timestamp
|
|
<< ", received time " << old_packet.timestamp;
|
|
RTC_LOG(LS_WARNING) << "New capture time " << new_packet.header.timestamp
|
|
<< ", received time " << new_packet.timestamp;
|
|
RTC_LOG(LS_WARNING) << "Receive time difference " << recv_time_diff << " = "
|
|
<< static_cast<double>(recv_time_diff) / 1000000 << "s";
|
|
RTC_LOG(LS_WARNING) << "Send time difference " << send_time_diff << " = "
|
|
<< static_cast<double>(send_time_diff) /
|
|
kVideoSampleRate
|
|
<< "s";
|
|
}
|
|
return delay_change;
|
|
}
|
|
|
|
// For each element in data, use |get_y()| to extract a y-coordinate and
|
|
// store the result in a TimeSeries.
|
|
template <typename DataType>
|
|
void ProcessPoints(
|
|
rtc::FunctionView<rtc::Optional<float>(const DataType&)> get_y,
|
|
const std::vector<DataType>& data,
|
|
uint64_t begin_time,
|
|
TimeSeries* result) {
|
|
for (size_t i = 0; i < data.size(); i++) {
|
|
float x = static_cast<float>(data[i].timestamp - begin_time) / 1000000;
|
|
rtc::Optional<float> y = get_y(data[i]);
|
|
if (y)
|
|
result->points.emplace_back(x, *y);
|
|
}
|
|
}
|
|
|
|
// For each pair of adjacent elements in |data|, use |get_y| to extract a
|
|
// y-coordinate and store the result in a TimeSeries. Note that the x-coordinate
|
|
// will be the time of the second element in the pair.
|
|
template <typename DataType, typename ResultType>
|
|
void ProcessPairs(
|
|
rtc::FunctionView<rtc::Optional<ResultType>(const DataType&,
|
|
const DataType&)> get_y,
|
|
const std::vector<DataType>& data,
|
|
uint64_t begin_time,
|
|
TimeSeries* result) {
|
|
for (size_t i = 1; i < data.size(); i++) {
|
|
float x = static_cast<float>(data[i].timestamp - begin_time) / 1000000;
|
|
rtc::Optional<ResultType> y = get_y(data[i - 1], data[i]);
|
|
if (y)
|
|
result->points.emplace_back(x, static_cast<float>(*y));
|
|
}
|
|
}
|
|
|
|
// For each element in data, use |extract()| to extract a y-coordinate and
|
|
// store the result in a TimeSeries.
|
|
template <typename DataType, typename ResultType>
|
|
void AccumulatePoints(
|
|
rtc::FunctionView<rtc::Optional<ResultType>(const DataType&)> extract,
|
|
const std::vector<DataType>& data,
|
|
uint64_t begin_time,
|
|
TimeSeries* result) {
|
|
ResultType sum = 0;
|
|
for (size_t i = 0; i < data.size(); i++) {
|
|
float x = static_cast<float>(data[i].timestamp - begin_time) / 1000000;
|
|
rtc::Optional<ResultType> y = extract(data[i]);
|
|
if (y) {
|
|
sum += *y;
|
|
result->points.emplace_back(x, static_cast<float>(sum));
|
|
}
|
|
}
|
|
}
|
|
|
|
// For each pair of adjacent elements in |data|, use |extract()| to extract a
|
|
// y-coordinate and store the result in a TimeSeries. Note that the x-coordinate
|
|
// will be the time of the second element in the pair.
|
|
template <typename DataType, typename ResultType>
|
|
void AccumulatePairs(
|
|
rtc::FunctionView<rtc::Optional<ResultType>(const DataType&,
|
|
const DataType&)> extract,
|
|
const std::vector<DataType>& data,
|
|
uint64_t begin_time,
|
|
TimeSeries* result) {
|
|
ResultType sum = 0;
|
|
for (size_t i = 1; i < data.size(); i++) {
|
|
float x = static_cast<float>(data[i].timestamp - begin_time) / 1000000;
|
|
rtc::Optional<ResultType> y = extract(data[i - 1], data[i]);
|
|
if (y)
|
|
sum += *y;
|
|
result->points.emplace_back(x, static_cast<float>(sum));
|
|
}
|
|
}
|
|
|
|
// Calculates a moving average of |data| and stores the result in a TimeSeries.
|
|
// A data point is generated every |step| microseconds from |begin_time|
|
|
// to |end_time|. The value of each data point is the average of the data
|
|
// during the preceeding |window_duration_us| microseconds.
|
|
template <typename DataType, typename ResultType>
|
|
void MovingAverage(
|
|
rtc::FunctionView<rtc::Optional<ResultType>(const DataType&)> extract,
|
|
const std::vector<DataType>& data,
|
|
uint64_t begin_time,
|
|
uint64_t end_time,
|
|
uint64_t window_duration_us,
|
|
uint64_t step,
|
|
webrtc::plotting::TimeSeries* result) {
|
|
size_t window_index_begin = 0;
|
|
size_t window_index_end = 0;
|
|
ResultType sum_in_window = 0;
|
|
|
|
for (uint64_t t = begin_time; t < end_time + step; t += step) {
|
|
while (window_index_end < data.size() &&
|
|
data[window_index_end].timestamp < t) {
|
|
rtc::Optional<ResultType> value = extract(data[window_index_end]);
|
|
if (value)
|
|
sum_in_window += *value;
|
|
++window_index_end;
|
|
}
|
|
while (window_index_begin < data.size() &&
|
|
data[window_index_begin].timestamp < t - window_duration_us) {
|
|
rtc::Optional<ResultType> value = extract(data[window_index_begin]);
|
|
if (value)
|
|
sum_in_window -= *value;
|
|
++window_index_begin;
|
|
}
|
|
float window_duration_s = static_cast<float>(window_duration_us) / 1000000;
|
|
float x = static_cast<float>(t - begin_time) / 1000000;
|
|
float y = sum_in_window / window_duration_s;
|
|
result->points.emplace_back(x, y);
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
EventLogAnalyzer::EventLogAnalyzer(const ParsedRtcEventLog& log)
|
|
: parsed_log_(log), window_duration_(250000), step_(10000) {
|
|
uint64_t first_timestamp = std::numeric_limits<uint64_t>::max();
|
|
uint64_t last_timestamp = std::numeric_limits<uint64_t>::min();
|
|
|
|
PacketDirection direction;
|
|
uint8_t header[IP_PACKET_SIZE];
|
|
size_t header_length;
|
|
size_t total_length;
|
|
|
|
uint8_t last_incoming_rtcp_packet[IP_PACKET_SIZE];
|
|
uint8_t last_incoming_rtcp_packet_length = 0;
|
|
|
|
// Make a default extension map for streams without configuration information.
|
|
// TODO(ivoc): Once configuration of audio streams is stored in the event log,
|
|
// this can be removed. Tracking bug: webrtc:6399
|
|
RtpHeaderExtensionMap default_extension_map = GetDefaultHeaderExtensionMap();
|
|
|
|
rtc::Optional<uint64_t> last_log_start;
|
|
|
|
for (size_t i = 0; i < parsed_log_.GetNumberOfEvents(); i++) {
|
|
ParsedRtcEventLog::EventType event_type = parsed_log_.GetEventType(i);
|
|
if (event_type != ParsedRtcEventLog::VIDEO_RECEIVER_CONFIG_EVENT &&
|
|
event_type != ParsedRtcEventLog::VIDEO_SENDER_CONFIG_EVENT &&
|
|
event_type != ParsedRtcEventLog::AUDIO_RECEIVER_CONFIG_EVENT &&
|
|
event_type != ParsedRtcEventLog::AUDIO_SENDER_CONFIG_EVENT &&
|
|
event_type != ParsedRtcEventLog::LOG_START &&
|
|
event_type != ParsedRtcEventLog::LOG_END) {
|
|
uint64_t timestamp = parsed_log_.GetTimestamp(i);
|
|
first_timestamp = std::min(first_timestamp, timestamp);
|
|
last_timestamp = std::max(last_timestamp, timestamp);
|
|
}
|
|
|
|
switch (parsed_log_.GetEventType(i)) {
|
|
case ParsedRtcEventLog::VIDEO_RECEIVER_CONFIG_EVENT: {
|
|
rtclog::StreamConfig config = parsed_log_.GetVideoReceiveConfig(i);
|
|
StreamId stream(config.remote_ssrc, kIncomingPacket);
|
|
video_ssrcs_.insert(stream);
|
|
StreamId rtx_stream(config.rtx_ssrc, kIncomingPacket);
|
|
video_ssrcs_.insert(rtx_stream);
|
|
rtx_ssrcs_.insert(rtx_stream);
|
|
break;
|
|
}
|
|
case ParsedRtcEventLog::VIDEO_SENDER_CONFIG_EVENT: {
|
|
std::vector<rtclog::StreamConfig> configs =
|
|
parsed_log_.GetVideoSendConfig(i);
|
|
for (const auto& config : configs) {
|
|
StreamId stream(config.local_ssrc, kOutgoingPacket);
|
|
video_ssrcs_.insert(stream);
|
|
StreamId rtx_stream(config.rtx_ssrc, kOutgoingPacket);
|
|
video_ssrcs_.insert(rtx_stream);
|
|
rtx_ssrcs_.insert(rtx_stream);
|
|
}
|
|
break;
|
|
}
|
|
case ParsedRtcEventLog::AUDIO_RECEIVER_CONFIG_EVENT: {
|
|
rtclog::StreamConfig config = parsed_log_.GetAudioReceiveConfig(i);
|
|
StreamId stream(config.remote_ssrc, kIncomingPacket);
|
|
audio_ssrcs_.insert(stream);
|
|
break;
|
|
}
|
|
case ParsedRtcEventLog::AUDIO_SENDER_CONFIG_EVENT: {
|
|
rtclog::StreamConfig config = parsed_log_.GetAudioSendConfig(i);
|
|
StreamId stream(config.local_ssrc, kOutgoingPacket);
|
|
audio_ssrcs_.insert(stream);
|
|
break;
|
|
}
|
|
case ParsedRtcEventLog::RTP_EVENT: {
|
|
RtpHeaderExtensionMap* extension_map = parsed_log_.GetRtpHeader(
|
|
i, &direction, header, &header_length, &total_length, nullptr);
|
|
RtpUtility::RtpHeaderParser rtp_parser(header, header_length);
|
|
RTPHeader parsed_header;
|
|
if (extension_map != nullptr) {
|
|
rtp_parser.Parse(&parsed_header, extension_map);
|
|
} else {
|
|
// Use the default extension map.
|
|
// TODO(ivoc): Once configuration of audio streams is stored in the
|
|
// event log, this can be removed.
|
|
// Tracking bug: webrtc:6399
|
|
rtp_parser.Parse(&parsed_header, &default_extension_map);
|
|
}
|
|
uint64_t timestamp = parsed_log_.GetTimestamp(i);
|
|
StreamId stream(parsed_header.ssrc, direction);
|
|
rtp_packets_[stream].push_back(
|
|
LoggedRtpPacket(timestamp, parsed_header, total_length));
|
|
break;
|
|
}
|
|
case ParsedRtcEventLog::RTCP_EVENT: {
|
|
uint8_t packet[IP_PACKET_SIZE];
|
|
parsed_log_.GetRtcpPacket(i, &direction, packet, &total_length);
|
|
// Currently incoming RTCP packets are logged twice, both for audio and
|
|
// video. Only act on one of them. Compare against the previous parsed
|
|
// incoming RTCP packet.
|
|
if (direction == webrtc::kIncomingPacket) {
|
|
RTC_CHECK_LE(total_length, IP_PACKET_SIZE);
|
|
if (total_length == last_incoming_rtcp_packet_length &&
|
|
memcmp(last_incoming_rtcp_packet, packet, total_length) == 0) {
|
|
continue;
|
|
} else {
|
|
memcpy(last_incoming_rtcp_packet, packet, total_length);
|
|
last_incoming_rtcp_packet_length = total_length;
|
|
}
|
|
}
|
|
rtcp::CommonHeader header;
|
|
const uint8_t* packet_end = packet + total_length;
|
|
for (const uint8_t* block = packet; block < packet_end;
|
|
block = header.NextPacket()) {
|
|
RTC_CHECK(header.Parse(block, packet_end - block));
|
|
if (header.type() == rtcp::TransportFeedback::kPacketType &&
|
|
header.fmt() == rtcp::TransportFeedback::kFeedbackMessageType) {
|
|
std::unique_ptr<rtcp::TransportFeedback> rtcp_packet(
|
|
rtc::MakeUnique<rtcp::TransportFeedback>());
|
|
if (rtcp_packet->Parse(header)) {
|
|
uint32_t ssrc = rtcp_packet->sender_ssrc();
|
|
StreamId stream(ssrc, direction);
|
|
uint64_t timestamp = parsed_log_.GetTimestamp(i);
|
|
rtcp_packets_[stream].push_back(LoggedRtcpPacket(
|
|
timestamp, kRtcpTransportFeedback, std::move(rtcp_packet)));
|
|
}
|
|
} else if (header.type() == rtcp::SenderReport::kPacketType) {
|
|
std::unique_ptr<rtcp::SenderReport> rtcp_packet(
|
|
rtc::MakeUnique<rtcp::SenderReport>());
|
|
if (rtcp_packet->Parse(header)) {
|
|
uint32_t ssrc = rtcp_packet->sender_ssrc();
|
|
StreamId stream(ssrc, direction);
|
|
uint64_t timestamp = parsed_log_.GetTimestamp(i);
|
|
rtcp_packets_[stream].push_back(
|
|
LoggedRtcpPacket(timestamp, kRtcpSr, std::move(rtcp_packet)));
|
|
}
|
|
} else if (header.type() == rtcp::ReceiverReport::kPacketType) {
|
|
std::unique_ptr<rtcp::ReceiverReport> rtcp_packet(
|
|
rtc::MakeUnique<rtcp::ReceiverReport>());
|
|
if (rtcp_packet->Parse(header)) {
|
|
uint32_t ssrc = rtcp_packet->sender_ssrc();
|
|
StreamId stream(ssrc, direction);
|
|
uint64_t timestamp = parsed_log_.GetTimestamp(i);
|
|
rtcp_packets_[stream].push_back(
|
|
LoggedRtcpPacket(timestamp, kRtcpRr, std::move(rtcp_packet)));
|
|
}
|
|
} else if (header.type() == rtcp::Remb::kPacketType &&
|
|
header.fmt() == rtcp::Remb::kFeedbackMessageType) {
|
|
std::unique_ptr<rtcp::Remb> rtcp_packet(
|
|
rtc::MakeUnique<rtcp::Remb>());
|
|
if (rtcp_packet->Parse(header)) {
|
|
uint32_t ssrc = rtcp_packet->sender_ssrc();
|
|
StreamId stream(ssrc, direction);
|
|
uint64_t timestamp = parsed_log_.GetTimestamp(i);
|
|
rtcp_packets_[stream].push_back(LoggedRtcpPacket(
|
|
timestamp, kRtcpRemb, std::move(rtcp_packet)));
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case ParsedRtcEventLog::LOG_START: {
|
|
if (last_log_start) {
|
|
// A LOG_END event was missing. Use last_timestamp.
|
|
RTC_DCHECK_GE(last_timestamp, *last_log_start);
|
|
log_segments_.push_back(
|
|
std::make_pair(*last_log_start, last_timestamp));
|
|
}
|
|
last_log_start = parsed_log_.GetTimestamp(i);
|
|
break;
|
|
}
|
|
case ParsedRtcEventLog::LOG_END: {
|
|
RTC_DCHECK(last_log_start);
|
|
log_segments_.push_back(
|
|
std::make_pair(*last_log_start, parsed_log_.GetTimestamp(i)));
|
|
last_log_start.reset();
|
|
break;
|
|
}
|
|
case ParsedRtcEventLog::AUDIO_PLAYOUT_EVENT: {
|
|
uint32_t this_ssrc;
|
|
parsed_log_.GetAudioPlayout(i, &this_ssrc);
|
|
audio_playout_events_[this_ssrc].push_back(parsed_log_.GetTimestamp(i));
|
|
break;
|
|
}
|
|
case ParsedRtcEventLog::LOSS_BASED_BWE_UPDATE: {
|
|
LossBasedBweUpdate bwe_update;
|
|
bwe_update.timestamp = parsed_log_.GetTimestamp(i);
|
|
parsed_log_.GetLossBasedBweUpdate(i, &bwe_update.new_bitrate,
|
|
&bwe_update.fraction_loss,
|
|
&bwe_update.expected_packets);
|
|
bwe_loss_updates_.push_back(bwe_update);
|
|
break;
|
|
}
|
|
case ParsedRtcEventLog::DELAY_BASED_BWE_UPDATE: {
|
|
bwe_delay_updates_.push_back(parsed_log_.GetDelayBasedBweUpdate(i));
|
|
break;
|
|
}
|
|
case ParsedRtcEventLog::AUDIO_NETWORK_ADAPTATION_EVENT: {
|
|
AudioNetworkAdaptationEvent ana_event;
|
|
ana_event.timestamp = parsed_log_.GetTimestamp(i);
|
|
parsed_log_.GetAudioNetworkAdaptation(i, &ana_event.config);
|
|
audio_network_adaptation_events_.push_back(ana_event);
|
|
break;
|
|
}
|
|
case ParsedRtcEventLog::BWE_PROBE_CLUSTER_CREATED_EVENT: {
|
|
bwe_probe_cluster_created_events_.push_back(
|
|
parsed_log_.GetBweProbeClusterCreated(i));
|
|
break;
|
|
}
|
|
case ParsedRtcEventLog::BWE_PROBE_RESULT_EVENT: {
|
|
bwe_probe_result_events_.push_back(parsed_log_.GetBweProbeResult(i));
|
|
break;
|
|
}
|
|
case ParsedRtcEventLog::ALR_STATE_EVENT: {
|
|
alr_state_events_.push_back(parsed_log_.GetAlrState(i));
|
|
break;
|
|
}
|
|
case ParsedRtcEventLog::UNKNOWN_EVENT: {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (last_timestamp < first_timestamp) {
|
|
// No useful events in the log.
|
|
first_timestamp = last_timestamp = 0;
|
|
}
|
|
begin_time_ = first_timestamp;
|
|
end_time_ = last_timestamp;
|
|
call_duration_s_ = static_cast<float>(end_time_ - begin_time_) / 1000000;
|
|
if (last_log_start) {
|
|
// The log was missing the last LOG_END event. Fake it.
|
|
log_segments_.push_back(std::make_pair(*last_log_start, end_time_));
|
|
}
|
|
RTC_LOG(LS_INFO) << "Found " << log_segments_.size()
|
|
<< " (LOG_START, LOG_END) segments in log.";
|
|
}
|
|
|
|
class BitrateObserver : public SendSideCongestionController::Observer,
|
|
public RemoteBitrateObserver {
|
|
public:
|
|
BitrateObserver() : last_bitrate_bps_(0), bitrate_updated_(false) {}
|
|
|
|
void OnNetworkChanged(uint32_t bitrate_bps,
|
|
uint8_t fraction_loss,
|
|
int64_t rtt_ms,
|
|
int64_t probing_interval_ms) override {
|
|
last_bitrate_bps_ = bitrate_bps;
|
|
bitrate_updated_ = true;
|
|
}
|
|
|
|
void OnReceiveBitrateChanged(const std::vector<uint32_t>& ssrcs,
|
|
uint32_t bitrate) override {}
|
|
|
|
uint32_t last_bitrate_bps() const { return last_bitrate_bps_; }
|
|
bool GetAndResetBitrateUpdated() {
|
|
bool bitrate_updated = bitrate_updated_;
|
|
bitrate_updated_ = false;
|
|
return bitrate_updated;
|
|
}
|
|
|
|
private:
|
|
uint32_t last_bitrate_bps_;
|
|
bool bitrate_updated_;
|
|
};
|
|
|
|
bool EventLogAnalyzer::IsRtxSsrc(StreamId stream_id) const {
|
|
return rtx_ssrcs_.count(stream_id) == 1;
|
|
}
|
|
|
|
bool EventLogAnalyzer::IsVideoSsrc(StreamId stream_id) const {
|
|
return video_ssrcs_.count(stream_id) == 1;
|
|
}
|
|
|
|
bool EventLogAnalyzer::IsAudioSsrc(StreamId stream_id) const {
|
|
return audio_ssrcs_.count(stream_id) == 1;
|
|
}
|
|
|
|
std::string EventLogAnalyzer::GetStreamName(StreamId stream_id) const {
|
|
std::stringstream name;
|
|
if (IsAudioSsrc(stream_id)) {
|
|
name << "Audio ";
|
|
} else if (IsVideoSsrc(stream_id)) {
|
|
name << "Video ";
|
|
} else {
|
|
name << "Unknown ";
|
|
}
|
|
if (IsRtxSsrc(stream_id))
|
|
name << "RTX ";
|
|
if (stream_id.GetDirection() == kIncomingPacket) {
|
|
name << "(In) ";
|
|
} else {
|
|
name << "(Out) ";
|
|
}
|
|
name << SsrcToString(stream_id.GetSsrc());
|
|
return name.str();
|
|
}
|
|
|
|
// This is much more reliable for outgoing streams than for incoming streams.
|
|
rtc::Optional<uint32_t> EventLogAnalyzer::EstimateRtpClockFrequency(
|
|
const std::vector<LoggedRtpPacket>& packets) const {
|
|
RTC_CHECK(packets.size() >= 2);
|
|
uint64_t end_time_us = log_segments_.empty()
|
|
? std::numeric_limits<uint64_t>::max()
|
|
: log_segments_.front().second;
|
|
SeqNumUnwrapper<uint32_t> unwrapper;
|
|
uint64_t first_rtp_timestamp = unwrapper.Unwrap(packets[0].header.timestamp);
|
|
uint64_t first_log_timestamp = packets[0].timestamp;
|
|
uint64_t last_rtp_timestamp = first_rtp_timestamp;
|
|
uint64_t last_log_timestamp = first_log_timestamp;
|
|
for (size_t i = 1; i < packets.size(); i++) {
|
|
if (packets[i].timestamp > end_time_us)
|
|
break;
|
|
last_rtp_timestamp = unwrapper.Unwrap(packets[i].header.timestamp);
|
|
last_log_timestamp = packets[i].timestamp;
|
|
}
|
|
if (last_log_timestamp - first_log_timestamp < 1000000) {
|
|
RTC_LOG(LS_WARNING)
|
|
<< "Failed to estimate RTP clock frequency: Stream too short. ("
|
|
<< packets.size() << " packets, "
|
|
<< last_log_timestamp - first_log_timestamp << " us)";
|
|
return rtc::nullopt;
|
|
}
|
|
double duration =
|
|
static_cast<double>(last_log_timestamp - first_log_timestamp) / 1000000;
|
|
double estimated_frequency =
|
|
(last_rtp_timestamp - first_rtp_timestamp) / duration;
|
|
for (uint32_t f : {8000, 16000, 32000, 48000, 90000}) {
|
|
if (std::fabs(estimated_frequency - f) < 0.05 * f) {
|
|
return f;
|
|
}
|
|
}
|
|
RTC_LOG(LS_WARNING) << "Failed to estimate RTP clock frequency: Estimate "
|
|
<< estimated_frequency
|
|
<< "not close to any stardard RTP frequency.";
|
|
return rtc::nullopt;
|
|
}
|
|
|
|
float EventLogAnalyzer::ToCallTime(int64_t timestamp) const {
|
|
return static_cast<float>(timestamp - begin_time_) / 1000000;
|
|
}
|
|
|
|
void EventLogAnalyzer::CreatePacketGraph(PacketDirection desired_direction,
|
|
Plot* plot) {
|
|
for (auto& kv : rtp_packets_) {
|
|
StreamId stream_id = kv.first;
|
|
const std::vector<LoggedRtpPacket>& packet_stream = kv.second;
|
|
// Filter on direction and SSRC.
|
|
if (stream_id.GetDirection() != desired_direction ||
|
|
!MatchingSsrc(stream_id.GetSsrc(), desired_ssrc_)) {
|
|
continue;
|
|
}
|
|
|
|
TimeSeries time_series(GetStreamName(stream_id), LineStyle::kBar);
|
|
ProcessPoints<LoggedRtpPacket>(
|
|
[](const LoggedRtpPacket& packet) {
|
|
return rtc::Optional<float>(packet.total_length);
|
|
},
|
|
packet_stream, begin_time_, &time_series);
|
|
plot->AppendTimeSeries(std::move(time_series));
|
|
}
|
|
|
|
plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 1, "Packet size (bytes)", kBottomMargin,
|
|
kTopMargin);
|
|
if (desired_direction == webrtc::PacketDirection::kIncomingPacket) {
|
|
plot->SetTitle("Incoming RTP packets");
|
|
} else if (desired_direction == webrtc::PacketDirection::kOutgoingPacket) {
|
|
plot->SetTitle("Outgoing RTP packets");
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void EventLogAnalyzer::CreateAccumulatedPacketsTimeSeries(
|
|
PacketDirection desired_direction,
|
|
Plot* plot,
|
|
const std::map<StreamId, std::vector<T>>& packets,
|
|
const std::string& label_prefix) {
|
|
for (auto& kv : packets) {
|
|
StreamId stream_id = kv.first;
|
|
const std::vector<T>& packet_stream = kv.second;
|
|
// Filter on direction and SSRC.
|
|
if (stream_id.GetDirection() != desired_direction ||
|
|
!MatchingSsrc(stream_id.GetSsrc(), desired_ssrc_)) {
|
|
continue;
|
|
}
|
|
|
|
std::string label = label_prefix + " " + GetStreamName(stream_id);
|
|
TimeSeries time_series(label, LineStyle::kStep);
|
|
for (size_t i = 0; i < packet_stream.size(); i++) {
|
|
float x = static_cast<float>(packet_stream[i].timestamp - begin_time_) /
|
|
1000000;
|
|
time_series.points.emplace_back(x, i + 1);
|
|
}
|
|
|
|
plot->AppendTimeSeries(std::move(time_series));
|
|
}
|
|
}
|
|
|
|
void EventLogAnalyzer::CreateAccumulatedPacketsGraph(
|
|
PacketDirection desired_direction,
|
|
Plot* plot) {
|
|
CreateAccumulatedPacketsTimeSeries(desired_direction, plot, rtp_packets_,
|
|
"RTP");
|
|
CreateAccumulatedPacketsTimeSeries(desired_direction, plot, rtcp_packets_,
|
|
"RTCP");
|
|
|
|
plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 1, "Received Packets", kBottomMargin, kTopMargin);
|
|
if (desired_direction == webrtc::PacketDirection::kIncomingPacket) {
|
|
plot->SetTitle("Accumulated Incoming RTP/RTCP packets");
|
|
} else if (desired_direction == webrtc::PacketDirection::kOutgoingPacket) {
|
|
plot->SetTitle("Accumulated Outgoing RTP/RTCP packets");
|
|
}
|
|
}
|
|
|
|
// For each SSRC, plot the time between the consecutive playouts.
|
|
void EventLogAnalyzer::CreatePlayoutGraph(Plot* plot) {
|
|
std::map<uint32_t, TimeSeries> time_series;
|
|
std::map<uint32_t, uint64_t> last_playout;
|
|
|
|
uint32_t ssrc;
|
|
|
|
for (size_t i = 0; i < parsed_log_.GetNumberOfEvents(); i++) {
|
|
ParsedRtcEventLog::EventType event_type = parsed_log_.GetEventType(i);
|
|
if (event_type == ParsedRtcEventLog::AUDIO_PLAYOUT_EVENT) {
|
|
parsed_log_.GetAudioPlayout(i, &ssrc);
|
|
uint64_t timestamp = parsed_log_.GetTimestamp(i);
|
|
if (MatchingSsrc(ssrc, desired_ssrc_)) {
|
|
float x = static_cast<float>(timestamp - begin_time_) / 1000000;
|
|
float y = static_cast<float>(timestamp - last_playout[ssrc]) / 1000;
|
|
if (time_series[ssrc].points.size() == 0) {
|
|
// There were no previusly logged playout for this SSRC.
|
|
// Generate a point, but place it on the x-axis.
|
|
y = 0;
|
|
}
|
|
time_series[ssrc].points.push_back(TimeSeriesPoint(x, y));
|
|
last_playout[ssrc] = timestamp;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Set labels and put in graph.
|
|
for (auto& kv : time_series) {
|
|
kv.second.label = SsrcToString(kv.first);
|
|
kv.second.line_style = LineStyle::kBar;
|
|
plot->AppendTimeSeries(std::move(kv.second));
|
|
}
|
|
|
|
plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 1, "Time since last playout (ms)", kBottomMargin,
|
|
kTopMargin);
|
|
plot->SetTitle("Audio playout");
|
|
}
|
|
|
|
// For audio SSRCs, plot the audio level.
|
|
void EventLogAnalyzer::CreateAudioLevelGraph(Plot* plot) {
|
|
std::map<StreamId, TimeSeries> time_series;
|
|
|
|
for (auto& kv : rtp_packets_) {
|
|
StreamId stream_id = kv.first;
|
|
const std::vector<LoggedRtpPacket>& packet_stream = kv.second;
|
|
// TODO(ivoc): When audio send/receive configs are stored in the event
|
|
// log, a check should be added here to only process audio
|
|
// streams. Tracking bug: webrtc:6399
|
|
for (auto& packet : packet_stream) {
|
|
if (packet.header.extension.hasAudioLevel) {
|
|
float x = static_cast<float>(packet.timestamp - begin_time_) / 1000000;
|
|
// The audio level is stored in -dBov (so e.g. -10 dBov is stored as 10)
|
|
// Here we convert it to dBov.
|
|
float y = static_cast<float>(-packet.header.extension.audioLevel);
|
|
time_series[stream_id].points.emplace_back(TimeSeriesPoint(x, y));
|
|
}
|
|
}
|
|
}
|
|
|
|
for (auto& series : time_series) {
|
|
series.second.label = GetStreamName(series.first);
|
|
series.second.line_style = LineStyle::kLine;
|
|
plot->AppendTimeSeries(std::move(series.second));
|
|
}
|
|
|
|
plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetYAxis(-127, 0, "Audio level (dBov)", kBottomMargin,
|
|
kTopMargin);
|
|
plot->SetTitle("Audio level");
|
|
}
|
|
|
|
// For each SSRC, plot the time between the consecutive playouts.
|
|
void EventLogAnalyzer::CreateSequenceNumberGraph(Plot* plot) {
|
|
for (auto& kv : rtp_packets_) {
|
|
StreamId stream_id = kv.first;
|
|
const std::vector<LoggedRtpPacket>& packet_stream = kv.second;
|
|
// Filter on direction and SSRC.
|
|
if (stream_id.GetDirection() != kIncomingPacket ||
|
|
!MatchingSsrc(stream_id.GetSsrc(), desired_ssrc_)) {
|
|
continue;
|
|
}
|
|
|
|
TimeSeries time_series(GetStreamName(stream_id), LineStyle::kBar);
|
|
ProcessPairs<LoggedRtpPacket, float>(
|
|
[](const LoggedRtpPacket& old_packet,
|
|
const LoggedRtpPacket& new_packet) {
|
|
int64_t diff =
|
|
WrappingDifference(new_packet.header.sequenceNumber,
|
|
old_packet.header.sequenceNumber, 1ul << 16);
|
|
return diff;
|
|
},
|
|
packet_stream, begin_time_, &time_series);
|
|
plot->AppendTimeSeries(std::move(time_series));
|
|
}
|
|
|
|
plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 1, "Difference since last packet", kBottomMargin,
|
|
kTopMargin);
|
|
plot->SetTitle("Sequence number");
|
|
}
|
|
|
|
void EventLogAnalyzer::CreateIncomingPacketLossGraph(Plot* plot) {
|
|
for (auto& kv : rtp_packets_) {
|
|
StreamId stream_id = kv.first;
|
|
const std::vector<LoggedRtpPacket>& packet_stream = kv.second;
|
|
// Filter on direction and SSRC.
|
|
if (stream_id.GetDirection() != kIncomingPacket ||
|
|
!MatchingSsrc(stream_id.GetSsrc(), desired_ssrc_) ||
|
|
packet_stream.size() == 0) {
|
|
continue;
|
|
}
|
|
|
|
TimeSeries time_series(GetStreamName(stream_id), LineStyle::kLine,
|
|
PointStyle::kHighlight);
|
|
const uint64_t kWindowUs = 1000000;
|
|
const uint64_t kStep = 1000000;
|
|
SeqNumUnwrapper<uint16_t> unwrapper_;
|
|
SeqNumUnwrapper<uint16_t> prior_unwrapper_;
|
|
size_t window_index_begin = 0;
|
|
size_t window_index_end = 0;
|
|
int64_t highest_seq_number =
|
|
unwrapper_.Unwrap(packet_stream[0].header.sequenceNumber) - 1;
|
|
int64_t highest_prior_seq_number =
|
|
prior_unwrapper_.Unwrap(packet_stream[0].header.sequenceNumber) - 1;
|
|
|
|
for (uint64_t t = begin_time_; t < end_time_ + kStep; t += kStep) {
|
|
while (window_index_end < packet_stream.size() &&
|
|
packet_stream[window_index_end].timestamp < t) {
|
|
int64_t sequence_number = unwrapper_.Unwrap(
|
|
packet_stream[window_index_end].header.sequenceNumber);
|
|
highest_seq_number = std::max(highest_seq_number, sequence_number);
|
|
++window_index_end;
|
|
}
|
|
while (window_index_begin < packet_stream.size() &&
|
|
packet_stream[window_index_begin].timestamp < t - kWindowUs) {
|
|
int64_t sequence_number = prior_unwrapper_.Unwrap(
|
|
packet_stream[window_index_begin].header.sequenceNumber);
|
|
highest_prior_seq_number =
|
|
std::max(highest_prior_seq_number, sequence_number);
|
|
++window_index_begin;
|
|
}
|
|
float x = static_cast<float>(t - begin_time_) / 1000000;
|
|
int64_t expected_packets = highest_seq_number - highest_prior_seq_number;
|
|
if (expected_packets > 0) {
|
|
int64_t received_packets = window_index_end - window_index_begin;
|
|
int64_t lost_packets = expected_packets - received_packets;
|
|
float y = static_cast<float>(lost_packets) / expected_packets * 100;
|
|
time_series.points.emplace_back(x, y);
|
|
}
|
|
}
|
|
plot->AppendTimeSeries(std::move(time_series));
|
|
}
|
|
|
|
plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 1, "Estimated loss rate (%)", kBottomMargin,
|
|
kTopMargin);
|
|
plot->SetTitle("Estimated incoming loss rate");
|
|
}
|
|
|
|
void EventLogAnalyzer::CreateIncomingDelayDeltaGraph(Plot* plot) {
|
|
for (auto& kv : rtp_packets_) {
|
|
StreamId stream_id = kv.first;
|
|
const std::vector<LoggedRtpPacket>& packet_stream = kv.second;
|
|
// Filter on direction and SSRC.
|
|
if (stream_id.GetDirection() != kIncomingPacket ||
|
|
!MatchingSsrc(stream_id.GetSsrc(), desired_ssrc_) ||
|
|
IsAudioSsrc(stream_id) || !IsVideoSsrc(stream_id) ||
|
|
IsRtxSsrc(stream_id)) {
|
|
continue;
|
|
}
|
|
|
|
TimeSeries capture_time_data(GetStreamName(stream_id) + " capture-time",
|
|
LineStyle::kBar);
|
|
ProcessPairs<LoggedRtpPacket, double>(NetworkDelayDiff_CaptureTime,
|
|
packet_stream, begin_time_,
|
|
&capture_time_data);
|
|
plot->AppendTimeSeries(std::move(capture_time_data));
|
|
|
|
TimeSeries send_time_data(GetStreamName(stream_id) + " abs-send-time",
|
|
LineStyle::kBar);
|
|
ProcessPairs<LoggedRtpPacket, double>(NetworkDelayDiff_AbsSendTime,
|
|
packet_stream, begin_time_,
|
|
&send_time_data);
|
|
plot->AppendTimeSeries(std::move(send_time_data));
|
|
}
|
|
|
|
plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 1, "Latency change (ms)", kBottomMargin,
|
|
kTopMargin);
|
|
plot->SetTitle("Network latency difference between consecutive packets");
|
|
}
|
|
|
|
void EventLogAnalyzer::CreateIncomingDelayGraph(Plot* plot) {
|
|
for (auto& kv : rtp_packets_) {
|
|
StreamId stream_id = kv.first;
|
|
const std::vector<LoggedRtpPacket>& packet_stream = kv.second;
|
|
// Filter on direction and SSRC.
|
|
if (stream_id.GetDirection() != kIncomingPacket ||
|
|
!MatchingSsrc(stream_id.GetSsrc(), desired_ssrc_) ||
|
|
IsAudioSsrc(stream_id) || !IsVideoSsrc(stream_id) ||
|
|
IsRtxSsrc(stream_id)) {
|
|
continue;
|
|
}
|
|
|
|
TimeSeries capture_time_data(GetStreamName(stream_id) + " capture-time",
|
|
LineStyle::kLine);
|
|
AccumulatePairs<LoggedRtpPacket, double>(NetworkDelayDiff_CaptureTime,
|
|
packet_stream, begin_time_,
|
|
&capture_time_data);
|
|
plot->AppendTimeSeries(std::move(capture_time_data));
|
|
|
|
TimeSeries send_time_data(GetStreamName(stream_id) + " abs-send-time",
|
|
LineStyle::kLine);
|
|
AccumulatePairs<LoggedRtpPacket, double>(NetworkDelayDiff_AbsSendTime,
|
|
packet_stream, begin_time_,
|
|
&send_time_data);
|
|
plot->AppendTimeSeries(std::move(send_time_data));
|
|
}
|
|
|
|
plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 1, "Latency change (ms)", kBottomMargin,
|
|
kTopMargin);
|
|
plot->SetTitle("Network latency (relative to first packet)");
|
|
}
|
|
|
|
// Plot the fraction of packets lost (as perceived by the loss-based BWE).
|
|
void EventLogAnalyzer::CreateFractionLossGraph(Plot* plot) {
|
|
TimeSeries time_series("Fraction lost", LineStyle::kLine,
|
|
PointStyle::kHighlight);
|
|
for (auto& bwe_update : bwe_loss_updates_) {
|
|
float x = static_cast<float>(bwe_update.timestamp - begin_time_) / 1000000;
|
|
float y = static_cast<float>(bwe_update.fraction_loss) / 255 * 100;
|
|
time_series.points.emplace_back(x, y);
|
|
}
|
|
|
|
plot->AppendTimeSeries(std::move(time_series));
|
|
plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 10, "Percent lost packets", kBottomMargin,
|
|
kTopMargin);
|
|
plot->SetTitle("Reported packet loss");
|
|
}
|
|
|
|
// Plot the total bandwidth used by all RTP streams.
|
|
void EventLogAnalyzer::CreateTotalBitrateGraph(
|
|
PacketDirection desired_direction,
|
|
Plot* plot,
|
|
bool show_detector_state,
|
|
bool show_alr_state) {
|
|
struct TimestampSize {
|
|
TimestampSize(uint64_t t, size_t s) : timestamp(t), size(s) {}
|
|
uint64_t timestamp;
|
|
size_t size;
|
|
};
|
|
std::vector<TimestampSize> packets;
|
|
|
|
PacketDirection direction;
|
|
size_t total_length;
|
|
|
|
// Extract timestamps and sizes for the relevant packets.
|
|
for (size_t i = 0; i < parsed_log_.GetNumberOfEvents(); i++) {
|
|
ParsedRtcEventLog::EventType event_type = parsed_log_.GetEventType(i);
|
|
if (event_type == ParsedRtcEventLog::RTP_EVENT) {
|
|
parsed_log_.GetRtpHeader(i, &direction, nullptr, nullptr, &total_length,
|
|
nullptr);
|
|
if (direction == desired_direction) {
|
|
uint64_t timestamp = parsed_log_.GetTimestamp(i);
|
|
packets.push_back(TimestampSize(timestamp, total_length));
|
|
}
|
|
}
|
|
}
|
|
|
|
size_t window_index_begin = 0;
|
|
size_t window_index_end = 0;
|
|
size_t bytes_in_window = 0;
|
|
|
|
// Calculate a moving average of the bitrate and store in a TimeSeries.
|
|
TimeSeries bitrate_series("Bitrate", LineStyle::kLine);
|
|
for (uint64_t time = begin_time_; time < end_time_ + step_; time += step_) {
|
|
while (window_index_end < packets.size() &&
|
|
packets[window_index_end].timestamp < time) {
|
|
bytes_in_window += packets[window_index_end].size;
|
|
++window_index_end;
|
|
}
|
|
while (window_index_begin < packets.size() &&
|
|
packets[window_index_begin].timestamp < time - window_duration_) {
|
|
RTC_DCHECK_LE(packets[window_index_begin].size, bytes_in_window);
|
|
bytes_in_window -= packets[window_index_begin].size;
|
|
++window_index_begin;
|
|
}
|
|
float window_duration_in_seconds =
|
|
static_cast<float>(window_duration_) / 1000000;
|
|
float x = static_cast<float>(time - begin_time_) / 1000000;
|
|
float y = bytes_in_window * 8 / window_duration_in_seconds / 1000;
|
|
bitrate_series.points.emplace_back(x, y);
|
|
}
|
|
plot->AppendTimeSeries(std::move(bitrate_series));
|
|
|
|
// Overlay the send-side bandwidth estimate over the outgoing bitrate.
|
|
if (desired_direction == kOutgoingPacket) {
|
|
TimeSeries loss_series("Loss-based estimate", LineStyle::kStep);
|
|
for (auto& loss_update : bwe_loss_updates_) {
|
|
float x =
|
|
static_cast<float>(loss_update.timestamp - begin_time_) / 1000000;
|
|
float y = static_cast<float>(loss_update.new_bitrate) / 1000;
|
|
loss_series.points.emplace_back(x, y);
|
|
}
|
|
|
|
TimeSeries delay_series("Delay-based estimate", LineStyle::kStep);
|
|
IntervalSeries overusing_series("Overusing", "#ff8e82",
|
|
IntervalSeries::kHorizontal);
|
|
IntervalSeries underusing_series("Underusing", "#5092fc",
|
|
IntervalSeries::kHorizontal);
|
|
IntervalSeries normal_series("Normal", "#c4ffc4",
|
|
IntervalSeries::kHorizontal);
|
|
IntervalSeries* last_series = &normal_series;
|
|
double last_detector_switch = 0.0;
|
|
|
|
BandwidthUsage last_detector_state = BandwidthUsage::kBwNormal;
|
|
|
|
for (auto& delay_update : bwe_delay_updates_) {
|
|
float x =
|
|
static_cast<float>(delay_update.timestamp - begin_time_) / 1000000;
|
|
float y = static_cast<float>(delay_update.bitrate_bps) / 1000;
|
|
|
|
if (last_detector_state != delay_update.detector_state) {
|
|
last_series->intervals.emplace_back(last_detector_switch, x);
|
|
last_detector_state = delay_update.detector_state;
|
|
last_detector_switch = x;
|
|
|
|
switch (delay_update.detector_state) {
|
|
case BandwidthUsage::kBwNormal:
|
|
last_series = &normal_series;
|
|
break;
|
|
case BandwidthUsage::kBwUnderusing:
|
|
last_series = &underusing_series;
|
|
break;
|
|
case BandwidthUsage::kBwOverusing:
|
|
last_series = &overusing_series;
|
|
break;
|
|
case BandwidthUsage::kLast:
|
|
RTC_NOTREACHED();
|
|
}
|
|
}
|
|
|
|
delay_series.points.emplace_back(x, y);
|
|
}
|
|
|
|
RTC_CHECK(last_series);
|
|
last_series->intervals.emplace_back(last_detector_switch, end_time_);
|
|
|
|
TimeSeries created_series("Probe cluster created.", LineStyle::kNone,
|
|
PointStyle::kHighlight);
|
|
for (auto& cluster : bwe_probe_cluster_created_events_) {
|
|
float x = static_cast<float>(cluster.timestamp - begin_time_) / 1000000;
|
|
float y = static_cast<float>(cluster.bitrate_bps) / 1000;
|
|
created_series.points.emplace_back(x, y);
|
|
}
|
|
|
|
TimeSeries result_series("Probing results.", LineStyle::kNone,
|
|
PointStyle::kHighlight);
|
|
for (auto& result : bwe_probe_result_events_) {
|
|
if (result.bitrate_bps) {
|
|
float x = static_cast<float>(result.timestamp - begin_time_) / 1000000;
|
|
float y = static_cast<float>(*result.bitrate_bps) / 1000;
|
|
result_series.points.emplace_back(x, y);
|
|
}
|
|
}
|
|
|
|
IntervalSeries alr_state("ALR", "#555555", IntervalSeries::kHorizontal);
|
|
bool previously_in_alr = false;
|
|
int64_t alr_start = 0;
|
|
for (auto& alr : alr_state_events_) {
|
|
float y = ToCallTime(alr.timestamp);
|
|
if (!previously_in_alr && alr.in_alr) {
|
|
alr_start = alr.timestamp;
|
|
previously_in_alr = true;
|
|
} else if (previously_in_alr && !alr.in_alr) {
|
|
float x = ToCallTime(alr_start);
|
|
alr_state.intervals.emplace_back(x, y);
|
|
previously_in_alr = false;
|
|
}
|
|
}
|
|
|
|
if (previously_in_alr) {
|
|
float x = ToCallTime(alr_start);
|
|
float y = ToCallTime(end_time_);
|
|
alr_state.intervals.emplace_back(x, y);
|
|
}
|
|
|
|
if (show_detector_state) {
|
|
plot->AppendIntervalSeries(std::move(overusing_series));
|
|
plot->AppendIntervalSeries(std::move(underusing_series));
|
|
plot->AppendIntervalSeries(std::move(normal_series));
|
|
}
|
|
|
|
if (show_alr_state) {
|
|
plot->AppendIntervalSeries(std::move(alr_state));
|
|
}
|
|
plot->AppendTimeSeries(std::move(loss_series));
|
|
plot->AppendTimeSeries(std::move(delay_series));
|
|
plot->AppendTimeSeries(std::move(created_series));
|
|
plot->AppendTimeSeries(std::move(result_series));
|
|
}
|
|
|
|
// Overlay the incoming REMB over the outgoing bitrate
|
|
// and outgoing REMB over incoming bitrate.
|
|
PacketDirection remb_direction =
|
|
desired_direction == kOutgoingPacket ? kIncomingPacket : kOutgoingPacket;
|
|
TimeSeries remb_series("Remb", LineStyle::kStep);
|
|
std::multimap<uint64_t, const LoggedRtcpPacket*> remb_packets;
|
|
for (const auto& kv : rtcp_packets_) {
|
|
if (kv.first.GetDirection() == remb_direction) {
|
|
for (const LoggedRtcpPacket& rtcp_packet : kv.second) {
|
|
if (rtcp_packet.type == kRtcpRemb) {
|
|
remb_packets.insert(
|
|
std::make_pair(rtcp_packet.timestamp, &rtcp_packet));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (const auto& kv : remb_packets) {
|
|
const LoggedRtcpPacket* const rtcp = kv.second;
|
|
const rtcp::Remb* const remb = static_cast<rtcp::Remb*>(rtcp->packet.get());
|
|
float x = static_cast<float>(rtcp->timestamp - begin_time_) / 1000000;
|
|
float y = static_cast<float>(remb->bitrate_bps()) / 1000;
|
|
remb_series.points.emplace_back(x, y);
|
|
}
|
|
plot->AppendTimeSeriesIfNotEmpty(std::move(remb_series));
|
|
|
|
plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 1, "Bitrate (kbps)", kBottomMargin, kTopMargin);
|
|
if (desired_direction == webrtc::PacketDirection::kIncomingPacket) {
|
|
plot->SetTitle("Incoming RTP bitrate");
|
|
} else if (desired_direction == webrtc::PacketDirection::kOutgoingPacket) {
|
|
plot->SetTitle("Outgoing RTP bitrate");
|
|
}
|
|
}
|
|
|
|
// For each SSRC, plot the bandwidth used by that stream.
|
|
void EventLogAnalyzer::CreateStreamBitrateGraph(
|
|
PacketDirection desired_direction,
|
|
Plot* plot) {
|
|
for (auto& kv : rtp_packets_) {
|
|
StreamId stream_id = kv.first;
|
|
const std::vector<LoggedRtpPacket>& packet_stream = kv.second;
|
|
// Filter on direction and SSRC.
|
|
if (stream_id.GetDirection() != desired_direction ||
|
|
!MatchingSsrc(stream_id.GetSsrc(), desired_ssrc_)) {
|
|
continue;
|
|
}
|
|
|
|
TimeSeries time_series(GetStreamName(stream_id), LineStyle::kLine);
|
|
MovingAverage<LoggedRtpPacket, double>(
|
|
[](const LoggedRtpPacket& packet) {
|
|
return packet.total_length * 8.0 / 1000.0;
|
|
},
|
|
packet_stream, begin_time_, end_time_, window_duration_, step_,
|
|
&time_series);
|
|
plot->AppendTimeSeries(std::move(time_series));
|
|
}
|
|
|
|
plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 1, "Bitrate (kbps)", kBottomMargin, kTopMargin);
|
|
if (desired_direction == webrtc::PacketDirection::kIncomingPacket) {
|
|
plot->SetTitle("Incoming bitrate per stream");
|
|
} else if (desired_direction == webrtc::PacketDirection::kOutgoingPacket) {
|
|
plot->SetTitle("Outgoing bitrate per stream");
|
|
}
|
|
}
|
|
|
|
void EventLogAnalyzer::CreateSendSideBweSimulationGraph(Plot* plot) {
|
|
std::multimap<uint64_t, const LoggedRtpPacket*> outgoing_rtp;
|
|
std::multimap<uint64_t, const LoggedRtcpPacket*> incoming_rtcp;
|
|
|
|
for (const auto& kv : rtp_packets_) {
|
|
if (kv.first.GetDirection() == PacketDirection::kOutgoingPacket) {
|
|
for (const LoggedRtpPacket& rtp_packet : kv.second)
|
|
outgoing_rtp.insert(std::make_pair(rtp_packet.timestamp, &rtp_packet));
|
|
}
|
|
}
|
|
|
|
for (const auto& kv : rtcp_packets_) {
|
|
if (kv.first.GetDirection() == PacketDirection::kIncomingPacket) {
|
|
for (const LoggedRtcpPacket& rtcp_packet : kv.second)
|
|
incoming_rtcp.insert(
|
|
std::make_pair(rtcp_packet.timestamp, &rtcp_packet));
|
|
}
|
|
}
|
|
|
|
SimulatedClock clock(0);
|
|
BitrateObserver observer;
|
|
RtcEventLogNullImpl null_event_log;
|
|
PacketRouter packet_router;
|
|
PacedSender pacer(&clock, &packet_router, &null_event_log);
|
|
SendSideCongestionController cc(&clock, &observer, &null_event_log, &pacer);
|
|
// TODO(holmer): Log the call config and use that here instead.
|
|
static const uint32_t kDefaultStartBitrateBps = 300000;
|
|
cc.SetBweBitrates(0, kDefaultStartBitrateBps, -1);
|
|
|
|
TimeSeries time_series("Delay-based estimate", LineStyle::kStep,
|
|
PointStyle::kHighlight);
|
|
TimeSeries acked_time_series("Acked bitrate", LineStyle::kLine,
|
|
PointStyle::kHighlight);
|
|
TimeSeries acked_estimate_time_series(
|
|
"Acked bitrate estimate", LineStyle::kLine, PointStyle::kHighlight);
|
|
|
|
auto rtp_iterator = outgoing_rtp.begin();
|
|
auto rtcp_iterator = incoming_rtcp.begin();
|
|
|
|
auto NextRtpTime = [&]() {
|
|
if (rtp_iterator != outgoing_rtp.end())
|
|
return static_cast<int64_t>(rtp_iterator->first);
|
|
return std::numeric_limits<int64_t>::max();
|
|
};
|
|
|
|
auto NextRtcpTime = [&]() {
|
|
if (rtcp_iterator != incoming_rtcp.end())
|
|
return static_cast<int64_t>(rtcp_iterator->first);
|
|
return std::numeric_limits<int64_t>::max();
|
|
};
|
|
|
|
auto NextProcessTime = [&]() {
|
|
if (rtcp_iterator != incoming_rtcp.end() ||
|
|
rtp_iterator != outgoing_rtp.end()) {
|
|
return clock.TimeInMicroseconds() +
|
|
std::max<int64_t>(cc.TimeUntilNextProcess() * 1000, 0);
|
|
}
|
|
return std::numeric_limits<int64_t>::max();
|
|
};
|
|
|
|
RateStatistics acked_bitrate(250, 8000);
|
|
#if !(BWE_TEST_LOGGING_COMPILE_TIME_ENABLE)
|
|
// The event_log_visualizer should normally not be compiled with
|
|
// BWE_TEST_LOGGING_COMPILE_TIME_ENABLE since the normal plots won't work.
|
|
// However, compiling with BWE_TEST_LOGGING, runnning with --plot_sendside_bwe
|
|
// and piping the output to plot_dynamics.py can be used as a hack to get the
|
|
// internal state of various BWE components. In this case, it is important
|
|
// we don't instantiate the AcknowledgedBitrateEstimator both here and in
|
|
// SendSideCongestionController since that would lead to duplicate outputs.
|
|
AcknowledgedBitrateEstimator acknowledged_bitrate_estimator(
|
|
rtc::MakeUnique<BitrateEstimator>());
|
|
#endif // !(BWE_TEST_LOGGING_COMPILE_TIME_ENABLE)
|
|
int64_t time_us = std::min(NextRtpTime(), NextRtcpTime());
|
|
int64_t last_update_us = 0;
|
|
while (time_us != std::numeric_limits<int64_t>::max()) {
|
|
clock.AdvanceTimeMicroseconds(time_us - clock.TimeInMicroseconds());
|
|
if (clock.TimeInMicroseconds() >= NextRtcpTime()) {
|
|
RTC_DCHECK_EQ(clock.TimeInMicroseconds(), NextRtcpTime());
|
|
const LoggedRtcpPacket& rtcp = *rtcp_iterator->second;
|
|
if (rtcp.type == kRtcpTransportFeedback) {
|
|
cc.OnTransportFeedback(
|
|
*static_cast<rtcp::TransportFeedback*>(rtcp.packet.get()));
|
|
std::vector<PacketFeedback> feedback = cc.GetTransportFeedbackVector();
|
|
SortPacketFeedbackVector(&feedback);
|
|
rtc::Optional<uint32_t> bitrate_bps;
|
|
if (!feedback.empty()) {
|
|
#if !(BWE_TEST_LOGGING_COMPILE_TIME_ENABLE)
|
|
acknowledged_bitrate_estimator.IncomingPacketFeedbackVector(feedback);
|
|
#endif // !(BWE_TEST_LOGGING_COMPILE_TIME_ENABLE)
|
|
for (const PacketFeedback& packet : feedback)
|
|
acked_bitrate.Update(packet.payload_size, packet.arrival_time_ms);
|
|
bitrate_bps = acked_bitrate.Rate(feedback.back().arrival_time_ms);
|
|
}
|
|
float x = static_cast<float>(clock.TimeInMicroseconds() - begin_time_) /
|
|
1000000;
|
|
float y = bitrate_bps.value_or(0) / 1000;
|
|
acked_time_series.points.emplace_back(x, y);
|
|
#if !(BWE_TEST_LOGGING_COMPILE_TIME_ENABLE)
|
|
y = acknowledged_bitrate_estimator.bitrate_bps().value_or(0) / 1000;
|
|
acked_estimate_time_series.points.emplace_back(x, y);
|
|
#endif // !(BWE_TEST_LOGGING_COMPILE_TIME_ENABLE)
|
|
}
|
|
++rtcp_iterator;
|
|
}
|
|
if (clock.TimeInMicroseconds() >= NextRtpTime()) {
|
|
RTC_DCHECK_EQ(clock.TimeInMicroseconds(), NextRtpTime());
|
|
const LoggedRtpPacket& rtp = *rtp_iterator->second;
|
|
if (rtp.header.extension.hasTransportSequenceNumber) {
|
|
RTC_DCHECK(rtp.header.extension.hasTransportSequenceNumber);
|
|
cc.AddPacket(rtp.header.ssrc,
|
|
rtp.header.extension.transportSequenceNumber,
|
|
rtp.total_length, PacedPacketInfo());
|
|
rtc::SentPacket sent_packet(
|
|
rtp.header.extension.transportSequenceNumber, rtp.timestamp / 1000);
|
|
cc.OnSentPacket(sent_packet);
|
|
}
|
|
++rtp_iterator;
|
|
}
|
|
if (clock.TimeInMicroseconds() >= NextProcessTime()) {
|
|
RTC_DCHECK_EQ(clock.TimeInMicroseconds(), NextProcessTime());
|
|
cc.Process();
|
|
}
|
|
if (observer.GetAndResetBitrateUpdated() ||
|
|
time_us - last_update_us >= 1e6) {
|
|
uint32_t y = observer.last_bitrate_bps() / 1000;
|
|
float x = static_cast<float>(clock.TimeInMicroseconds() - begin_time_) /
|
|
1000000;
|
|
time_series.points.emplace_back(x, y);
|
|
last_update_us = time_us;
|
|
}
|
|
time_us = std::min({NextRtpTime(), NextRtcpTime(), NextProcessTime()});
|
|
}
|
|
// Add the data set to the plot.
|
|
plot->AppendTimeSeries(std::move(time_series));
|
|
plot->AppendTimeSeries(std::move(acked_time_series));
|
|
plot->AppendTimeSeriesIfNotEmpty(std::move(acked_estimate_time_series));
|
|
|
|
plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 10, "Bitrate (kbps)", kBottomMargin, kTopMargin);
|
|
plot->SetTitle("Simulated send-side BWE behavior");
|
|
}
|
|
|
|
void EventLogAnalyzer::CreateReceiveSideBweSimulationGraph(Plot* plot) {
|
|
class RembInterceptingPacketRouter : public PacketRouter {
|
|
public:
|
|
void OnReceiveBitrateChanged(const std::vector<uint32_t>& ssrcs,
|
|
uint32_t bitrate_bps) override {
|
|
last_bitrate_bps_ = bitrate_bps;
|
|
bitrate_updated_ = true;
|
|
PacketRouter::OnReceiveBitrateChanged(ssrcs, bitrate_bps);
|
|
}
|
|
uint32_t last_bitrate_bps() const { return last_bitrate_bps_; }
|
|
bool GetAndResetBitrateUpdated() {
|
|
bool bitrate_updated = bitrate_updated_;
|
|
bitrate_updated_ = false;
|
|
return bitrate_updated;
|
|
}
|
|
|
|
private:
|
|
uint32_t last_bitrate_bps_;
|
|
bool bitrate_updated_;
|
|
};
|
|
|
|
std::multimap<uint64_t, const LoggedRtpPacket*> incoming_rtp;
|
|
|
|
for (const auto& kv : rtp_packets_) {
|
|
if (kv.first.GetDirection() == PacketDirection::kIncomingPacket &&
|
|
IsVideoSsrc(kv.first)) {
|
|
for (const LoggedRtpPacket& rtp_packet : kv.second)
|
|
incoming_rtp.insert(std::make_pair(rtp_packet.timestamp, &rtp_packet));
|
|
}
|
|
}
|
|
|
|
SimulatedClock clock(0);
|
|
RembInterceptingPacketRouter packet_router;
|
|
// TODO(terelius): The PacketRrouter is the used as the RemoteBitrateObserver.
|
|
// Is this intentional?
|
|
ReceiveSideCongestionController rscc(&clock, &packet_router);
|
|
// TODO(holmer): Log the call config and use that here instead.
|
|
// static const uint32_t kDefaultStartBitrateBps = 300000;
|
|
// rscc.SetBweBitrates(0, kDefaultStartBitrateBps, -1);
|
|
|
|
TimeSeries time_series("Receive side estimate", LineStyle::kLine,
|
|
PointStyle::kHighlight);
|
|
TimeSeries acked_time_series("Received bitrate", LineStyle::kLine);
|
|
|
|
RateStatistics acked_bitrate(250, 8000);
|
|
int64_t last_update_us = 0;
|
|
for (const auto& kv : incoming_rtp) {
|
|
const LoggedRtpPacket& packet = *kv.second;
|
|
int64_t arrival_time_ms = packet.timestamp / 1000;
|
|
size_t payload = packet.total_length; /*Should subtract header?*/
|
|
clock.AdvanceTimeMicroseconds(packet.timestamp -
|
|
clock.TimeInMicroseconds());
|
|
rscc.OnReceivedPacket(arrival_time_ms, payload, packet.header);
|
|
acked_bitrate.Update(payload, arrival_time_ms);
|
|
rtc::Optional<uint32_t> bitrate_bps = acked_bitrate.Rate(arrival_time_ms);
|
|
if (bitrate_bps) {
|
|
uint32_t y = *bitrate_bps / 1000;
|
|
float x = static_cast<float>(clock.TimeInMicroseconds() - begin_time_) /
|
|
1000000;
|
|
acked_time_series.points.emplace_back(x, y);
|
|
}
|
|
if (packet_router.GetAndResetBitrateUpdated() ||
|
|
clock.TimeInMicroseconds() - last_update_us >= 1e6) {
|
|
uint32_t y = packet_router.last_bitrate_bps() / 1000;
|
|
float x = static_cast<float>(clock.TimeInMicroseconds() - begin_time_) /
|
|
1000000;
|
|
time_series.points.emplace_back(x, y);
|
|
last_update_us = clock.TimeInMicroseconds();
|
|
}
|
|
}
|
|
// Add the data set to the plot.
|
|
plot->AppendTimeSeries(std::move(time_series));
|
|
plot->AppendTimeSeries(std::move(acked_time_series));
|
|
|
|
plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 10, "Bitrate (kbps)", kBottomMargin, kTopMargin);
|
|
plot->SetTitle("Simulated receive-side BWE behavior");
|
|
}
|
|
|
|
void EventLogAnalyzer::CreateNetworkDelayFeedbackGraph(Plot* plot) {
|
|
std::multimap<uint64_t, const LoggedRtpPacket*> outgoing_rtp;
|
|
std::multimap<uint64_t, const LoggedRtcpPacket*> incoming_rtcp;
|
|
|
|
for (const auto& kv : rtp_packets_) {
|
|
if (kv.first.GetDirection() == PacketDirection::kOutgoingPacket) {
|
|
for (const LoggedRtpPacket& rtp_packet : kv.second)
|
|
outgoing_rtp.insert(std::make_pair(rtp_packet.timestamp, &rtp_packet));
|
|
}
|
|
}
|
|
|
|
for (const auto& kv : rtcp_packets_) {
|
|
if (kv.first.GetDirection() == PacketDirection::kIncomingPacket) {
|
|
for (const LoggedRtcpPacket& rtcp_packet : kv.second)
|
|
incoming_rtcp.insert(
|
|
std::make_pair(rtcp_packet.timestamp, &rtcp_packet));
|
|
}
|
|
}
|
|
|
|
SimulatedClock clock(0);
|
|
TransportFeedbackAdapter feedback_adapter(&clock);
|
|
|
|
TimeSeries late_feedback_series("Late feedback results.", LineStyle::kNone,
|
|
PointStyle::kHighlight);
|
|
TimeSeries time_series("Network Delay Change", LineStyle::kLine,
|
|
PointStyle::kHighlight);
|
|
int64_t estimated_base_delay_ms = std::numeric_limits<int64_t>::max();
|
|
|
|
auto rtp_iterator = outgoing_rtp.begin();
|
|
auto rtcp_iterator = incoming_rtcp.begin();
|
|
|
|
auto NextRtpTime = [&]() {
|
|
if (rtp_iterator != outgoing_rtp.end())
|
|
return static_cast<int64_t>(rtp_iterator->first);
|
|
return std::numeric_limits<int64_t>::max();
|
|
};
|
|
|
|
auto NextRtcpTime = [&]() {
|
|
if (rtcp_iterator != incoming_rtcp.end())
|
|
return static_cast<int64_t>(rtcp_iterator->first);
|
|
return std::numeric_limits<int64_t>::max();
|
|
};
|
|
|
|
int64_t time_us = std::min(NextRtpTime(), NextRtcpTime());
|
|
int64_t prev_y = 0;
|
|
while (time_us != std::numeric_limits<int64_t>::max()) {
|
|
clock.AdvanceTimeMicroseconds(time_us - clock.TimeInMicroseconds());
|
|
if (clock.TimeInMicroseconds() >= NextRtcpTime()) {
|
|
RTC_DCHECK_EQ(clock.TimeInMicroseconds(), NextRtcpTime());
|
|
const LoggedRtcpPacket& rtcp = *rtcp_iterator->second;
|
|
if (rtcp.type == kRtcpTransportFeedback) {
|
|
feedback_adapter.OnTransportFeedback(
|
|
*static_cast<rtcp::TransportFeedback*>(rtcp.packet.get()));
|
|
std::vector<PacketFeedback> feedback =
|
|
feedback_adapter.GetTransportFeedbackVector();
|
|
SortPacketFeedbackVector(&feedback);
|
|
for (const PacketFeedback& packet : feedback) {
|
|
float x =
|
|
static_cast<float>(clock.TimeInMicroseconds() - begin_time_) /
|
|
1000000;
|
|
if (packet.send_time_ms == PacketFeedback::kNoSendTime) {
|
|
late_feedback_series.points.emplace_back(x, prev_y);
|
|
continue;
|
|
}
|
|
int64_t y = packet.arrival_time_ms - packet.send_time_ms;
|
|
prev_y = y;
|
|
estimated_base_delay_ms = std::min(y, estimated_base_delay_ms);
|
|
time_series.points.emplace_back(x, y);
|
|
}
|
|
}
|
|
++rtcp_iterator;
|
|
}
|
|
if (clock.TimeInMicroseconds() >= NextRtpTime()) {
|
|
RTC_DCHECK_EQ(clock.TimeInMicroseconds(), NextRtpTime());
|
|
const LoggedRtpPacket& rtp = *rtp_iterator->second;
|
|
if (rtp.header.extension.hasTransportSequenceNumber) {
|
|
RTC_DCHECK(rtp.header.extension.hasTransportSequenceNumber);
|
|
feedback_adapter.AddPacket(rtp.header.ssrc,
|
|
rtp.header.extension.transportSequenceNumber,
|
|
rtp.total_length, PacedPacketInfo());
|
|
feedback_adapter.OnSentPacket(
|
|
rtp.header.extension.transportSequenceNumber, rtp.timestamp / 1000);
|
|
}
|
|
++rtp_iterator;
|
|
}
|
|
time_us = std::min(NextRtpTime(), NextRtcpTime());
|
|
}
|
|
// We assume that the base network delay (w/o queues) is the min delay
|
|
// observed during the call.
|
|
for (TimeSeriesPoint& point : time_series.points)
|
|
point.y -= estimated_base_delay_ms;
|
|
for (TimeSeriesPoint& point : late_feedback_series.points)
|
|
point.y -= estimated_base_delay_ms;
|
|
// Add the data set to the plot.
|
|
plot->AppendTimeSeriesIfNotEmpty(std::move(time_series));
|
|
plot->AppendTimeSeriesIfNotEmpty(std::move(late_feedback_series));
|
|
|
|
plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 10, "Delay (ms)", kBottomMargin, kTopMargin);
|
|
plot->SetTitle("Network Delay Change.");
|
|
}
|
|
|
|
std::vector<std::pair<int64_t, int64_t>> EventLogAnalyzer::GetFrameTimestamps()
|
|
const {
|
|
std::vector<std::pair<int64_t, int64_t>> timestamps;
|
|
size_t largest_stream_size = 0;
|
|
const std::vector<LoggedRtpPacket>* largest_video_stream = nullptr;
|
|
// Find the incoming video stream with the most number of packets that is
|
|
// not rtx.
|
|
for (const auto& kv : rtp_packets_) {
|
|
if (kv.first.GetDirection() == kIncomingPacket &&
|
|
video_ssrcs_.find(kv.first) != video_ssrcs_.end() &&
|
|
rtx_ssrcs_.find(kv.first) == rtx_ssrcs_.end() &&
|
|
kv.second.size() > largest_stream_size) {
|
|
largest_stream_size = kv.second.size();
|
|
largest_video_stream = &kv.second;
|
|
}
|
|
}
|
|
if (largest_video_stream == nullptr) {
|
|
for (auto& packet : *largest_video_stream) {
|
|
if (packet.header.markerBit) {
|
|
int64_t capture_ms = packet.header.timestamp / 90.0;
|
|
int64_t arrival_ms = packet.timestamp / 1000.0;
|
|
timestamps.push_back(std::make_pair(capture_ms, arrival_ms));
|
|
}
|
|
}
|
|
}
|
|
return timestamps;
|
|
}
|
|
|
|
void EventLogAnalyzer::CreatePacerDelayGraph(Plot* plot) {
|
|
for (const auto& kv : rtp_packets_) {
|
|
const std::vector<LoggedRtpPacket>& packets = kv.second;
|
|
StreamId stream_id = kv.first;
|
|
if (stream_id.GetDirection() == kIncomingPacket)
|
|
continue;
|
|
|
|
if (packets.size() < 2) {
|
|
RTC_LOG(LS_WARNING)
|
|
<< "Can't estimate a the RTP clock frequency or the "
|
|
"pacer delay with less than 2 packets in the stream";
|
|
continue;
|
|
}
|
|
rtc::Optional<uint32_t> estimated_frequency =
|
|
EstimateRtpClockFrequency(packets);
|
|
if (!estimated_frequency)
|
|
continue;
|
|
if (IsVideoSsrc(stream_id) && *estimated_frequency != 90000) {
|
|
RTC_LOG(LS_WARNING)
|
|
<< "Video stream should use a 90 kHz clock but appears to use "
|
|
<< *estimated_frequency / 1000 << ". Discarding.";
|
|
continue;
|
|
}
|
|
|
|
TimeSeries pacer_delay_series(
|
|
GetStreamName(stream_id) + "(" +
|
|
std::to_string(*estimated_frequency / 1000) + " kHz)",
|
|
LineStyle::kLine, PointStyle::kHighlight);
|
|
SeqNumUnwrapper<uint32_t> timestamp_unwrapper;
|
|
uint64_t first_capture_timestamp =
|
|
timestamp_unwrapper.Unwrap(packets.front().header.timestamp);
|
|
uint64_t first_send_timestamp = packets.front().timestamp;
|
|
for (LoggedRtpPacket packet : packets) {
|
|
double capture_time_ms = (static_cast<double>(timestamp_unwrapper.Unwrap(
|
|
packet.header.timestamp)) -
|
|
first_capture_timestamp) /
|
|
*estimated_frequency * 1000;
|
|
double send_time_ms =
|
|
static_cast<double>(packet.timestamp - first_send_timestamp) / 1000;
|
|
float x = static_cast<float>(packet.timestamp - begin_time_) / 1000000;
|
|
float y = send_time_ms - capture_time_ms;
|
|
pacer_delay_series.points.emplace_back(x, y);
|
|
}
|
|
plot->AppendTimeSeries(std::move(pacer_delay_series));
|
|
}
|
|
|
|
plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 10, "Pacer delay (ms)", kBottomMargin, kTopMargin);
|
|
plot->SetTitle(
|
|
"Delay from capture to send time. (First packet normalized to 0.)");
|
|
}
|
|
|
|
void EventLogAnalyzer::CreateTimestampGraph(Plot* plot) {
|
|
for (const auto& kv : rtp_packets_) {
|
|
const std::vector<LoggedRtpPacket>& rtp_packets = kv.second;
|
|
StreamId stream_id = kv.first;
|
|
|
|
{
|
|
TimeSeries timestamp_data(GetStreamName(stream_id) + " capture-time",
|
|
LineStyle::kLine, PointStyle::kHighlight);
|
|
for (LoggedRtpPacket packet : rtp_packets) {
|
|
float x = static_cast<float>(packet.timestamp - begin_time_) / 1000000;
|
|
float y = packet.header.timestamp;
|
|
timestamp_data.points.emplace_back(x, y);
|
|
}
|
|
plot->AppendTimeSeries(std::move(timestamp_data));
|
|
}
|
|
|
|
{
|
|
auto kv = rtcp_packets_.find(stream_id);
|
|
if (kv != rtcp_packets_.end()) {
|
|
const auto& packets = kv->second;
|
|
TimeSeries timestamp_data(
|
|
GetStreamName(stream_id) + " rtcp capture-time", LineStyle::kLine,
|
|
PointStyle::kHighlight);
|
|
for (const LoggedRtcpPacket& rtcp : packets) {
|
|
if (rtcp.type != kRtcpSr)
|
|
continue;
|
|
rtcp::SenderReport* sr;
|
|
sr = static_cast<rtcp::SenderReport*>(rtcp.packet.get());
|
|
float x = static_cast<float>(rtcp.timestamp - begin_time_) / 1000000;
|
|
float y = sr->rtp_timestamp();
|
|
timestamp_data.points.emplace_back(x, y);
|
|
}
|
|
plot->AppendTimeSeries(std::move(timestamp_data));
|
|
}
|
|
}
|
|
}
|
|
|
|
plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 1, "Timestamp (90khz)", kBottomMargin, kTopMargin);
|
|
plot->SetTitle("Timestamps");
|
|
}
|
|
|
|
void EventLogAnalyzer::CreateAudioEncoderTargetBitrateGraph(Plot* plot) {
|
|
TimeSeries time_series("Audio encoder target bitrate", LineStyle::kLine,
|
|
PointStyle::kHighlight);
|
|
ProcessPoints<AudioNetworkAdaptationEvent>(
|
|
[](const AudioNetworkAdaptationEvent& ana_event) -> rtc::Optional<float> {
|
|
if (ana_event.config.bitrate_bps)
|
|
return static_cast<float>(*ana_event.config.bitrate_bps);
|
|
return rtc::nullopt;
|
|
},
|
|
audio_network_adaptation_events_, begin_time_, &time_series);
|
|
plot->AppendTimeSeries(std::move(time_series));
|
|
plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 1, "Bitrate (bps)", kBottomMargin, kTopMargin);
|
|
plot->SetTitle("Reported audio encoder target bitrate");
|
|
}
|
|
|
|
void EventLogAnalyzer::CreateAudioEncoderFrameLengthGraph(Plot* plot) {
|
|
TimeSeries time_series("Audio encoder frame length", LineStyle::kLine,
|
|
PointStyle::kHighlight);
|
|
ProcessPoints<AudioNetworkAdaptationEvent>(
|
|
[](const AudioNetworkAdaptationEvent& ana_event) {
|
|
if (ana_event.config.frame_length_ms)
|
|
return rtc::Optional<float>(
|
|
static_cast<float>(*ana_event.config.frame_length_ms));
|
|
return rtc::Optional<float>();
|
|
},
|
|
audio_network_adaptation_events_, begin_time_, &time_series);
|
|
plot->AppendTimeSeries(std::move(time_series));
|
|
plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 1, "Frame length (ms)", kBottomMargin, kTopMargin);
|
|
plot->SetTitle("Reported audio encoder frame length");
|
|
}
|
|
|
|
void EventLogAnalyzer::CreateAudioEncoderPacketLossGraph(Plot* plot) {
|
|
TimeSeries time_series("Audio encoder uplink packet loss fraction",
|
|
LineStyle::kLine, PointStyle::kHighlight);
|
|
ProcessPoints<AudioNetworkAdaptationEvent>(
|
|
[](const AudioNetworkAdaptationEvent& ana_event) {
|
|
if (ana_event.config.uplink_packet_loss_fraction)
|
|
return rtc::Optional<float>(static_cast<float>(
|
|
*ana_event.config.uplink_packet_loss_fraction));
|
|
return rtc::Optional<float>();
|
|
},
|
|
audio_network_adaptation_events_, begin_time_, &time_series);
|
|
plot->AppendTimeSeries(std::move(time_series));
|
|
plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 10, "Percent lost packets", kBottomMargin,
|
|
kTopMargin);
|
|
plot->SetTitle("Reported audio encoder lost packets");
|
|
}
|
|
|
|
void EventLogAnalyzer::CreateAudioEncoderEnableFecGraph(Plot* plot) {
|
|
TimeSeries time_series("Audio encoder FEC", LineStyle::kLine,
|
|
PointStyle::kHighlight);
|
|
ProcessPoints<AudioNetworkAdaptationEvent>(
|
|
[](const AudioNetworkAdaptationEvent& ana_event) {
|
|
if (ana_event.config.enable_fec)
|
|
return rtc::Optional<float>(
|
|
static_cast<float>(*ana_event.config.enable_fec));
|
|
return rtc::Optional<float>();
|
|
},
|
|
audio_network_adaptation_events_, begin_time_, &time_series);
|
|
plot->AppendTimeSeries(std::move(time_series));
|
|
plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 1, "FEC (false/true)", kBottomMargin, kTopMargin);
|
|
plot->SetTitle("Reported audio encoder FEC");
|
|
}
|
|
|
|
void EventLogAnalyzer::CreateAudioEncoderEnableDtxGraph(Plot* plot) {
|
|
TimeSeries time_series("Audio encoder DTX", LineStyle::kLine,
|
|
PointStyle::kHighlight);
|
|
ProcessPoints<AudioNetworkAdaptationEvent>(
|
|
[](const AudioNetworkAdaptationEvent& ana_event) {
|
|
if (ana_event.config.enable_dtx)
|
|
return rtc::Optional<float>(
|
|
static_cast<float>(*ana_event.config.enable_dtx));
|
|
return rtc::Optional<float>();
|
|
},
|
|
audio_network_adaptation_events_, begin_time_, &time_series);
|
|
plot->AppendTimeSeries(std::move(time_series));
|
|
plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 1, "DTX (false/true)", kBottomMargin, kTopMargin);
|
|
plot->SetTitle("Reported audio encoder DTX");
|
|
}
|
|
|
|
void EventLogAnalyzer::CreateAudioEncoderNumChannelsGraph(Plot* plot) {
|
|
TimeSeries time_series("Audio encoder number of channels", LineStyle::kLine,
|
|
PointStyle::kHighlight);
|
|
ProcessPoints<AudioNetworkAdaptationEvent>(
|
|
[](const AudioNetworkAdaptationEvent& ana_event) {
|
|
if (ana_event.config.num_channels)
|
|
return rtc::Optional<float>(
|
|
static_cast<float>(*ana_event.config.num_channels));
|
|
return rtc::Optional<float>();
|
|
},
|
|
audio_network_adaptation_events_, begin_time_, &time_series);
|
|
plot->AppendTimeSeries(std::move(time_series));
|
|
plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 1, "Number of channels (1 (mono)/2 (stereo))",
|
|
kBottomMargin, kTopMargin);
|
|
plot->SetTitle("Reported audio encoder number of channels");
|
|
}
|
|
|
|
class NetEqStreamInput : public test::NetEqInput {
|
|
public:
|
|
// Does not take any ownership, and all pointers must refer to valid objects
|
|
// that outlive the one constructed.
|
|
NetEqStreamInput(const std::vector<LoggedRtpPacket>* packet_stream,
|
|
const std::vector<uint64_t>* output_events_us,
|
|
rtc::Optional<uint64_t> end_time_us)
|
|
: packet_stream_(*packet_stream),
|
|
packet_stream_it_(packet_stream_.begin()),
|
|
output_events_us_it_(output_events_us->begin()),
|
|
output_events_us_end_(output_events_us->end()),
|
|
end_time_us_(end_time_us) {
|
|
RTC_DCHECK(packet_stream);
|
|
RTC_DCHECK(output_events_us);
|
|
}
|
|
|
|
rtc::Optional<int64_t> NextPacketTime() const override {
|
|
if (packet_stream_it_ == packet_stream_.end()) {
|
|
return rtc::nullopt;
|
|
}
|
|
if (end_time_us_ && packet_stream_it_->timestamp > *end_time_us_) {
|
|
return rtc::nullopt;
|
|
}
|
|
// Convert from us to ms.
|
|
return packet_stream_it_->timestamp / 1000;
|
|
}
|
|
|
|
rtc::Optional<int64_t> NextOutputEventTime() const override {
|
|
if (output_events_us_it_ == output_events_us_end_) {
|
|
return rtc::nullopt;
|
|
}
|
|
if (end_time_us_ && *output_events_us_it_ > *end_time_us_) {
|
|
return rtc::nullopt;
|
|
}
|
|
// Convert from us to ms.
|
|
return rtc::checked_cast<int64_t>(*output_events_us_it_ / 1000);
|
|
}
|
|
|
|
std::unique_ptr<PacketData> PopPacket() override {
|
|
if (packet_stream_it_ == packet_stream_.end()) {
|
|
return std::unique_ptr<PacketData>();
|
|
}
|
|
std::unique_ptr<PacketData> packet_data(new PacketData());
|
|
packet_data->header = packet_stream_it_->header;
|
|
// Convert from us to ms.
|
|
packet_data->time_ms = packet_stream_it_->timestamp / 1000.0;
|
|
|
|
// This is a header-only "dummy" packet. Set the payload to all zeros, with
|
|
// length according to the virtual length.
|
|
packet_data->payload.SetSize(packet_stream_it_->total_length);
|
|
std::fill_n(packet_data->payload.data(), packet_data->payload.size(), 0);
|
|
|
|
++packet_stream_it_;
|
|
return packet_data;
|
|
}
|
|
|
|
void AdvanceOutputEvent() override {
|
|
if (output_events_us_it_ != output_events_us_end_) {
|
|
++output_events_us_it_;
|
|
}
|
|
}
|
|
|
|
bool ended() const override { return !NextEventTime(); }
|
|
|
|
rtc::Optional<RTPHeader> NextHeader() const override {
|
|
if (packet_stream_it_ == packet_stream_.end()) {
|
|
return rtc::nullopt;
|
|
}
|
|
return packet_stream_it_->header;
|
|
}
|
|
|
|
private:
|
|
const std::vector<LoggedRtpPacket>& packet_stream_;
|
|
std::vector<LoggedRtpPacket>::const_iterator packet_stream_it_;
|
|
std::vector<uint64_t>::const_iterator output_events_us_it_;
|
|
const std::vector<uint64_t>::const_iterator output_events_us_end_;
|
|
const rtc::Optional<uint64_t> end_time_us_;
|
|
};
|
|
|
|
namespace {
|
|
// Creates a NetEq test object and all necessary input and output helpers. Runs
|
|
// the test and returns the NetEqDelayAnalyzer object that was used to
|
|
// instrument the test.
|
|
std::unique_ptr<test::NetEqDelayAnalyzer> CreateNetEqTestAndRun(
|
|
const std::vector<LoggedRtpPacket>* packet_stream,
|
|
const std::vector<uint64_t>* output_events_us,
|
|
rtc::Optional<uint64_t> end_time_us,
|
|
const std::string& replacement_file_name,
|
|
int file_sample_rate_hz) {
|
|
std::unique_ptr<test::NetEqInput> input(
|
|
new NetEqStreamInput(packet_stream, output_events_us, end_time_us));
|
|
|
|
constexpr int kReplacementPt = 127;
|
|
std::set<uint8_t> cn_types;
|
|
std::set<uint8_t> forbidden_types;
|
|
input.reset(new test::NetEqReplacementInput(std::move(input), kReplacementPt,
|
|
cn_types, forbidden_types));
|
|
|
|
NetEq::Config config;
|
|
config.max_packets_in_buffer = 200;
|
|
config.enable_fast_accelerate = true;
|
|
|
|
std::unique_ptr<test::VoidAudioSink> output(new test::VoidAudioSink());
|
|
|
|
test::NetEqTest::DecoderMap codecs;
|
|
|
|
// Create a "replacement decoder" that produces the decoded audio by reading
|
|
// from a file rather than from the encoded payloads.
|
|
std::unique_ptr<test::ResampleInputAudioFile> replacement_file(
|
|
new test::ResampleInputAudioFile(replacement_file_name,
|
|
file_sample_rate_hz));
|
|
replacement_file->set_output_rate_hz(48000);
|
|
std::unique_ptr<AudioDecoder> replacement_decoder(
|
|
new test::FakeDecodeFromFile(std::move(replacement_file), 48000, false));
|
|
test::NetEqTest::ExtDecoderMap ext_codecs;
|
|
ext_codecs[kReplacementPt] = {replacement_decoder.get(),
|
|
NetEqDecoder::kDecoderArbitrary,
|
|
"replacement codec"};
|
|
|
|
std::unique_ptr<test::NetEqDelayAnalyzer> delay_cb(
|
|
new test::NetEqDelayAnalyzer);
|
|
test::DefaultNetEqTestErrorCallback error_cb;
|
|
test::NetEqTest::Callbacks callbacks;
|
|
callbacks.error_callback = &error_cb;
|
|
callbacks.post_insert_packet = delay_cb.get();
|
|
callbacks.get_audio_callback = delay_cb.get();
|
|
|
|
test::NetEqTest test(config, codecs, ext_codecs, std::move(input),
|
|
std::move(output), callbacks);
|
|
test.Run();
|
|
return delay_cb;
|
|
}
|
|
} // namespace
|
|
|
|
// Plots the jitter buffer delay profile. This will plot only for the first
|
|
// incoming audio SSRC. If the stream contains more than one incoming audio
|
|
// SSRC, all but the first will be ignored.
|
|
void EventLogAnalyzer::CreateAudioJitterBufferGraph(
|
|
const std::string& replacement_file_name,
|
|
int file_sample_rate_hz,
|
|
Plot* plot) {
|
|
const auto& incoming_audio_kv = std::find_if(
|
|
rtp_packets_.begin(), rtp_packets_.end(),
|
|
[this](std::pair<StreamId, std::vector<LoggedRtpPacket>> kv) {
|
|
return kv.first.GetDirection() == kIncomingPacket &&
|
|
this->IsAudioSsrc(kv.first);
|
|
});
|
|
if (incoming_audio_kv == rtp_packets_.end()) {
|
|
// No incoming audio stream found.
|
|
return;
|
|
}
|
|
|
|
const uint32_t ssrc = incoming_audio_kv->first.GetSsrc();
|
|
|
|
std::map<uint32_t, std::vector<uint64_t>>::const_iterator output_events_it =
|
|
audio_playout_events_.find(ssrc);
|
|
if (output_events_it == audio_playout_events_.end()) {
|
|
// Could not find output events with SSRC matching the input audio stream.
|
|
// Using the first available stream of output events.
|
|
output_events_it = audio_playout_events_.cbegin();
|
|
}
|
|
|
|
rtc::Optional<uint64_t> end_time_us =
|
|
log_segments_.empty()
|
|
? rtc::nullopt
|
|
: rtc::Optional<uint64_t>(log_segments_.front().second);
|
|
|
|
auto delay_cb = CreateNetEqTestAndRun(
|
|
&incoming_audio_kv->second, &output_events_it->second, end_time_us,
|
|
replacement_file_name, file_sample_rate_hz);
|
|
|
|
std::vector<float> send_times_s;
|
|
std::vector<float> arrival_delay_ms;
|
|
std::vector<float> corrected_arrival_delay_ms;
|
|
std::vector<rtc::Optional<float>> playout_delay_ms;
|
|
std::vector<rtc::Optional<float>> target_delay_ms;
|
|
delay_cb->CreateGraphs(&send_times_s, &arrival_delay_ms,
|
|
&corrected_arrival_delay_ms, &playout_delay_ms,
|
|
&target_delay_ms);
|
|
RTC_DCHECK_EQ(send_times_s.size(), arrival_delay_ms.size());
|
|
RTC_DCHECK_EQ(send_times_s.size(), corrected_arrival_delay_ms.size());
|
|
RTC_DCHECK_EQ(send_times_s.size(), playout_delay_ms.size());
|
|
RTC_DCHECK_EQ(send_times_s.size(), target_delay_ms.size());
|
|
|
|
std::map<StreamId, TimeSeries> time_series_packet_arrival;
|
|
std::map<StreamId, TimeSeries> time_series_relative_packet_arrival;
|
|
std::map<StreamId, TimeSeries> time_series_play_time;
|
|
std::map<StreamId, TimeSeries> time_series_target_time;
|
|
float min_y_axis = 0.f;
|
|
float max_y_axis = 0.f;
|
|
const StreamId stream_id = incoming_audio_kv->first;
|
|
for (size_t i = 0; i < send_times_s.size(); ++i) {
|
|
time_series_packet_arrival[stream_id].points.emplace_back(
|
|
TimeSeriesPoint(send_times_s[i], arrival_delay_ms[i]));
|
|
time_series_relative_packet_arrival[stream_id].points.emplace_back(
|
|
TimeSeriesPoint(send_times_s[i], corrected_arrival_delay_ms[i]));
|
|
min_y_axis = std::min(min_y_axis, corrected_arrival_delay_ms[i]);
|
|
max_y_axis = std::max(max_y_axis, corrected_arrival_delay_ms[i]);
|
|
if (playout_delay_ms[i]) {
|
|
time_series_play_time[stream_id].points.emplace_back(
|
|
TimeSeriesPoint(send_times_s[i], *playout_delay_ms[i]));
|
|
min_y_axis = std::min(min_y_axis, *playout_delay_ms[i]);
|
|
max_y_axis = std::max(max_y_axis, *playout_delay_ms[i]);
|
|
}
|
|
if (target_delay_ms[i]) {
|
|
time_series_target_time[stream_id].points.emplace_back(
|
|
TimeSeriesPoint(send_times_s[i], *target_delay_ms[i]));
|
|
min_y_axis = std::min(min_y_axis, *target_delay_ms[i]);
|
|
max_y_axis = std::max(max_y_axis, *target_delay_ms[i]);
|
|
}
|
|
}
|
|
|
|
// This code is adapted for a single stream. The creation of the streams above
|
|
// guarantee that no more than one steam is included. If multiple streams are
|
|
// to be plotted, they should likely be given distinct labels below.
|
|
RTC_DCHECK_EQ(time_series_relative_packet_arrival.size(), 1);
|
|
for (auto& series : time_series_relative_packet_arrival) {
|
|
series.second.label = "Relative packet arrival delay";
|
|
series.second.line_style = LineStyle::kLine;
|
|
plot->AppendTimeSeries(std::move(series.second));
|
|
}
|
|
RTC_DCHECK_EQ(time_series_play_time.size(), 1);
|
|
for (auto& series : time_series_play_time) {
|
|
series.second.label = "Playout delay";
|
|
series.second.line_style = LineStyle::kLine;
|
|
plot->AppendTimeSeries(std::move(series.second));
|
|
}
|
|
RTC_DCHECK_EQ(time_series_target_time.size(), 1);
|
|
for (auto& series : time_series_target_time) {
|
|
series.second.label = "Target delay";
|
|
series.second.line_style = LineStyle::kLine;
|
|
series.second.point_style = PointStyle::kHighlight;
|
|
plot->AppendTimeSeries(std::move(series.second));
|
|
}
|
|
|
|
plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetYAxis(min_y_axis, max_y_axis, "Relative delay (ms)", kBottomMargin,
|
|
kTopMargin);
|
|
plot->SetTitle("NetEq timing");
|
|
}
|
|
|
|
void EventLogAnalyzer::Notification(
|
|
std::unique_ptr<TriageNotification> notification) {
|
|
notifications_.push_back(std::move(notification));
|
|
}
|
|
|
|
void EventLogAnalyzer::PrintNotifications(FILE* file) {
|
|
if (notifications_.size() == 0)
|
|
return;
|
|
fprintf(file, "========== TRIAGE NOTIFICATIONS ==========\n");
|
|
for (const auto& notification : notifications_) {
|
|
rtc::Optional<float> call_timestamp = notification->Time();
|
|
if (call_timestamp.has_value()) {
|
|
fprintf(file, "%3.3lf s : %s\n", call_timestamp.value(),
|
|
notification->ToString().c_str());
|
|
} else {
|
|
fprintf(file, " : %s\n", notification->ToString().c_str());
|
|
}
|
|
}
|
|
fprintf(file, "========== END TRIAGE NOTIFICATIONS ==========\n");
|
|
}
|
|
|
|
// TODO(terelius): Notifications could possibly be generated by the same code
|
|
// that produces the graphs. There is some code duplication that could be
|
|
// avoided, but that might be solved anyway when we move functionality from the
|
|
// analyzer to the parser.
|
|
void EventLogAnalyzer::CreateTriageNotifications() {
|
|
uint64_t end_time_us = log_segments_.empty()
|
|
? std::numeric_limits<uint64_t>::max()
|
|
: log_segments_.front().second;
|
|
// Check for gaps in sequence numbers and capture timestamps.
|
|
for (auto& kv : rtp_packets_) {
|
|
StreamId stream_id = kv.first;
|
|
const std::vector<LoggedRtpPacket>& packet_stream = kv.second;
|
|
|
|
SeqNumUnwrapper<uint16_t> seq_no_unwrapper;
|
|
rtc::Optional<int64_t> last_seq_no;
|
|
SeqNumUnwrapper<uint32_t> timestamp_unwrapper;
|
|
rtc::Optional<int64_t> last_timestamp;
|
|
for (const auto& packet : packet_stream) {
|
|
if (packet.timestamp > end_time_us) {
|
|
// Only process the first (LOG_START, LOG_END) segment.
|
|
break;
|
|
}
|
|
int64_t seq_no = seq_no_unwrapper.Unwrap(packet.header.sequenceNumber);
|
|
if (last_seq_no.has_value() &&
|
|
std::abs(seq_no - last_seq_no.value()) > 1000) {
|
|
// With roughly 100 packets per second (~800kbps), this would require 10
|
|
// seconds without data to trigger incorrectly.
|
|
if (stream_id.GetDirection() == kIncomingPacket) {
|
|
Notification(rtc::MakeUnique<IncomingSeqNoJump>(
|
|
ToCallTime(packet.timestamp), packet.header.ssrc));
|
|
} else {
|
|
Notification(rtc::MakeUnique<OutgoingSeqNoJump>(
|
|
ToCallTime(packet.timestamp), packet.header.ssrc));
|
|
}
|
|
}
|
|
last_seq_no.emplace(seq_no);
|
|
int64_t timestamp = timestamp_unwrapper.Unwrap(packet.header.timestamp);
|
|
if (last_timestamp.has_value() &&
|
|
std::abs(timestamp - last_timestamp.value()) > 900000) {
|
|
// With a 90 kHz clock, this would require 10 seconds without data to
|
|
// trigger incorrectly.
|
|
if (stream_id.GetDirection() == kIncomingPacket) {
|
|
Notification(rtc::MakeUnique<IncomingCaptureTimeJump>(
|
|
ToCallTime(packet.timestamp), packet.header.ssrc));
|
|
} else {
|
|
Notification(rtc::MakeUnique<OutgoingCaptureTimeJump>(
|
|
ToCallTime(packet.timestamp), packet.header.ssrc));
|
|
}
|
|
}
|
|
last_timestamp.emplace(timestamp);
|
|
}
|
|
}
|
|
|
|
// Check for gaps in RTP and RTCP streams
|
|
for (const auto direction :
|
|
{PacketDirection::kIncomingPacket, PacketDirection::kOutgoingPacket}) {
|
|
// TODO(terelius): The parser could provide a list of all packets, ordered
|
|
// by time, for each direction.
|
|
std::multimap<uint64_t, const LoggedRtpPacket*> rtp_in_direction;
|
|
for (const auto& kv : rtp_packets_) {
|
|
if (kv.first.GetDirection() == direction) {
|
|
for (const LoggedRtpPacket& rtp_packet : kv.second)
|
|
rtp_in_direction.emplace(rtp_packet.timestamp, &rtp_packet);
|
|
}
|
|
}
|
|
rtc::Optional<uint64_t> last_rtp_packet;
|
|
for (const auto& kv : rtp_in_direction) {
|
|
uint64_t timestamp = kv.first;
|
|
if (timestamp > end_time_us) {
|
|
// Only process the first (LOG_START, LOG_END) segment.
|
|
break;
|
|
}
|
|
int64_t duration = timestamp - last_rtp_packet.value_or(0);
|
|
if (last_rtp_packet.has_value() && duration > 500000) {
|
|
// No incoming packet for more than 500 ms.
|
|
if (direction == kIncomingPacket) {
|
|
Notification(rtc::MakeUnique<IncomingRtpReceiveTimeGap>(
|
|
ToCallTime(timestamp), duration / 1000));
|
|
} else {
|
|
Notification(rtc::MakeUnique<OutgoingRtpSendTimeGap>(
|
|
ToCallTime(timestamp), duration / 1000));
|
|
}
|
|
}
|
|
last_rtp_packet.emplace(timestamp);
|
|
}
|
|
|
|
// TODO(terelius): The parser could provide a list of all packets, ordered
|
|
// by time, for each direction.
|
|
std::multimap<uint64_t, const LoggedRtcpPacket*> rtcp_in_direction;
|
|
for (const auto& kv : rtcp_packets_) {
|
|
if (kv.first.GetDirection() == direction) {
|
|
for (const LoggedRtcpPacket& rtcp_packet : kv.second)
|
|
rtcp_in_direction.emplace(rtcp_packet.timestamp, &rtcp_packet);
|
|
}
|
|
}
|
|
rtc::Optional<uint64_t> last_incoming_rtcp_packet;
|
|
for (const auto& kv : rtcp_in_direction) {
|
|
uint64_t timestamp = kv.first;
|
|
if (timestamp > end_time_us) {
|
|
// Only process the first (LOG_START, LOG_END) segment.
|
|
break;
|
|
}
|
|
int64_t duration = timestamp - last_incoming_rtcp_packet.value_or(0);
|
|
if (last_incoming_rtcp_packet.has_value() && duration > 2000000) {
|
|
// No incoming feedback for more than 2000 ms.
|
|
if (direction == kIncomingPacket) {
|
|
Notification(rtc::MakeUnique<IncomingRtcpReceiveTimeGap>(
|
|
ToCallTime(timestamp), duration / 1000));
|
|
} else {
|
|
Notification(rtc::MakeUnique<OutgoingRtcpSendTimeGap>(
|
|
ToCallTime(timestamp), duration / 1000));
|
|
}
|
|
}
|
|
last_incoming_rtcp_packet.emplace(timestamp);
|
|
}
|
|
}
|
|
|
|
// Loss feedback
|
|
int64_t total_lost_packets = 0;
|
|
int64_t total_expected_packets = 0;
|
|
for (auto& bwe_update : bwe_loss_updates_) {
|
|
if (bwe_update.timestamp > end_time_us) {
|
|
// Only process the first (LOG_START, LOG_END) segment.
|
|
break;
|
|
}
|
|
int64_t lost_packets = static_cast<double>(bwe_update.fraction_loss) / 255 *
|
|
bwe_update.expected_packets;
|
|
total_lost_packets += lost_packets;
|
|
total_expected_packets += bwe_update.expected_packets;
|
|
}
|
|
double avg_outgoing_loss =
|
|
static_cast<double>(total_lost_packets) / total_expected_packets;
|
|
if (avg_outgoing_loss > 0.05) {
|
|
Notification(rtc::MakeUnique<OutgoingHighLoss>(avg_outgoing_loss));
|
|
}
|
|
}
|
|
|
|
} // namespace plotting
|
|
} // namespace webrtc
|