webrtc/modules/audio_processing/aec3/render_signal_analyzer_unittest.cc
Gustaf Ullberg 11539f0b29 AEC3: Simplify render buffering
This CL simplifies the buffering of render data. Instead of making assumptions
about the worst possible platform, it leverages recent improvements in
the delay estimator to quickly adapt when the conditions change.

Pros:
- No capture delay, delay is found ~200 ms faster.
- Cleaner code that makes the concept of delay more clear.
- Allows for removal of one matched filter because of the jitter headroom
removal.

Cons:
- Delay estimator needs to re-adapt when the call jitter increases.

The code can be deactivated by a kill switch. When the kill switch is
pulled the CL is bit exact.

Bug: webrtc:9726,chromium:895338
Change-Id: Ie2f9c8c5ce5b5a4510b4bdb95db2b970b57cd5d0
Reviewed-on: https://webrtc-review.googlesource.com/c/96920
Commit-Queue: Gustaf Ullberg <gustaf@webrtc.org>
Reviewed-by: Per Åhgren <peah@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#25169}
2018-10-15 13:31:50 +00:00

135 lines
4.6 KiB
C++

/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/render_signal_analyzer.h"
#include <math.h>
#include <array>
#include <vector>
#include "api/array_view.h"
#include "modules/audio_processing/aec3/aec3_common.h"
#include "modules/audio_processing/aec3/aec3_fft.h"
#include "modules/audio_processing/aec3/fft_data.h"
#include "modules/audio_processing/aec3/render_delay_buffer.h"
#include "modules/audio_processing/test/echo_canceller_test_tools.h"
#include "rtc_base/random.h"
#include "test/gtest.h"
namespace webrtc {
namespace {
constexpr float kPi = 3.141592f;
void ProduceSinusoid(int sample_rate_hz,
float sinusoidal_frequency_hz,
size_t* sample_counter,
rtc::ArrayView<float> x) {
// Produce a sinusoid of the specified frequency.
for (size_t k = *sample_counter, j = 0; k < (*sample_counter + kBlockSize);
++k, ++j) {
x[j] =
32767.f * sin(2.f * kPi * sinusoidal_frequency_hz * k / sample_rate_hz);
}
*sample_counter = *sample_counter + kBlockSize;
}
} // namespace
#if RTC_DCHECK_IS_ON && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID)
// Verifies that the check for non-null output parameter works.
TEST(RenderSignalAnalyzer, NullMaskOutput) {
RenderSignalAnalyzer analyzer(EchoCanceller3Config{});
EXPECT_DEATH(analyzer.MaskRegionsAroundNarrowBands(nullptr), "");
}
#endif
// Verify that no narrow bands are detected in a Gaussian noise signal.
TEST(RenderSignalAnalyzer, NoFalseDetectionOfNarrowBands) {
RenderSignalAnalyzer analyzer(EchoCanceller3Config{});
Random random_generator(42U);
std::vector<std::vector<float>> x(3, std::vector<float>(kBlockSize, 0.f));
std::array<float, kBlockSize> x_old;
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
RenderDelayBuffer::Create2(EchoCanceller3Config(), 3));
std::array<float, kFftLengthBy2Plus1> mask;
x_old.fill(0.f);
for (size_t k = 0; k < 100; ++k) {
RandomizeSampleVector(&random_generator, x[0]);
render_delay_buffer->Insert(x);
if (k == 0) {
render_delay_buffer->Reset();
}
render_delay_buffer->PrepareCaptureProcessing();
analyzer.Update(*render_delay_buffer->GetRenderBuffer(),
absl::optional<size_t>(0));
}
mask.fill(1.f);
analyzer.MaskRegionsAroundNarrowBands(&mask);
EXPECT_TRUE(
std::all_of(mask.begin(), mask.end(), [](float a) { return a == 1.f; }));
EXPECT_FALSE(analyzer.PoorSignalExcitation());
}
// Verify that a sinusiod signal is detected as narrow bands.
TEST(RenderSignalAnalyzer, NarrowBandDetection) {
RenderSignalAnalyzer analyzer(EchoCanceller3Config{});
Random random_generator(42U);
std::vector<std::vector<float>> x(3, std::vector<float>(kBlockSize, 0.f));
std::array<float, kBlockSize> x_old;
Aec3Fft fft;
EchoCanceller3Config config;
config.delay.min_echo_path_delay_blocks = 0;
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
RenderDelayBuffer::Create2(config, 3));
std::array<float, kFftLengthBy2Plus1> mask;
x_old.fill(0.f);
constexpr int kSinusFrequencyBin = 32;
auto generate_sinusoid_test = [&](bool known_delay) {
size_t sample_counter = 0;
for (size_t k = 0; k < 100; ++k) {
ProduceSinusoid(16000, 16000 / 2 * kSinusFrequencyBin / kFftLengthBy2,
&sample_counter, x[0]);
render_delay_buffer->Insert(x);
if (k == 0) {
render_delay_buffer->Reset();
}
render_delay_buffer->PrepareCaptureProcessing();
analyzer.Update(*render_delay_buffer->GetRenderBuffer(),
known_delay ? absl::optional<size_t>(0) : absl::nullopt);
}
};
generate_sinusoid_test(true);
mask.fill(1.f);
analyzer.MaskRegionsAroundNarrowBands(&mask);
for (int k = 0; k < static_cast<int>(mask.size()); ++k) {
EXPECT_EQ(abs(k - kSinusFrequencyBin) <= 2 ? 0.f : 1.f, mask[k]);
}
EXPECT_TRUE(analyzer.PoorSignalExcitation());
// Verify that no bands are detected as narrow when the delay is unknown.
generate_sinusoid_test(false);
mask.fill(1.f);
analyzer.MaskRegionsAroundNarrowBands(&mask);
std::for_each(mask.begin(), mask.end(), [](float a) { EXPECT_EQ(1.f, a); });
EXPECT_FALSE(analyzer.PoorSignalExcitation());
}
} // namespace webrtc