webrtc/modules/video_coding/codecs/vp8/screenshare_layers.cc
Erik Språng 27a457d172 Smoother frame dropping when screenshare_layers limits fps
This is a reland of https://webrtc-review.googlesource.com/34380

The main problem with that CL was that we used frame timestamps as basis
for frame dropping, but those might not be continuous or even populated
in some circumstances.

Additionally, I found that the bitrate was off since the encoder does
not not take the dropped frames into account, so if we drop every other
frame continiusoly, the bitrate sent will be around half of the target.

Patch set 1 is the original CL, subsequent patch sets cotains fixes.

Bug: webrtc:4172
Change-Id: I8ec8dddcebf4ce44f28dd9055cf9c46bbd68e4a6
Reviewed-on: https://webrtc-review.googlesource.com/39201
Commit-Queue: Erik Språng <sprang@webrtc.org>
Reviewed-by: Ilya Nikolaevskiy <ilnik@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#21601}
2018-01-12 14:40:40 +00:00

504 lines
18 KiB
C++

/* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/video_coding/codecs/vp8/screenshare_layers.h"
#include <stdlib.h>
#include <algorithm>
#include <memory>
#include "modules/video_coding/include/video_codec_interface.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "system_wrappers/include/clock.h"
#include "system_wrappers/include/metrics.h"
#include "vpx/vp8cx.h"
#include "vpx/vpx_encoder.h"
namespace webrtc {
static const int kOneSecond90Khz = 90000;
static const int kMinTimeBetweenSyncs = kOneSecond90Khz * 2;
static const int kMaxTimeBetweenSyncs = kOneSecond90Khz * 4;
static const int kQpDeltaThresholdForSync = 8;
static const int kMinBitrateKbpsForQpBoost = 500;
const double ScreenshareLayers::kMaxTL0FpsReduction = 2.5;
const double ScreenshareLayers::kAcceptableTargetOvershoot = 2.0;
constexpr int ScreenshareLayers::kMaxNumTemporalLayers;
// Always emit a frame with certain interval, even if bitrate targets have
// been exceeded. This prevents needless keyframe requests.
const int ScreenshareLayers::kMaxFrameIntervalMs = 2750;
webrtc::TemporalLayers* ScreenshareTemporalLayersFactory::Create(
int simulcast_id,
int num_temporal_layers,
uint8_t initial_tl0_pic_idx) const {
webrtc::TemporalLayers* tl;
if (simulcast_id == 0) {
tl = new webrtc::ScreenshareLayers(num_temporal_layers, rand(),
webrtc::Clock::GetRealTimeClock());
} else {
TemporalLayersFactory rt_tl_factory;
tl = rt_tl_factory.Create(simulcast_id, num_temporal_layers, rand());
}
if (listener_)
listener_->OnTemporalLayersCreated(simulcast_id, tl);
return tl;
}
std::unique_ptr<webrtc::TemporalLayersChecker>
ScreenshareTemporalLayersFactory::CreateChecker(
int simulcast_id,
int temporal_layers,
uint8_t initial_tl0_pic_idx) const {
webrtc::TemporalLayersChecker* tlc;
if (simulcast_id == 0) {
tlc =
new webrtc::TemporalLayersChecker(temporal_layers, initial_tl0_pic_idx);
} else {
TemporalLayersFactory rt_tl_factory;
return rt_tl_factory.CreateChecker(simulcast_id, temporal_layers,
initial_tl0_pic_idx);
}
return std::unique_ptr<webrtc::TemporalLayersChecker>(tlc);
}
ScreenshareLayers::ScreenshareLayers(int num_temporal_layers,
uint8_t initial_tl0_pic_idx,
Clock* clock)
: clock_(clock),
number_of_temporal_layers_(
std::min(kMaxNumTemporalLayers, num_temporal_layers)),
last_base_layer_sync_(false),
tl0_pic_idx_(initial_tl0_pic_idx),
active_layer_(-1),
last_timestamp_(-1),
last_sync_timestamp_(-1),
last_emitted_tl0_timestamp_(-1),
last_frame_time_ms_(-1),
min_qp_(-1),
max_qp_(-1),
max_debt_bytes_(0),
encode_framerate_(1000.0f, 1000.0f), // 1 second window, second scale.
bitrate_updated_(false) {
RTC_CHECK_GT(number_of_temporal_layers_, 0);
RTC_CHECK_LE(number_of_temporal_layers_, kMaxNumTemporalLayers);
}
ScreenshareLayers::~ScreenshareLayers() {
UpdateHistograms();
}
uint8_t ScreenshareLayers::Tl0PicIdx() const {
return tl0_pic_idx_;
}
TemporalLayers::FrameConfig ScreenshareLayers::UpdateLayerConfig(
uint32_t timestamp) {
if (number_of_temporal_layers_ <= 1) {
// No flags needed for 1 layer screenshare.
// TODO(pbos): Consider updating only last, and not all buffers.
TemporalLayers::FrameConfig tl_config(
kReferenceAndUpdate, kReferenceAndUpdate, kReferenceAndUpdate);
return tl_config;
}
const int64_t now_ms = clock_->TimeInMilliseconds();
int64_t unwrapped_timestamp = time_wrap_handler_.Unwrap(timestamp);
int64_t ts_diff;
if (last_timestamp_ == -1) {
ts_diff = kOneSecond90Khz / capture_framerate_.value_or(*target_framerate_);
} else {
ts_diff = unwrapped_timestamp - last_timestamp_;
}
if (target_framerate_) {
// If input frame rate exceeds target frame rate, either over a one second
// averaging window, or if frame interval is below 90% of desired value,
// drop frame.
// Use real-time clock rather than timestamps, in case there is a
// discontinuity in the timestamps sequence.
if (encode_framerate_.Rate(now_ms).value_or(0) > *target_framerate_)
return TemporalLayers::FrameConfig(kNone, kNone, kNone);
int64_t expected_frame_interval_ms = 1000 / *target_framerate_;
if (last_frame_time_ms_ != -1 &&
now_ms - last_frame_time_ms_ < (9 * expected_frame_interval_ms) / 10) {
return TemporalLayers::FrameConfig(kNone, kNone, kNone);
}
}
if (stats_.first_frame_time_ms_ == -1)
stats_.first_frame_time_ms_ = now_ms;
// Make sure both frame droppers leak out bits.
layers_[0].UpdateDebt(ts_diff / 90);
layers_[1].UpdateDebt(ts_diff / 90);
last_timestamp_ = timestamp;
last_frame_time_ms_ = now_ms;
TemporalLayerState layer_state = TemporalLayerState::kDrop;
if (active_layer_ == -1 ||
layers_[active_layer_].state != TemporalLayer::State::kDropped) {
if (last_emitted_tl0_timestamp_ != -1 &&
(unwrapped_timestamp - last_emitted_tl0_timestamp_) / 90 >
kMaxFrameIntervalMs) {
// Too long time has passed since the last frame was emitted, cancel
// enough debt to allow a single frame.
layers_[0].debt_bytes_ = max_debt_bytes_ - 1;
}
if (layers_[0].debt_bytes_ > max_debt_bytes_) {
// Must drop TL0, encode TL1 instead.
if (layers_[1].debt_bytes_ > max_debt_bytes_) {
// Must drop both TL0 and TL1.
active_layer_ = -1;
} else {
active_layer_ = 1;
}
} else {
active_layer_ = 0;
}
}
switch (active_layer_) {
case 0:
layer_state = TemporalLayerState::kTl0;
last_emitted_tl0_timestamp_ = unwrapped_timestamp;
break;
case 1:
if (layers_[1].state != TemporalLayer::State::kDropped) {
if (TimeToSync(unwrapped_timestamp)) {
last_sync_timestamp_ = unwrapped_timestamp;
layer_state = TemporalLayerState::kTl1Sync;
} else {
layer_state = TemporalLayerState::kTl1;
}
} else {
layer_state = last_sync_timestamp_ == unwrapped_timestamp
? TemporalLayerState::kTl1Sync
: TemporalLayerState::kTl1;
}
break;
case -1:
layer_state = TemporalLayerState::kDrop;
++stats_.num_dropped_frames_;
break;
default:
RTC_NOTREACHED();
}
TemporalLayers::FrameConfig tl_config;
// TODO(pbos): Consider referencing but not updating the 'alt' buffer for all
// layers.
switch (layer_state) {
case TemporalLayerState::kDrop:
tl_config = TemporalLayers::FrameConfig(kNone, kNone, kNone);
break;
case TemporalLayerState::kTl0:
// TL0 only references and updates 'last'.
tl_config =
TemporalLayers::FrameConfig(kReferenceAndUpdate, kNone, kNone);
tl_config.packetizer_temporal_idx = 0;
break;
case TemporalLayerState::kTl1:
// TL1 references both 'last' and 'golden' but only updates 'golden'.
tl_config =
TemporalLayers::FrameConfig(kReference, kReferenceAndUpdate, kNone);
tl_config.packetizer_temporal_idx = 1;
break;
case TemporalLayerState::kTl1Sync:
// Predict from only TL0 to allow participants to switch to the high
// bitrate stream. Updates 'golden' so that TL1 can continue to refer to
// and update 'golden' from this point on.
tl_config = TemporalLayers::FrameConfig(kReference, kUpdate, kNone);
tl_config.packetizer_temporal_idx = 1;
break;
}
tl_config.layer_sync = layer_state == TemporalLayerState::kTl1Sync;
return tl_config;
}
std::vector<uint32_t> ScreenshareLayers::OnRatesUpdated(int bitrate_kbps,
int max_bitrate_kbps,
int framerate) {
RTC_DCHECK_GT(framerate, 0);
if (!target_framerate_) {
// First OnRatesUpdated() is called during construction, with the configured
// targets as parameters.
target_framerate_.emplace(framerate);
capture_framerate_ = target_framerate_;
bitrate_updated_ = true;
} else {
bitrate_updated_ =
bitrate_kbps != static_cast<int>(layers_[0].target_rate_kbps_) ||
max_bitrate_kbps != static_cast<int>(layers_[1].target_rate_kbps_) ||
(capture_framerate_ &&
framerate != static_cast<int>(*capture_framerate_));
if (framerate < 0) {
capture_framerate_.reset();
} else {
capture_framerate_.emplace(framerate);
}
}
layers_[0].target_rate_kbps_ = bitrate_kbps;
layers_[1].target_rate_kbps_ = max_bitrate_kbps;
std::vector<uint32_t> allocation;
allocation.push_back(bitrate_kbps);
if (max_bitrate_kbps > bitrate_kbps)
allocation.push_back(max_bitrate_kbps - bitrate_kbps);
return allocation;
}
void ScreenshareLayers::FrameEncoded(unsigned int size, int qp) {
if (size > 0)
encode_framerate_.Update(1, clock_->TimeInMilliseconds());
if (number_of_temporal_layers_ == 1)
return;
RTC_DCHECK_NE(-1, active_layer_);
if (size == 0) {
layers_[active_layer_].state = TemporalLayer::State::kDropped;
++stats_.num_overshoots_;
return;
}
if (layers_[active_layer_].state == TemporalLayer::State::kDropped) {
layers_[active_layer_].state = TemporalLayer::State::kQualityBoost;
}
if (qp != -1)
layers_[active_layer_].last_qp = qp;
if (active_layer_ == 0) {
layers_[0].debt_bytes_ += size;
layers_[1].debt_bytes_ += size;
++stats_.num_tl0_frames_;
stats_.tl0_target_bitrate_sum_ += layers_[0].target_rate_kbps_;
stats_.tl0_qp_sum_ += qp;
} else if (active_layer_ == 1) {
layers_[1].debt_bytes_ += size;
++stats_.num_tl1_frames_;
stats_.tl1_target_bitrate_sum_ += layers_[1].target_rate_kbps_;
stats_.tl1_qp_sum_ += qp;
}
}
void ScreenshareLayers::PopulateCodecSpecific(
bool frame_is_keyframe,
const TemporalLayers::FrameConfig& tl_config,
CodecSpecificInfoVP8* vp8_info,
uint32_t timestamp) {
if (number_of_temporal_layers_ == 1) {
vp8_info->temporalIdx = kNoTemporalIdx;
vp8_info->layerSync = false;
vp8_info->tl0PicIdx = kNoTl0PicIdx;
} else {
int64_t unwrapped_timestamp = time_wrap_handler_.Unwrap(timestamp);
vp8_info->temporalIdx = tl_config.packetizer_temporal_idx;
vp8_info->layerSync = tl_config.layer_sync;
if (frame_is_keyframe) {
vp8_info->temporalIdx = 0;
last_sync_timestamp_ = unwrapped_timestamp;
vp8_info->layerSync = true;
} else if (last_base_layer_sync_ && vp8_info->temporalIdx != 0) {
// Regardless of pattern the frame after a base layer sync will always
// be a layer sync.
last_sync_timestamp_ = unwrapped_timestamp;
vp8_info->layerSync = true;
}
if (vp8_info->temporalIdx == 0) {
tl0_pic_idx_++;
}
last_base_layer_sync_ = frame_is_keyframe;
vp8_info->tl0PicIdx = tl0_pic_idx_;
}
}
bool ScreenshareLayers::TimeToSync(int64_t timestamp) const {
RTC_DCHECK_EQ(1, active_layer_);
RTC_DCHECK_NE(-1, layers_[0].last_qp);
if (layers_[1].last_qp == -1) {
// First frame in TL1 should only depend on TL0 since there are no
// previous frames in TL1.
return true;
}
RTC_DCHECK_NE(-1, last_sync_timestamp_);
int64_t timestamp_diff = timestamp - last_sync_timestamp_;
if (timestamp_diff > kMaxTimeBetweenSyncs) {
// After a certain time, force a sync frame.
return true;
} else if (timestamp_diff < kMinTimeBetweenSyncs) {
// If too soon from previous sync frame, don't issue a new one.
return false;
}
// Issue a sync frame if difference in quality between TL0 and TL1 isn't too
// large.
if (layers_[0].last_qp - layers_[1].last_qp < kQpDeltaThresholdForSync)
return true;
return false;
}
uint32_t ScreenshareLayers::GetCodecTargetBitrateKbps() const {
uint32_t target_bitrate_kbps = layers_[0].target_rate_kbps_;
if (number_of_temporal_layers_ > 1) {
// Calculate a codec target bitrate. This may be higher than TL0, gaining
// quality at the expense of frame rate at TL0. Constraints:
// - TL0 frame rate no less than framerate / kMaxTL0FpsReduction.
// - Target rate * kAcceptableTargetOvershoot should not exceed TL1 rate.
target_bitrate_kbps =
std::min(layers_[0].target_rate_kbps_ * kMaxTL0FpsReduction,
layers_[1].target_rate_kbps_ / kAcceptableTargetOvershoot);
}
return std::max(layers_[0].target_rate_kbps_, target_bitrate_kbps);
}
bool ScreenshareLayers::UpdateConfiguration(vpx_codec_enc_cfg_t* cfg) {
bool cfg_updated = false;
uint32_t target_bitrate_kbps = GetCodecTargetBitrateKbps();
// TODO(sprang): We _really_ need to make an overhaul of this class. :(
// If we're dropping frames in order to meet a target framerate, adjust the
// bitrate assigned to the encoder so the total average bitrate is correct.
float encoder_config_bitrate_kbps = target_bitrate_kbps;
if (target_framerate_ && capture_framerate_ &&
*target_framerate_ < *capture_framerate_) {
encoder_config_bitrate_kbps *=
static_cast<float>(*capture_framerate_) / *target_framerate_;
}
if (bitrate_updated_ ||
cfg->rc_target_bitrate != encoder_config_bitrate_kbps) {
cfg->rc_target_bitrate = encoder_config_bitrate_kbps;
// Don't reconfigure qp limits during quality boost frames.
if (active_layer_ == -1 ||
layers_[active_layer_].state != TemporalLayer::State::kQualityBoost) {
min_qp_ = cfg->rc_min_quantizer;
max_qp_ = cfg->rc_max_quantizer;
// After a dropped frame, a frame with max qp will be encoded and the
// quality will then ramp up from there. To boost the speed of recovery,
// encode the next frame with lower max qp, if there is sufficient
// bandwidth to do so without causing excessive delay.
// TL0 is the most important to improve since the errors in this layer
// will propagate to TL1.
// Currently, reduce max qp by 20% for TL0 and 15% for TL1.
if (layers_[1].target_rate_kbps_ >= kMinBitrateKbpsForQpBoost) {
layers_[0].enhanced_max_qp =
min_qp_ + (((max_qp_ - min_qp_) * 80) / 100);
layers_[1].enhanced_max_qp =
min_qp_ + (((max_qp_ - min_qp_) * 85) / 100);
} else {
layers_[0].enhanced_max_qp = -1;
layers_[1].enhanced_max_qp = -1;
}
}
if (capture_framerate_) {
int avg_frame_size =
(target_bitrate_kbps * 1000) / (8 * *capture_framerate_);
// Allow max debt to be the size of a single optimal frame.
// TODO(sprang): Determine if this needs to be adjusted by some factor.
// (Lower values may cause more frame drops, higher may lead to queuing
// delays.)
max_debt_bytes_ = avg_frame_size;
}
bitrate_updated_ = false;
cfg_updated = true;
}
// Don't try to update boosts state if not active yet.
if (active_layer_ == -1)
return cfg_updated;
if (max_qp_ == -1 || number_of_temporal_layers_ <= 1)
return cfg_updated;
// If layer is in the quality boost state (following a dropped frame), update
// the configuration with the adjusted (lower) qp and set the state back to
// normal.
unsigned int adjusted_max_qp;
if (layers_[active_layer_].state == TemporalLayer::State::kQualityBoost &&
layers_[active_layer_].enhanced_max_qp != -1) {
adjusted_max_qp = layers_[active_layer_].enhanced_max_qp;
layers_[active_layer_].state = TemporalLayer::State::kNormal;
} else {
adjusted_max_qp = max_qp_; // Set the normal max qp.
}
if (adjusted_max_qp == cfg->rc_max_quantizer)
return cfg_updated;
cfg->rc_max_quantizer = adjusted_max_qp;
cfg_updated = true;
return cfg_updated;
}
void ScreenshareLayers::TemporalLayer::UpdateDebt(int64_t delta_ms) {
uint32_t debt_reduction_bytes = target_rate_kbps_ * delta_ms / 8;
if (debt_reduction_bytes >= debt_bytes_) {
debt_bytes_ = 0;
} else {
debt_bytes_ -= debt_reduction_bytes;
}
}
void ScreenshareLayers::UpdateHistograms() {
if (stats_.first_frame_time_ms_ == -1)
return;
int64_t duration_sec =
(clock_->TimeInMilliseconds() - stats_.first_frame_time_ms_ + 500) / 1000;
if (duration_sec >= metrics::kMinRunTimeInSeconds) {
RTC_HISTOGRAM_COUNTS_10000(
"WebRTC.Video.Screenshare.Layer0.FrameRate",
(stats_.num_tl0_frames_ + (duration_sec / 2)) / duration_sec);
RTC_HISTOGRAM_COUNTS_10000(
"WebRTC.Video.Screenshare.Layer1.FrameRate",
(stats_.num_tl1_frames_ + (duration_sec / 2)) / duration_sec);
int total_frames = stats_.num_tl0_frames_ + stats_.num_tl1_frames_;
RTC_HISTOGRAM_COUNTS_10000(
"WebRTC.Video.Screenshare.FramesPerDrop",
(stats_.num_dropped_frames_ == 0
? 0
: total_frames / stats_.num_dropped_frames_));
RTC_HISTOGRAM_COUNTS_10000(
"WebRTC.Video.Screenshare.FramesPerOvershoot",
(stats_.num_overshoots_ == 0 ? 0
: total_frames / stats_.num_overshoots_));
if (stats_.num_tl0_frames_ > 0) {
RTC_HISTOGRAM_COUNTS_10000("WebRTC.Video.Screenshare.Layer0.Qp",
stats_.tl0_qp_sum_ / stats_.num_tl0_frames_);
RTC_HISTOGRAM_COUNTS_10000(
"WebRTC.Video.Screenshare.Layer0.TargetBitrate",
stats_.tl0_target_bitrate_sum_ / stats_.num_tl0_frames_);
}
if (stats_.num_tl1_frames_ > 0) {
RTC_HISTOGRAM_COUNTS_10000("WebRTC.Video.Screenshare.Layer1.Qp",
stats_.tl1_qp_sum_ / stats_.num_tl1_frames_);
RTC_HISTOGRAM_COUNTS_10000(
"WebRTC.Video.Screenshare.Layer1.TargetBitrate",
stats_.tl1_target_bitrate_sum_ / stats_.num_tl1_frames_);
}
}
}
} // namespace webrtc