webrtc/modules/video_coding/codecs/vp9/vp9_impl.cc
Sergey Silkin 16beea7c90 Set encodedWidth/encodedHeight to actual coded resolution.
This fixes mismatch between resolution of coded frame indicated by VP9
encoder wrapper and actual coded resolution. If internal resize is
enabled VP9 encoder might downscale input frame when bitrate is too low
to keep good spatial quality. Before this fix VP9 wrapper always set
coded resolution equal to input resolution. Now it sets it to actual
coded resolution which it reads from frame pkt.

Bug: webrtc:5749
Change-Id: I7dc8ba89947e99213a3b4c3cd4d974b662f090c4
Reviewed-on: https://webrtc-review.googlesource.com/39661
Reviewed-by: Åsa Persson <asapersson@webrtc.org>
Reviewed-by: Rasmus Brandt <brandtr@webrtc.org>
Commit-Queue: Sergey Silkin <ssilkin@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#21651}
2018-01-17 10:50:35 +00:00

1025 lines
36 KiB
C++

/*
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*
*/
#include "modules/video_coding/codecs/vp9/vp9_impl.h"
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <vector>
#include "vpx/vpx_encoder.h"
#include "vpx/vpx_decoder.h"
#include "vpx/vp8cx.h"
#include "vpx/vp8dx.h"
#include "common_video/include/video_frame_buffer.h"
#include "common_video/libyuv/include/webrtc_libyuv.h"
#include "modules/video_coding/codecs/vp9/screenshare_layers.h"
#include "rtc_base/checks.h"
#include "rtc_base/keep_ref_until_done.h"
#include "rtc_base/logging.h"
#include "rtc_base/ptr_util.h"
#include "rtc_base/random.h"
#include "rtc_base/timeutils.h"
#include "rtc_base/trace_event.h"
namespace webrtc {
// Only positive speeds, range for real-time coding currently is: 5 - 8.
// Lower means slower/better quality, higher means fastest/lower quality.
int GetCpuSpeed(int width, int height) {
#if defined(WEBRTC_ARCH_ARM) || defined(WEBRTC_ARCH_ARM64) || defined(ANDROID)
return 8;
#else
// For smaller resolutions, use lower speed setting (get some coding gain at
// the cost of increased encoding complexity).
if (width * height <= 352 * 288)
return 5;
else
return 7;
#endif
}
bool VP9Encoder::IsSupported() {
return true;
}
std::unique_ptr<VP9Encoder> VP9Encoder::Create() {
return rtc::MakeUnique<VP9EncoderImpl>();
}
void VP9EncoderImpl::EncoderOutputCodedPacketCallback(vpx_codec_cx_pkt* pkt,
void* user_data) {
VP9EncoderImpl* enc = static_cast<VP9EncoderImpl*>(user_data);
enc->GetEncodedLayerFrame(pkt);
}
VP9EncoderImpl::VP9EncoderImpl()
: encoded_image_(),
encoded_complete_callback_(nullptr),
inited_(false),
timestamp_(0),
cpu_speed_(3),
rc_max_intra_target_(0),
encoder_(nullptr),
config_(nullptr),
raw_(nullptr),
input_image_(nullptr),
frames_since_kf_(0),
num_temporal_layers_(0),
num_spatial_layers_(0),
is_flexible_mode_(false),
frames_encoded_(0),
// Use two spatial when screensharing with flexible mode.
spatial_layer_(new ScreenshareLayersVP9(2)) {
memset(&codec_, 0, sizeof(codec_));
memset(&svc_params_, 0, sizeof(vpx_svc_extra_cfg_t));
Random random(rtc::TimeMicros());
picture_id_ = random.Rand<uint16_t>() & 0x7FFF;
tl0_pic_idx_ = random.Rand<uint8_t>();
}
VP9EncoderImpl::~VP9EncoderImpl() {
Release();
}
int VP9EncoderImpl::Release() {
if (encoded_image_._buffer != nullptr) {
delete[] encoded_image_._buffer;
encoded_image_._buffer = nullptr;
}
if (encoder_ != nullptr) {
if (vpx_codec_destroy(encoder_)) {
return WEBRTC_VIDEO_CODEC_MEMORY;
}
delete encoder_;
encoder_ = nullptr;
}
if (config_ != nullptr) {
delete config_;
config_ = nullptr;
}
if (raw_ != nullptr) {
vpx_img_free(raw_);
raw_ = nullptr;
}
inited_ = false;
return WEBRTC_VIDEO_CODEC_OK;
}
bool VP9EncoderImpl::ExplicitlyConfiguredSpatialLayers() const {
// We check target_bitrate_bps of the 0th layer to see if the spatial layers
// (i.e. bitrates) were explicitly configured.
return num_spatial_layers_ > 1 &&
codec_.spatialLayers[0].target_bitrate_bps > 0;
}
bool VP9EncoderImpl::SetSvcRates() {
uint8_t i = 0;
if (ExplicitlyConfiguredSpatialLayers()) {
if (num_temporal_layers_ > 1) {
RTC_LOG(LS_ERROR) << "Multiple temporal layers when manually specifying "
"spatial layers not implemented yet!";
return false;
}
int total_bitrate_bps = 0;
for (i = 0; i < num_spatial_layers_; ++i)
total_bitrate_bps += codec_.spatialLayers[i].target_bitrate_bps;
// If total bitrate differs now from what has been specified at the
// beginning, update the bitrates in the same ratio as before.
for (i = 0; i < num_spatial_layers_; ++i) {
config_->ss_target_bitrate[i] = config_->layer_target_bitrate[i] =
static_cast<int>(static_cast<int64_t>(config_->rc_target_bitrate) *
codec_.spatialLayers[i].target_bitrate_bps /
total_bitrate_bps);
}
} else {
float rate_ratio[VPX_MAX_LAYERS] = {0};
float total = 0;
for (i = 0; i < num_spatial_layers_; ++i) {
if (svc_params_.scaling_factor_num[i] <= 0 ||
svc_params_.scaling_factor_den[i] <= 0) {
RTC_LOG(LS_ERROR) << "Scaling factors not specified!";
return false;
}
rate_ratio[i] =
static_cast<float>(svc_params_.scaling_factor_num[i]) /
svc_params_.scaling_factor_den[i];
total += rate_ratio[i];
}
for (i = 0; i < num_spatial_layers_; ++i) {
config_->ss_target_bitrate[i] = static_cast<unsigned int>(
config_->rc_target_bitrate * rate_ratio[i] / total);
if (num_temporal_layers_ == 1) {
config_->layer_target_bitrate[i] = config_->ss_target_bitrate[i];
} else if (num_temporal_layers_ == 2) {
config_->layer_target_bitrate[i * num_temporal_layers_] =
config_->ss_target_bitrate[i] * 2 / 3;
config_->layer_target_bitrate[i * num_temporal_layers_ + 1] =
config_->ss_target_bitrate[i];
} else if (num_temporal_layers_ == 3) {
config_->layer_target_bitrate[i * num_temporal_layers_] =
config_->ss_target_bitrate[i] / 2;
config_->layer_target_bitrate[i * num_temporal_layers_ + 1] =
config_->layer_target_bitrate[i * num_temporal_layers_] +
(config_->ss_target_bitrate[i] / 4);
config_->layer_target_bitrate[i * num_temporal_layers_ + 2] =
config_->ss_target_bitrate[i];
} else {
RTC_LOG(LS_ERROR) << "Unsupported number of temporal layers: "
<< num_temporal_layers_;
return false;
}
}
}
// For now, temporal layers only supported when having one spatial layer.
if (num_spatial_layers_ == 1) {
for (i = 0; i < num_temporal_layers_; ++i) {
config_->ts_target_bitrate[i] = config_->layer_target_bitrate[i];
}
}
return true;
}
int VP9EncoderImpl::SetRateAllocation(
const BitrateAllocation& bitrate_allocation,
uint32_t frame_rate) {
if (!inited_) {
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
if (encoder_->err) {
return WEBRTC_VIDEO_CODEC_ERROR;
}
if (frame_rate < 1) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
// Update bit rate
if (codec_.maxBitrate > 0 &&
bitrate_allocation.get_sum_kbps() > codec_.maxBitrate) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
// TODO(sprang): Actually use BitrateAllocation layer info.
config_->rc_target_bitrate = bitrate_allocation.get_sum_kbps();
codec_.maxFramerate = frame_rate;
spatial_layer_->ConfigureBitrate(bitrate_allocation.get_sum_kbps(), 0);
if (!SetSvcRates()) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
// Update encoder context
if (vpx_codec_enc_config_set(encoder_, config_)) {
return WEBRTC_VIDEO_CODEC_ERROR;
}
return WEBRTC_VIDEO_CODEC_OK;
}
int VP9EncoderImpl::InitEncode(const VideoCodec* inst,
int number_of_cores,
size_t /*max_payload_size*/) {
if (inst == nullptr) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
if (inst->maxFramerate < 1) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
// Allow zero to represent an unspecified maxBitRate
if (inst->maxBitrate > 0 && inst->startBitrate > inst->maxBitrate) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
if (inst->width < 1 || inst->height < 1) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
if (number_of_cores < 1) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
if (inst->VP9().numberOfTemporalLayers > 3) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
// libvpx probably does not support more than 3 spatial layers.
if (inst->VP9().numberOfSpatialLayers > 3) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
int ret_val = Release();
if (ret_val < 0) {
return ret_val;
}
if (encoder_ == nullptr) {
encoder_ = new vpx_codec_ctx_t;
}
if (config_ == nullptr) {
config_ = new vpx_codec_enc_cfg_t;
}
timestamp_ = 0;
if (&codec_ != inst) {
codec_ = *inst;
}
num_spatial_layers_ = inst->VP9().numberOfSpatialLayers;
num_temporal_layers_ = inst->VP9().numberOfTemporalLayers;
if (num_temporal_layers_ == 0)
num_temporal_layers_ = 1;
// Allocate memory for encoded image
if (encoded_image_._buffer != nullptr) {
delete[] encoded_image_._buffer;
}
encoded_image_._size =
CalcBufferSize(VideoType::kI420, codec_.width, codec_.height);
encoded_image_._buffer = new uint8_t[encoded_image_._size];
encoded_image_._completeFrame = true;
// Creating a wrapper to the image - setting image data to nullptr. Actual
// pointer will be set in encode. Setting align to 1, as it is meaningless
// (actual memory is not allocated).
raw_ = vpx_img_wrap(nullptr, VPX_IMG_FMT_I420, codec_.width, codec_.height, 1,
nullptr);
// Populate encoder configuration with default values.
if (vpx_codec_enc_config_default(vpx_codec_vp9_cx(), config_, 0)) {
return WEBRTC_VIDEO_CODEC_ERROR;
}
config_->g_w = codec_.width;
config_->g_h = codec_.height;
config_->rc_target_bitrate = inst->startBitrate; // in kbit/s
config_->g_error_resilient = inst->VP9().resilienceOn ? 1 : 0;
// Setting the time base of the codec.
config_->g_timebase.num = 1;
config_->g_timebase.den = 90000;
config_->g_lag_in_frames = 0; // 0- no frame lagging
config_->g_threads = 1;
// Rate control settings.
config_->rc_dropframe_thresh = inst->VP9().frameDroppingOn ? 30 : 0;
config_->rc_end_usage = VPX_CBR;
config_->g_pass = VPX_RC_ONE_PASS;
config_->rc_min_quantizer = 2;
config_->rc_max_quantizer = 52;
config_->rc_undershoot_pct = 50;
config_->rc_overshoot_pct = 50;
config_->rc_buf_initial_sz = 500;
config_->rc_buf_optimal_sz = 600;
config_->rc_buf_sz = 1000;
// Set the maximum target size of any key-frame.
rc_max_intra_target_ = MaxIntraTarget(config_->rc_buf_optimal_sz);
if (inst->VP9().keyFrameInterval > 0) {
config_->kf_mode = VPX_KF_AUTO;
config_->kf_max_dist = inst->VP9().keyFrameInterval;
// Needs to be set (in svc mode) to get correct periodic key frame interval
// (will have no effect in non-svc).
config_->kf_min_dist = config_->kf_max_dist;
} else {
config_->kf_mode = VPX_KF_DISABLED;
}
config_->rc_resize_allowed = inst->VP9().automaticResizeOn ? 1 : 0;
// Determine number of threads based on the image size and #cores.
config_->g_threads =
NumberOfThreads(config_->g_w, config_->g_h, number_of_cores);
cpu_speed_ = GetCpuSpeed(config_->g_w, config_->g_h);
// TODO(asapersson): Check configuration of temporal switch up and increase
// pattern length.
is_flexible_mode_ = inst->VP9().flexibleMode;
if (is_flexible_mode_) {
config_->temporal_layering_mode = VP9E_TEMPORAL_LAYERING_MODE_BYPASS;
config_->ts_number_layers = num_temporal_layers_;
if (codec_.mode == kScreensharing)
spatial_layer_->ConfigureBitrate(inst->startBitrate, 0);
} else if (num_temporal_layers_ == 1) {
gof_.SetGofInfoVP9(kTemporalStructureMode1);
config_->temporal_layering_mode = VP9E_TEMPORAL_LAYERING_MODE_NOLAYERING;
config_->ts_number_layers = 1;
config_->ts_rate_decimator[0] = 1;
config_->ts_periodicity = 1;
config_->ts_layer_id[0] = 0;
} else if (num_temporal_layers_ == 2) {
gof_.SetGofInfoVP9(kTemporalStructureMode2);
config_->temporal_layering_mode = VP9E_TEMPORAL_LAYERING_MODE_0101;
config_->ts_number_layers = 2;
config_->ts_rate_decimator[0] = 2;
config_->ts_rate_decimator[1] = 1;
config_->ts_periodicity = 2;
config_->ts_layer_id[0] = 0;
config_->ts_layer_id[1] = 1;
} else if (num_temporal_layers_ == 3) {
gof_.SetGofInfoVP9(kTemporalStructureMode3);
config_->temporal_layering_mode = VP9E_TEMPORAL_LAYERING_MODE_0212;
config_->ts_number_layers = 3;
config_->ts_rate_decimator[0] = 4;
config_->ts_rate_decimator[1] = 2;
config_->ts_rate_decimator[2] = 1;
config_->ts_periodicity = 4;
config_->ts_layer_id[0] = 0;
config_->ts_layer_id[1] = 2;
config_->ts_layer_id[2] = 1;
config_->ts_layer_id[3] = 2;
} else {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
return InitAndSetControlSettings(inst);
}
int VP9EncoderImpl::NumberOfThreads(int width,
int height,
int number_of_cores) {
// Keep the number of encoder threads equal to the possible number of column
// tiles, which is (1, 2, 4, 8). See comments below for VP9E_SET_TILE_COLUMNS.
if (width * height >= 1280 * 720 && number_of_cores > 4) {
return 4;
} else if (width * height >= 640 * 360 && number_of_cores > 2) {
return 2;
} else {
// Use 2 threads for low res on ARM.
#if defined(WEBRTC_ARCH_ARM) || defined(WEBRTC_ARCH_ARM64) || \
defined(WEBRTC_ANDROID)
if (width * height >= 320 * 180 && number_of_cores > 2) {
return 2;
}
#endif
// 1 thread less than VGA.
return 1;
}
}
int VP9EncoderImpl::InitAndSetControlSettings(const VideoCodec* inst) {
// Set QP-min/max per spatial and temporal layer.
int tot_num_layers = num_spatial_layers_ * num_temporal_layers_;
for (int i = 0; i < tot_num_layers; ++i) {
svc_params_.max_quantizers[i] = config_->rc_max_quantizer;
svc_params_.min_quantizers[i] = config_->rc_min_quantizer;
}
config_->ss_number_layers = num_spatial_layers_;
if (ExplicitlyConfiguredSpatialLayers()) {
for (int i = 0; i < num_spatial_layers_; ++i) {
const auto& layer = codec_.spatialLayers[i];
svc_params_.scaling_factor_num[i] = layer.scaling_factor_num;
svc_params_.scaling_factor_den[i] = layer.scaling_factor_den;
}
} else {
int scaling_factor_num = 256;
for (int i = num_spatial_layers_ - 1; i >= 0; --i) {
// 1:2 scaling in each dimension.
svc_params_.scaling_factor_num[i] = scaling_factor_num;
svc_params_.scaling_factor_den[i] = 256;
if (codec_.mode != kScreensharing)
scaling_factor_num /= 2;
}
}
if (!SetSvcRates()) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
if (vpx_codec_enc_init(encoder_, vpx_codec_vp9_cx(), config_, 0)) {
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
vpx_codec_control(encoder_, VP8E_SET_CPUUSED, cpu_speed_);
vpx_codec_control(encoder_, VP8E_SET_MAX_INTRA_BITRATE_PCT,
rc_max_intra_target_);
vpx_codec_control(encoder_, VP9E_SET_AQ_MODE,
inst->VP9().adaptiveQpMode ? 3 : 0);
vpx_codec_control(encoder_, VP9E_SET_FRAME_PARALLEL_DECODING, 0);
vpx_codec_control(
encoder_, VP9E_SET_SVC,
(num_temporal_layers_ > 1 || num_spatial_layers_ > 1) ? 1 : 0);
if (num_temporal_layers_ > 1 || num_spatial_layers_ > 1) {
vpx_codec_control(encoder_, VP9E_SET_SVC_PARAMETERS,
&svc_params_);
}
// Register callback for getting each spatial layer.
vpx_codec_priv_output_cx_pkt_cb_pair_t cbp = {
VP9EncoderImpl::EncoderOutputCodedPacketCallback,
reinterpret_cast<void*>(this)};
vpx_codec_control(encoder_, VP9E_REGISTER_CX_CALLBACK,
reinterpret_cast<void*>(&cbp));
// Control function to set the number of column tiles in encoding a frame, in
// log2 unit: e.g., 0 = 1 tile column, 1 = 2 tile columns, 2 = 4 tile columns.
// The number tile columns will be capped by the encoder based on image size
// (minimum width of tile column is 256 pixels, maximum is 4096).
vpx_codec_control(encoder_, VP9E_SET_TILE_COLUMNS, (config_->g_threads >> 1));
// Turn on row-based multithreading.
vpx_codec_control(encoder_, VP9E_SET_ROW_MT, 1);
#if !defined(WEBRTC_ARCH_ARM) && !defined(WEBRTC_ARCH_ARM64) && \
!defined(ANDROID)
// Do not enable the denoiser on ARM since optimization is pending.
// Denoiser is on by default on other platforms.
vpx_codec_control(encoder_, VP9E_SET_NOISE_SENSITIVITY,
inst->VP9().denoisingOn ? 1 : 0);
#endif
if (codec_.mode == kScreensharing) {
// Adjust internal parameters to screen content.
vpx_codec_control(encoder_, VP9E_SET_TUNE_CONTENT, 1);
}
// Enable encoder skip of static/low content blocks.
vpx_codec_control(encoder_, VP8E_SET_STATIC_THRESHOLD, 1);
inited_ = true;
return WEBRTC_VIDEO_CODEC_OK;
}
uint32_t VP9EncoderImpl::MaxIntraTarget(uint32_t optimal_buffer_size) {
// Set max to the optimal buffer level (normalized by target BR),
// and scaled by a scale_par.
// Max target size = scale_par * optimal_buffer_size * targetBR[Kbps].
// This value is presented in percentage of perFrameBw:
// perFrameBw = targetBR[Kbps] * 1000 / framerate.
// The target in % is as follows:
float scale_par = 0.5;
uint32_t target_pct =
optimal_buffer_size * scale_par * codec_.maxFramerate / 10;
// Don't go below 3 times the per frame bandwidth.
const uint32_t min_intra_size = 300;
return (target_pct < min_intra_size) ? min_intra_size : target_pct;
}
int VP9EncoderImpl::Encode(const VideoFrame& input_image,
const CodecSpecificInfo* codec_specific_info,
const std::vector<FrameType>* frame_types) {
if (!inited_) {
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
if (encoded_complete_callback_ == nullptr) {
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
FrameType frame_type = kVideoFrameDelta;
// We only support one stream at the moment.
if (frame_types && frame_types->size() > 0) {
frame_type = (*frame_types)[0];
}
RTC_DCHECK_EQ(input_image.width(), raw_->d_w);
RTC_DCHECK_EQ(input_image.height(), raw_->d_h);
// Set input image for use in the callback.
// This was necessary since you need some information from input_image.
// You can save only the necessary information (such as timestamp) instead of
// doing this.
input_image_ = &input_image;
rtc::scoped_refptr<I420BufferInterface> i420_buffer =
input_image.video_frame_buffer()->ToI420();
// Image in vpx_image_t format.
// Input image is const. VPX's raw image is not defined as const.
raw_->planes[VPX_PLANE_Y] = const_cast<uint8_t*>(i420_buffer->DataY());
raw_->planes[VPX_PLANE_U] = const_cast<uint8_t*>(i420_buffer->DataU());
raw_->planes[VPX_PLANE_V] = const_cast<uint8_t*>(i420_buffer->DataV());
raw_->stride[VPX_PLANE_Y] = i420_buffer->StrideY();
raw_->stride[VPX_PLANE_U] = i420_buffer->StrideU();
raw_->stride[VPX_PLANE_V] = i420_buffer->StrideV();
vpx_enc_frame_flags_t flags = 0;
bool send_keyframe = (frame_type == kVideoFrameKey);
if (send_keyframe) {
// Key frame request from caller.
flags = VPX_EFLAG_FORCE_KF;
}
if (is_flexible_mode_) {
SuperFrameRefSettings settings;
// These structs are copied when calling vpx_codec_control,
// therefore it is ok for them to go out of scope.
vpx_svc_ref_frame_config enc_layer_conf;
vpx_svc_layer_id layer_id;
if (codec_.mode == kRealtimeVideo) {
// Real time video not yet implemented in flexible mode.
RTC_NOTREACHED();
} else {
settings = spatial_layer_->GetSuperFrameSettings(input_image.timestamp(),
send_keyframe);
}
enc_layer_conf = GenerateRefsAndFlags(settings);
layer_id.temporal_layer_id = 0;
layer_id.spatial_layer_id = settings.start_layer;
vpx_codec_control(encoder_, VP9E_SET_SVC_LAYER_ID, &layer_id);
vpx_codec_control(encoder_, VP9E_SET_SVC_REF_FRAME_CONFIG, &enc_layer_conf);
}
RTC_CHECK_GT(codec_.maxFramerate, 0);
uint32_t duration = 90000 / codec_.maxFramerate;
if (vpx_codec_encode(encoder_, raw_, timestamp_, duration, flags,
VPX_DL_REALTIME)) {
return WEBRTC_VIDEO_CODEC_ERROR;
}
timestamp_ += duration;
return WEBRTC_VIDEO_CODEC_OK;
}
void VP9EncoderImpl::PopulateCodecSpecific(CodecSpecificInfo* codec_specific,
const vpx_codec_cx_pkt& pkt,
uint32_t timestamp) {
RTC_CHECK(codec_specific != nullptr);
codec_specific->codecType = kVideoCodecVP9;
codec_specific->codec_name = ImplementationName();
CodecSpecificInfoVP9* vp9_info = &(codec_specific->codecSpecific.VP9);
// TODO(asapersson): Set correct value.
vp9_info->inter_pic_predicted =
(pkt.data.frame.flags & VPX_FRAME_IS_KEY) ? false : true;
vp9_info->flexible_mode = codec_.VP9()->flexibleMode;
vp9_info->ss_data_available =
((pkt.data.frame.flags & VPX_FRAME_IS_KEY) && !codec_.VP9()->flexibleMode)
? true
: false;
vpx_svc_layer_id_t layer_id = {0};
vpx_codec_control(encoder_, VP9E_GET_SVC_LAYER_ID, &layer_id);
RTC_CHECK_GT(num_temporal_layers_, 0);
RTC_CHECK_GT(num_spatial_layers_, 0);
if (num_temporal_layers_ == 1) {
RTC_CHECK_EQ(layer_id.temporal_layer_id, 0);
vp9_info->temporal_idx = kNoTemporalIdx;
} else {
vp9_info->temporal_idx = layer_id.temporal_layer_id;
}
if (num_spatial_layers_ == 1) {
RTC_CHECK_EQ(layer_id.spatial_layer_id, 0);
vp9_info->spatial_idx = kNoSpatialIdx;
} else {
vp9_info->spatial_idx = layer_id.spatial_layer_id;
}
if (layer_id.spatial_layer_id != 0) {
vp9_info->ss_data_available = false;
}
// TODO(asapersson): this info has to be obtained from the encoder.
vp9_info->temporal_up_switch = false;
bool is_first_frame = false;
if (is_flexible_mode_) {
is_first_frame =
layer_id.spatial_layer_id == spatial_layer_->GetStartLayer();
} else {
is_first_frame = layer_id.spatial_layer_id == 0;
}
if (is_first_frame) {
picture_id_ = (picture_id_ + 1) & 0x7FFF;
// TODO(asapersson): this info has to be obtained from the encoder.
vp9_info->inter_layer_predicted = false;
++frames_since_kf_;
} else {
// TODO(asapersson): this info has to be obtained from the encoder.
vp9_info->inter_layer_predicted = true;
}
if (pkt.data.frame.flags & VPX_FRAME_IS_KEY) {
frames_since_kf_ = 0;
}
vp9_info->picture_id = picture_id_;
if (!vp9_info->flexible_mode) {
if (layer_id.temporal_layer_id == 0 && layer_id.spatial_layer_id == 0) {
tl0_pic_idx_++;
}
vp9_info->tl0_pic_idx = tl0_pic_idx_;
}
// Always populate this, so that the packetizer can properly set the marker
// bit.
vp9_info->num_spatial_layers = num_spatial_layers_;
vp9_info->num_ref_pics = 0;
if (vp9_info->flexible_mode) {
vp9_info->gof_idx = kNoGofIdx;
vp9_info->num_ref_pics = num_ref_pics_[layer_id.spatial_layer_id];
for (int i = 0; i < num_ref_pics_[layer_id.spatial_layer_id]; ++i) {
vp9_info->p_diff[i] = p_diff_[layer_id.spatial_layer_id][i];
}
} else {
vp9_info->gof_idx =
static_cast<uint8_t>(frames_since_kf_ % gof_.num_frames_in_gof);
vp9_info->temporal_up_switch = gof_.temporal_up_switch[vp9_info->gof_idx];
}
if (vp9_info->ss_data_available) {
vp9_info->spatial_layer_resolution_present = true;
for (size_t i = 0; i < vp9_info->num_spatial_layers; ++i) {
vp9_info->width[i] = codec_.width *
svc_params_.scaling_factor_num[i] /
svc_params_.scaling_factor_den[i];
vp9_info->height[i] = codec_.height *
svc_params_.scaling_factor_num[i] /
svc_params_.scaling_factor_den[i];
}
if (!vp9_info->flexible_mode) {
vp9_info->gof.CopyGofInfoVP9(gof_);
}
}
}
int VP9EncoderImpl::GetEncodedLayerFrame(const vpx_codec_cx_pkt* pkt) {
RTC_DCHECK_EQ(pkt->kind, VPX_CODEC_CX_FRAME_PKT);
if (pkt->data.frame.sz > encoded_image_._size) {
delete[] encoded_image_._buffer;
encoded_image_._size = pkt->data.frame.sz;
encoded_image_._buffer = new uint8_t[encoded_image_._size];
}
memcpy(encoded_image_._buffer, pkt->data.frame.buf, pkt->data.frame.sz);
encoded_image_._length = pkt->data.frame.sz;
// No data partitioning in VP9, so 1 partition only.
int part_idx = 0;
RTPFragmentationHeader frag_info;
frag_info.VerifyAndAllocateFragmentationHeader(1);
frag_info.fragmentationOffset[part_idx] = 0;
frag_info.fragmentationLength[part_idx] = pkt->data.frame.sz;
frag_info.fragmentationPlType[part_idx] = 0;
frag_info.fragmentationTimeDiff[part_idx] = 0;
vpx_svc_layer_id_t layer_id = {0};
vpx_codec_control(encoder_, VP9E_GET_SVC_LAYER_ID, &layer_id);
if (is_flexible_mode_ && codec_.mode == kScreensharing)
spatial_layer_->LayerFrameEncoded(
static_cast<unsigned int>(encoded_image_._length),
layer_id.spatial_layer_id);
// End of frame.
// Check if encoded frame is a key frame.
encoded_image_._frameType = kVideoFrameDelta;
if (pkt->data.frame.flags & VPX_FRAME_IS_KEY) {
encoded_image_._frameType = kVideoFrameKey;
}
RTC_DCHECK_LE(encoded_image_._length, encoded_image_._size);
CodecSpecificInfo codec_specific;
PopulateCodecSpecific(&codec_specific, *pkt, input_image_->timestamp());
if (encoded_image_._length > 0) {
TRACE_COUNTER1("webrtc", "EncodedFrameSize", encoded_image_._length);
encoded_image_._timeStamp = input_image_->timestamp();
encoded_image_.capture_time_ms_ = input_image_->render_time_ms();
encoded_image_.rotation_ = input_image_->rotation();
encoded_image_.content_type_ = (codec_.mode == kScreensharing)
? VideoContentType::SCREENSHARE
: VideoContentType::UNSPECIFIED;
encoded_image_._encodedHeight = pkt->data.frame.height;
encoded_image_._encodedWidth = pkt->data.frame.width;
encoded_image_.timing_.flags = TimingFrameFlags::kInvalid;
int qp = -1;
vpx_codec_control(encoder_, VP8E_GET_LAST_QUANTIZER, &qp);
encoded_image_.qp_ = qp;
encoded_complete_callback_->OnEncodedImage(encoded_image_, &codec_specific,
&frag_info);
}
return WEBRTC_VIDEO_CODEC_OK;
}
vpx_svc_ref_frame_config VP9EncoderImpl::GenerateRefsAndFlags(
const SuperFrameRefSettings& settings) {
static const vpx_enc_frame_flags_t kAllFlags =
VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_LAST |
VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_GF;
vpx_svc_ref_frame_config sf_conf = {};
if (settings.is_keyframe) {
// Used later on to make sure we don't make any invalid references.
memset(buffer_updated_at_frame_, -1, sizeof(buffer_updated_at_frame_));
for (int layer = settings.start_layer; layer <= settings.stop_layer;
++layer) {
num_ref_pics_[layer] = 0;
buffer_updated_at_frame_[settings.layer[layer].upd_buf] = frames_encoded_;
// When encoding a keyframe only the alt_fb_idx is used
// to specify which layer ends up in which buffer.
sf_conf.alt_fb_idx[layer] = settings.layer[layer].upd_buf;
}
} else {
for (int layer_idx = settings.start_layer; layer_idx <= settings.stop_layer;
++layer_idx) {
vpx_enc_frame_flags_t layer_flags = kAllFlags;
num_ref_pics_[layer_idx] = 0;
int8_t refs[3] = {settings.layer[layer_idx].ref_buf1,
settings.layer[layer_idx].ref_buf2,
settings.layer[layer_idx].ref_buf3};
for (unsigned int ref_idx = 0; ref_idx < kMaxVp9RefPics; ++ref_idx) {
if (refs[ref_idx] == -1)
continue;
RTC_DCHECK_GE(refs[ref_idx], 0);
RTC_DCHECK_LE(refs[ref_idx], 7);
// Easier to remove flags from all flags rather than having to
// build the flags from 0.
switch (num_ref_pics_[layer_idx]) {
case 0: {
sf_conf.lst_fb_idx[layer_idx] = refs[ref_idx];
layer_flags &= ~VP8_EFLAG_NO_REF_LAST;
break;
}
case 1: {
sf_conf.gld_fb_idx[layer_idx] = refs[ref_idx];
layer_flags &= ~VP8_EFLAG_NO_REF_GF;
break;
}
case 2: {
sf_conf.alt_fb_idx[layer_idx] = refs[ref_idx];
layer_flags &= ~VP8_EFLAG_NO_REF_ARF;
break;
}
}
// Make sure we don't reference a buffer that hasn't been
// used at all or hasn't been used since a keyframe.
RTC_DCHECK_NE(buffer_updated_at_frame_[refs[ref_idx]], -1);
p_diff_[layer_idx][num_ref_pics_[layer_idx]] =
frames_encoded_ - buffer_updated_at_frame_[refs[ref_idx]];
num_ref_pics_[layer_idx]++;
}
bool upd_buf_same_as_a_ref = false;
if (settings.layer[layer_idx].upd_buf != -1) {
for (unsigned int ref_idx = 0; ref_idx < kMaxVp9RefPics; ++ref_idx) {
if (settings.layer[layer_idx].upd_buf == refs[ref_idx]) {
switch (ref_idx) {
case 0: {
layer_flags &= ~VP8_EFLAG_NO_UPD_LAST;
break;
}
case 1: {
layer_flags &= ~VP8_EFLAG_NO_UPD_GF;
break;
}
case 2: {
layer_flags &= ~VP8_EFLAG_NO_UPD_ARF;
break;
}
}
upd_buf_same_as_a_ref = true;
break;
}
}
if (!upd_buf_same_as_a_ref) {
// If we have three references and a buffer is specified to be
// updated, then that buffer must be the same as one of the
// three references.
RTC_CHECK_LT(num_ref_pics_[layer_idx], kMaxVp9RefPics);
sf_conf.alt_fb_idx[layer_idx] = settings.layer[layer_idx].upd_buf;
layer_flags ^= VP8_EFLAG_NO_UPD_ARF;
}
int updated_buffer = settings.layer[layer_idx].upd_buf;
buffer_updated_at_frame_[updated_buffer] = frames_encoded_;
sf_conf.frame_flags[layer_idx] = layer_flags;
}
}
}
++frames_encoded_;
return sf_conf;
}
int VP9EncoderImpl::SetChannelParameters(uint32_t packet_loss, int64_t rtt) {
return WEBRTC_VIDEO_CODEC_OK;
}
int VP9EncoderImpl::RegisterEncodeCompleteCallback(
EncodedImageCallback* callback) {
encoded_complete_callback_ = callback;
return WEBRTC_VIDEO_CODEC_OK;
}
const char* VP9EncoderImpl::ImplementationName() const {
return "libvpx";
}
bool VP9Decoder::IsSupported() {
return true;
}
std::unique_ptr<VP9Decoder> VP9Decoder::Create() {
return rtc::MakeUnique<VP9DecoderImpl>();
}
VP9DecoderImpl::VP9DecoderImpl()
: decode_complete_callback_(nullptr),
inited_(false),
decoder_(nullptr),
key_frame_required_(true) {
memset(&codec_, 0, sizeof(codec_));
}
VP9DecoderImpl::~VP9DecoderImpl() {
inited_ = true; // in order to do the actual release
Release();
int num_buffers_in_use = frame_buffer_pool_.GetNumBuffersInUse();
if (num_buffers_in_use > 0) {
// The frame buffers are reference counted and frames are exposed after
// decoding. There may be valid usage cases where previous frames are still
// referenced after ~VP9DecoderImpl that is not a leak.
RTC_LOG(LS_INFO) << num_buffers_in_use << " Vp9FrameBuffers are still "
<< "referenced during ~VP9DecoderImpl.";
}
}
int VP9DecoderImpl::InitDecode(const VideoCodec* inst, int number_of_cores) {
if (inst == nullptr) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
int ret_val = Release();
if (ret_val < 0) {
return ret_val;
}
if (decoder_ == nullptr) {
decoder_ = new vpx_codec_ctx_t;
}
vpx_codec_dec_cfg_t cfg;
// Setting number of threads to a constant value (1)
cfg.threads = 1;
cfg.h = cfg.w = 0; // set after decode
vpx_codec_flags_t flags = 0;
if (vpx_codec_dec_init(decoder_, vpx_codec_vp9_dx(), &cfg, flags)) {
return WEBRTC_VIDEO_CODEC_MEMORY;
}
if (&codec_ != inst) {
// Save VideoCodec instance for later; mainly for duplicating the decoder.
codec_ = *inst;
}
if (!frame_buffer_pool_.InitializeVpxUsePool(decoder_)) {
return WEBRTC_VIDEO_CODEC_MEMORY;
}
inited_ = true;
// Always start with a complete key frame.
key_frame_required_ = true;
return WEBRTC_VIDEO_CODEC_OK;
}
int VP9DecoderImpl::Decode(const EncodedImage& input_image,
bool missing_frames,
const RTPFragmentationHeader* fragmentation,
const CodecSpecificInfo* codec_specific_info,
int64_t /*render_time_ms*/) {
if (!inited_) {
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
if (decode_complete_callback_ == nullptr) {
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
// Always start with a complete key frame.
if (key_frame_required_) {
if (input_image._frameType != kVideoFrameKey)
return WEBRTC_VIDEO_CODEC_ERROR;
// We have a key frame - is it complete?
if (input_image._completeFrame) {
key_frame_required_ = false;
} else {
return WEBRTC_VIDEO_CODEC_ERROR;
}
}
vpx_codec_iter_t iter = nullptr;
vpx_image_t* img;
uint8_t* buffer = input_image._buffer;
if (input_image._length == 0) {
buffer = nullptr; // Triggers full frame concealment.
}
// During decode libvpx may get and release buffers from |frame_buffer_pool_|.
// In practice libvpx keeps a few (~3-4) buffers alive at a time.
if (vpx_codec_decode(decoder_, buffer,
static_cast<unsigned int>(input_image._length), 0,
VPX_DL_REALTIME)) {
return WEBRTC_VIDEO_CODEC_ERROR;
}
// |img->fb_priv| contains the image data, a reference counted Vp9FrameBuffer.
// It may be released by libvpx during future vpx_codec_decode or
// vpx_codec_destroy calls.
img = vpx_codec_get_frame(decoder_, &iter);
int qp;
vpx_codec_err_t vpx_ret =
vpx_codec_control(decoder_, VPXD_GET_LAST_QUANTIZER, &qp);
RTC_DCHECK_EQ(vpx_ret, VPX_CODEC_OK);
int ret =
ReturnFrame(img, input_image._timeStamp, input_image.ntp_time_ms_, qp);
if (ret != 0) {
return ret;
}
return WEBRTC_VIDEO_CODEC_OK;
}
int VP9DecoderImpl::ReturnFrame(const vpx_image_t* img,
uint32_t timestamp,
int64_t ntp_time_ms,
int qp) {
if (img == nullptr) {
// Decoder OK and nullptr image => No show frame.
return WEBRTC_VIDEO_CODEC_NO_OUTPUT;
}
// This buffer contains all of |img|'s image data, a reference counted
// Vp9FrameBuffer. (libvpx is done with the buffers after a few
// vpx_codec_decode calls or vpx_codec_destroy).
Vp9FrameBufferPool::Vp9FrameBuffer* img_buffer =
static_cast<Vp9FrameBufferPool::Vp9FrameBuffer*>(img->fb_priv);
// The buffer can be used directly by the VideoFrame (without copy) by
// using a WrappedI420Buffer.
rtc::scoped_refptr<WrappedI420Buffer> img_wrapped_buffer(
new rtc::RefCountedObject<webrtc::WrappedI420Buffer>(
img->d_w, img->d_h, img->planes[VPX_PLANE_Y],
img->stride[VPX_PLANE_Y], img->planes[VPX_PLANE_U],
img->stride[VPX_PLANE_U], img->planes[VPX_PLANE_V],
img->stride[VPX_PLANE_V],
// WrappedI420Buffer's mechanism for allowing the release of its frame
// buffer is through a callback function. This is where we should
// release |img_buffer|.
rtc::KeepRefUntilDone(img_buffer)));
VideoFrame decoded_image(img_wrapped_buffer, timestamp,
0 /* render_time_ms */, webrtc::kVideoRotation_0);
decoded_image.set_ntp_time_ms(ntp_time_ms);
decode_complete_callback_->Decoded(decoded_image, rtc::nullopt, qp);
return WEBRTC_VIDEO_CODEC_OK;
}
int VP9DecoderImpl::RegisterDecodeCompleteCallback(
DecodedImageCallback* callback) {
decode_complete_callback_ = callback;
return WEBRTC_VIDEO_CODEC_OK;
}
int VP9DecoderImpl::Release() {
if (decoder_ != nullptr) {
// When a codec is destroyed libvpx will release any buffers of
// |frame_buffer_pool_| it is currently using.
if (vpx_codec_destroy(decoder_)) {
return WEBRTC_VIDEO_CODEC_MEMORY;
}
delete decoder_;
decoder_ = nullptr;
}
// Releases buffers from the pool. Any buffers not in use are deleted. Buffers
// still referenced externally are deleted once fully released, not returning
// to the pool.
frame_buffer_pool_.ClearPool();
inited_ = false;
return WEBRTC_VIDEO_CODEC_OK;
}
const char* VP9DecoderImpl::ImplementationName() const {
return "libvpx";
}
} // namespace webrtc