mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-16 15:20:42 +01:00

This feature is active if and only if the RTP header extension playout-delay is used with min playout delay=0 and max playout delay>0. In this case, a maximum composition delay will be calculated and attached to the video frame as a signal to use the low-latency renderer algorithm, which is landed in a separate CL in Chromium. The maximum composition delay is specified in number of frames and is calculated based on the max playout delay. The feature can be completetly disabled by specifying the field trial WebRTC-LowLatencyRenderer/enabled:false/ Bug: chromium:1138888 Change-Id: I05f461982d0632bd6e09e5d7ec1a8985dccdc61b Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/190141 Reviewed-by: Niels Moller <nisse@webrtc.org> Reviewed-by: Ilya Nikolaevskiy <ilnik@webrtc.org> Commit-Queue: Johannes Kron <kron@webrtc.org> Cr-Commit-Position: refs/heads/master@{#32493}
269 lines
8.6 KiB
C++
269 lines
8.6 KiB
C++
/*
|
|
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/video_coding/timing.h"
|
|
|
|
#include <assert.h>
|
|
|
|
#include <algorithm>
|
|
|
|
#include "rtc_base/experiments/field_trial_parser.h"
|
|
#include "rtc_base/time/timestamp_extrapolator.h"
|
|
#include "system_wrappers/include/clock.h"
|
|
#include "system_wrappers/include/field_trial.h"
|
|
|
|
namespace webrtc {
|
|
|
|
VCMTiming::VCMTiming(Clock* clock, VCMTiming* master_timing)
|
|
: clock_(clock),
|
|
master_(false),
|
|
ts_extrapolator_(),
|
|
codec_timer_(new VCMCodecTimer()),
|
|
render_delay_ms_(kDefaultRenderDelayMs),
|
|
min_playout_delay_ms_(0),
|
|
max_playout_delay_ms_(10000),
|
|
jitter_delay_ms_(0),
|
|
current_delay_ms_(0),
|
|
prev_frame_timestamp_(0),
|
|
timing_frame_info_(),
|
|
num_decoded_frames_(0),
|
|
low_latency_renderer_enabled_("enabled", true) {
|
|
ParseFieldTrial({&low_latency_renderer_enabled_},
|
|
field_trial::FindFullName("WebRTC-LowLatencyRenderer"));
|
|
if (master_timing == NULL) {
|
|
master_ = true;
|
|
ts_extrapolator_ = new TimestampExtrapolator(clock_->TimeInMilliseconds());
|
|
} else {
|
|
ts_extrapolator_ = master_timing->ts_extrapolator_;
|
|
}
|
|
}
|
|
|
|
VCMTiming::~VCMTiming() {
|
|
if (master_) {
|
|
delete ts_extrapolator_;
|
|
}
|
|
}
|
|
|
|
void VCMTiming::Reset() {
|
|
MutexLock lock(&mutex_);
|
|
ts_extrapolator_->Reset(clock_->TimeInMilliseconds());
|
|
codec_timer_.reset(new VCMCodecTimer());
|
|
render_delay_ms_ = kDefaultRenderDelayMs;
|
|
min_playout_delay_ms_ = 0;
|
|
jitter_delay_ms_ = 0;
|
|
current_delay_ms_ = 0;
|
|
prev_frame_timestamp_ = 0;
|
|
}
|
|
|
|
void VCMTiming::set_render_delay(int render_delay_ms) {
|
|
MutexLock lock(&mutex_);
|
|
render_delay_ms_ = render_delay_ms;
|
|
}
|
|
|
|
void VCMTiming::set_min_playout_delay(int min_playout_delay_ms) {
|
|
MutexLock lock(&mutex_);
|
|
min_playout_delay_ms_ = min_playout_delay_ms;
|
|
}
|
|
|
|
int VCMTiming::min_playout_delay() {
|
|
MutexLock lock(&mutex_);
|
|
return min_playout_delay_ms_;
|
|
}
|
|
|
|
void VCMTiming::set_max_playout_delay(int max_playout_delay_ms) {
|
|
MutexLock lock(&mutex_);
|
|
max_playout_delay_ms_ = max_playout_delay_ms;
|
|
}
|
|
|
|
int VCMTiming::max_playout_delay() {
|
|
MutexLock lock(&mutex_);
|
|
return max_playout_delay_ms_;
|
|
}
|
|
|
|
void VCMTiming::SetJitterDelay(int jitter_delay_ms) {
|
|
MutexLock lock(&mutex_);
|
|
if (jitter_delay_ms != jitter_delay_ms_) {
|
|
jitter_delay_ms_ = jitter_delay_ms;
|
|
// When in initial state, set current delay to minimum delay.
|
|
if (current_delay_ms_ == 0) {
|
|
current_delay_ms_ = jitter_delay_ms_;
|
|
}
|
|
}
|
|
}
|
|
|
|
void VCMTiming::UpdateCurrentDelay(uint32_t frame_timestamp) {
|
|
MutexLock lock(&mutex_);
|
|
int target_delay_ms = TargetDelayInternal();
|
|
|
|
if (current_delay_ms_ == 0) {
|
|
// Not initialized, set current delay to target.
|
|
current_delay_ms_ = target_delay_ms;
|
|
} else if (target_delay_ms != current_delay_ms_) {
|
|
int64_t delay_diff_ms =
|
|
static_cast<int64_t>(target_delay_ms) - current_delay_ms_;
|
|
// Never change the delay with more than 100 ms every second. If we're
|
|
// changing the delay in too large steps we will get noticeable freezes. By
|
|
// limiting the change we can increase the delay in smaller steps, which
|
|
// will be experienced as the video is played in slow motion. When lowering
|
|
// the delay the video will be played at a faster pace.
|
|
int64_t max_change_ms = 0;
|
|
if (frame_timestamp < 0x0000ffff && prev_frame_timestamp_ > 0xffff0000) {
|
|
// wrap
|
|
max_change_ms = kDelayMaxChangeMsPerS *
|
|
(frame_timestamp + (static_cast<int64_t>(1) << 32) -
|
|
prev_frame_timestamp_) /
|
|
90000;
|
|
} else {
|
|
max_change_ms = kDelayMaxChangeMsPerS *
|
|
(frame_timestamp - prev_frame_timestamp_) / 90000;
|
|
}
|
|
|
|
if (max_change_ms <= 0) {
|
|
// Any changes less than 1 ms are truncated and will be postponed.
|
|
// Negative change will be due to reordering and should be ignored.
|
|
return;
|
|
}
|
|
delay_diff_ms = std::max(delay_diff_ms, -max_change_ms);
|
|
delay_diff_ms = std::min(delay_diff_ms, max_change_ms);
|
|
|
|
current_delay_ms_ = current_delay_ms_ + delay_diff_ms;
|
|
}
|
|
prev_frame_timestamp_ = frame_timestamp;
|
|
}
|
|
|
|
void VCMTiming::UpdateCurrentDelay(int64_t render_time_ms,
|
|
int64_t actual_decode_time_ms) {
|
|
MutexLock lock(&mutex_);
|
|
uint32_t target_delay_ms = TargetDelayInternal();
|
|
int64_t delayed_ms =
|
|
actual_decode_time_ms -
|
|
(render_time_ms - RequiredDecodeTimeMs() - render_delay_ms_);
|
|
if (delayed_ms < 0) {
|
|
return;
|
|
}
|
|
if (current_delay_ms_ + delayed_ms <= target_delay_ms) {
|
|
current_delay_ms_ += delayed_ms;
|
|
} else {
|
|
current_delay_ms_ = target_delay_ms;
|
|
}
|
|
}
|
|
|
|
void VCMTiming::StopDecodeTimer(uint32_t /*time_stamp*/,
|
|
int32_t decode_time_ms,
|
|
int64_t now_ms,
|
|
int64_t /*render_time_ms*/) {
|
|
StopDecodeTimer(decode_time_ms, now_ms);
|
|
}
|
|
|
|
void VCMTiming::StopDecodeTimer(int32_t decode_time_ms, int64_t now_ms) {
|
|
MutexLock lock(&mutex_);
|
|
codec_timer_->AddTiming(decode_time_ms, now_ms);
|
|
assert(decode_time_ms >= 0);
|
|
++num_decoded_frames_;
|
|
}
|
|
|
|
void VCMTiming::IncomingTimestamp(uint32_t time_stamp, int64_t now_ms) {
|
|
MutexLock lock(&mutex_);
|
|
ts_extrapolator_->Update(now_ms, time_stamp);
|
|
}
|
|
|
|
int64_t VCMTiming::RenderTimeMs(uint32_t frame_timestamp,
|
|
int64_t now_ms) const {
|
|
MutexLock lock(&mutex_);
|
|
return RenderTimeMsInternal(frame_timestamp, now_ms);
|
|
}
|
|
|
|
int64_t VCMTiming::RenderTimeMsInternal(uint32_t frame_timestamp,
|
|
int64_t now_ms) const {
|
|
constexpr int kLowLatencyRendererMaxPlayoutDelayMs = 500;
|
|
if (min_playout_delay_ms_ == 0 &&
|
|
(max_playout_delay_ms_ == 0 ||
|
|
(low_latency_renderer_enabled_ &&
|
|
max_playout_delay_ms_ <= kLowLatencyRendererMaxPlayoutDelayMs))) {
|
|
// Render as soon as possible or with low-latency renderer algorithm.
|
|
return 0;
|
|
}
|
|
int64_t estimated_complete_time_ms =
|
|
ts_extrapolator_->ExtrapolateLocalTime(frame_timestamp);
|
|
if (estimated_complete_time_ms == -1) {
|
|
estimated_complete_time_ms = now_ms;
|
|
}
|
|
|
|
// Make sure the actual delay stays in the range of |min_playout_delay_ms_|
|
|
// and |max_playout_delay_ms_|.
|
|
int actual_delay = std::max(current_delay_ms_, min_playout_delay_ms_);
|
|
actual_delay = std::min(actual_delay, max_playout_delay_ms_);
|
|
return estimated_complete_time_ms + actual_delay;
|
|
}
|
|
|
|
int VCMTiming::RequiredDecodeTimeMs() const {
|
|
const int decode_time_ms = codec_timer_->RequiredDecodeTimeMs();
|
|
assert(decode_time_ms >= 0);
|
|
return decode_time_ms;
|
|
}
|
|
|
|
int64_t VCMTiming::MaxWaitingTime(int64_t render_time_ms,
|
|
int64_t now_ms) const {
|
|
MutexLock lock(&mutex_);
|
|
|
|
const int64_t max_wait_time_ms =
|
|
render_time_ms - now_ms - RequiredDecodeTimeMs() - render_delay_ms_;
|
|
|
|
return max_wait_time_ms;
|
|
}
|
|
|
|
int VCMTiming::TargetVideoDelay() const {
|
|
MutexLock lock(&mutex_);
|
|
return TargetDelayInternal();
|
|
}
|
|
|
|
int VCMTiming::TargetDelayInternal() const {
|
|
return std::max(min_playout_delay_ms_,
|
|
jitter_delay_ms_ + RequiredDecodeTimeMs() + render_delay_ms_);
|
|
}
|
|
|
|
bool VCMTiming::GetTimings(int* max_decode_ms,
|
|
int* current_delay_ms,
|
|
int* target_delay_ms,
|
|
int* jitter_buffer_ms,
|
|
int* min_playout_delay_ms,
|
|
int* render_delay_ms) const {
|
|
MutexLock lock(&mutex_);
|
|
*max_decode_ms = RequiredDecodeTimeMs();
|
|
*current_delay_ms = current_delay_ms_;
|
|
*target_delay_ms = TargetDelayInternal();
|
|
*jitter_buffer_ms = jitter_delay_ms_;
|
|
*min_playout_delay_ms = min_playout_delay_ms_;
|
|
*render_delay_ms = render_delay_ms_;
|
|
return (num_decoded_frames_ > 0);
|
|
}
|
|
|
|
void VCMTiming::SetTimingFrameInfo(const TimingFrameInfo& info) {
|
|
MutexLock lock(&mutex_);
|
|
timing_frame_info_.emplace(info);
|
|
}
|
|
|
|
absl::optional<TimingFrameInfo> VCMTiming::GetTimingFrameInfo() {
|
|
MutexLock lock(&mutex_);
|
|
return timing_frame_info_;
|
|
}
|
|
|
|
void VCMTiming::SetMaxCompositionDelayInFrames(
|
|
absl::optional<int> max_composition_delay_in_frames) {
|
|
MutexLock lock(&mutex_);
|
|
max_composition_delay_in_frames_ = max_composition_delay_in_frames;
|
|
}
|
|
|
|
absl::optional<int> VCMTiming::MaxCompositionDelayInFrames() const {
|
|
MutexLock lock(&mutex_);
|
|
return max_composition_delay_in_frames_;
|
|
}
|
|
|
|
} // namespace webrtc
|