webrtc/net/dcsctp/rx/traditional_reassembly_streams.cc
Victor Boivie 2cffde72b8 dcsctp: Restore from handover as separate methods
Before this CL, some components, e.g. the SendQueue, was first created
and then later restored from handover state, while some were created from
the handover state, as an optional parameter to their constructors.

This CL will make it consistent, by always creating the components in a
pristine state, and then modifying it when restoring them from handover
state. The name "RestoreFromState" was used to be consistent with SendQueue
and the socket.

This is just refactoring.

Bug: None
Change-Id: Ifad2d2e84a74a12a93abbfb0fe1027ebb9580e73
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/267006
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#37384}
2022-06-30 22:09:04 +00:00

348 lines
11 KiB
C++

/*
* Copyright (c) 2021 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "net/dcsctp/rx/traditional_reassembly_streams.h"
#include <stddef.h>
#include <cstdint>
#include <functional>
#include <iterator>
#include <map>
#include <numeric>
#include <utility>
#include <vector>
#include "absl/algorithm/container.h"
#include "absl/types/optional.h"
#include "api/array_view.h"
#include "net/dcsctp/common/sequence_numbers.h"
#include "net/dcsctp/packet/chunk/forward_tsn_common.h"
#include "net/dcsctp/packet/data.h"
#include "net/dcsctp/public/dcsctp_message.h"
#include "rtc_base/logging.h"
namespace dcsctp {
namespace {
// Given a map (`chunks`) and an iterator to within that map (`iter`), this
// function will return an iterator to the first chunk in that message, which
// has the `is_beginning` flag set. If there are any gaps, or if the beginning
// can't be found, `absl::nullopt` is returned.
absl::optional<std::map<UnwrappedTSN, Data>::iterator> FindBeginning(
const std::map<UnwrappedTSN, Data>& chunks,
std::map<UnwrappedTSN, Data>::iterator iter) {
UnwrappedTSN prev_tsn = iter->first;
for (;;) {
if (iter->second.is_beginning) {
return iter;
}
if (iter == chunks.begin()) {
return absl::nullopt;
}
--iter;
if (iter->first.next_value() != prev_tsn) {
return absl::nullopt;
}
prev_tsn = iter->first;
}
}
// Given a map (`chunks`) and an iterator to within that map (`iter`), this
// function will return an iterator to the chunk after the last chunk in that
// message, which has the `is_end` flag set. If there are any gaps, or if the
// end can't be found, `absl::nullopt` is returned.
absl::optional<std::map<UnwrappedTSN, Data>::iterator> FindEnd(
std::map<UnwrappedTSN, Data>& chunks,
std::map<UnwrappedTSN, Data>::iterator iter) {
UnwrappedTSN prev_tsn = iter->first;
for (;;) {
if (iter->second.is_end) {
return ++iter;
}
++iter;
if (iter == chunks.end()) {
return absl::nullopt;
}
if (iter->first != prev_tsn.next_value()) {
return absl::nullopt;
}
prev_tsn = iter->first;
}
}
} // namespace
TraditionalReassemblyStreams::TraditionalReassemblyStreams(
absl::string_view log_prefix,
OnAssembledMessage on_assembled_message)
: log_prefix_(log_prefix),
on_assembled_message_(std::move(on_assembled_message)) {}
int TraditionalReassemblyStreams::UnorderedStream::Add(UnwrappedTSN tsn,
Data data) {
int queued_bytes = data.size();
auto [it, inserted] = chunks_.emplace(tsn, std::move(data));
if (!inserted) {
return 0;
}
queued_bytes -= TryToAssembleMessage(it);
return queued_bytes;
}
size_t TraditionalReassemblyStreams::UnorderedStream::TryToAssembleMessage(
ChunkMap::iterator iter) {
// TODO(boivie): This method is O(N) with the number of fragments in a
// message, which can be inefficient for very large values of N. This could be
// optimized by e.g. only trying to assemble a message once _any_ beginning
// and _any_ end has been found.
absl::optional<ChunkMap::iterator> start = FindBeginning(chunks_, iter);
if (!start.has_value()) {
return 0;
}
absl::optional<ChunkMap::iterator> end = FindEnd(chunks_, iter);
if (!end.has_value()) {
return 0;
}
size_t bytes_assembled = AssembleMessage(*start, *end);
chunks_.erase(*start, *end);
return bytes_assembled;
}
size_t TraditionalReassemblyStreams::StreamBase::AssembleMessage(
const ChunkMap::iterator start,
const ChunkMap::iterator end) {
size_t count = std::distance(start, end);
if (count == 1) {
// Fast path - zero-copy
const Data& data = start->second;
size_t payload_size = start->second.size();
UnwrappedTSN tsns[1] = {start->first};
DcSctpMessage message(data.stream_id, data.ppid, std::move(data.payload));
parent_.on_assembled_message_(tsns, std::move(message));
return payload_size;
}
// Slow path - will need to concatenate the payload.
std::vector<UnwrappedTSN> tsns;
std::vector<uint8_t> payload;
size_t payload_size = std::accumulate(
start, end, 0,
[](size_t v, const auto& p) { return v + p.second.size(); });
tsns.reserve(count);
payload.reserve(payload_size);
for (auto it = start; it != end; ++it) {
const Data& data = it->second;
tsns.push_back(it->first);
payload.insert(payload.end(), data.payload.begin(), data.payload.end());
}
DcSctpMessage message(start->second.stream_id, start->second.ppid,
std::move(payload));
parent_.on_assembled_message_(tsns, std::move(message));
return payload_size;
}
size_t TraditionalReassemblyStreams::UnorderedStream::EraseTo(
UnwrappedTSN tsn) {
auto end_iter = chunks_.upper_bound(tsn);
size_t removed_bytes = std::accumulate(
chunks_.begin(), end_iter, 0,
[](size_t r, const auto& p) { return r + p.second.size(); });
chunks_.erase(chunks_.begin(), end_iter);
return removed_bytes;
}
size_t TraditionalReassemblyStreams::OrderedStream::TryToAssembleMessage() {
if (chunks_by_ssn_.empty() || chunks_by_ssn_.begin()->first != next_ssn_) {
return 0;
}
ChunkMap& chunks = chunks_by_ssn_.begin()->second;
if (!chunks.begin()->second.is_beginning || !chunks.rbegin()->second.is_end) {
return 0;
}
uint32_t tsn_diff =
UnwrappedTSN::Difference(chunks.rbegin()->first, chunks.begin()->first);
if (tsn_diff != chunks.size() - 1) {
return 0;
}
size_t assembled_bytes = AssembleMessage(chunks.begin(), chunks.end());
chunks_by_ssn_.erase(chunks_by_ssn_.begin());
next_ssn_.Increment();
return assembled_bytes;
}
size_t TraditionalReassemblyStreams::OrderedStream::TryToAssembleMessages() {
size_t assembled_bytes = 0;
for (;;) {
size_t assembled_bytes_this_iter = TryToAssembleMessage();
if (assembled_bytes_this_iter == 0) {
break;
}
assembled_bytes += assembled_bytes_this_iter;
}
return assembled_bytes;
}
int TraditionalReassemblyStreams::OrderedStream::Add(UnwrappedTSN tsn,
Data data) {
int queued_bytes = data.size();
UnwrappedSSN ssn = ssn_unwrapper_.Unwrap(data.ssn);
auto [unused, inserted] = chunks_by_ssn_[ssn].emplace(tsn, std::move(data));
if (!inserted) {
return 0;
}
if (ssn == next_ssn_) {
queued_bytes -= TryToAssembleMessages();
}
return queued_bytes;
}
size_t TraditionalReassemblyStreams::OrderedStream::EraseTo(SSN ssn) {
UnwrappedSSN unwrapped_ssn = ssn_unwrapper_.Unwrap(ssn);
auto end_iter = chunks_by_ssn_.upper_bound(unwrapped_ssn);
size_t removed_bytes = std::accumulate(
chunks_by_ssn_.begin(), end_iter, 0, [](size_t r1, const auto& p) {
return r1 +
absl::c_accumulate(p.second, 0, [](size_t r2, const auto& q) {
return r2 + q.second.size();
});
});
chunks_by_ssn_.erase(chunks_by_ssn_.begin(), end_iter);
if (unwrapped_ssn >= next_ssn_) {
unwrapped_ssn.Increment();
next_ssn_ = unwrapped_ssn;
}
removed_bytes += TryToAssembleMessages();
return removed_bytes;
}
int TraditionalReassemblyStreams::Add(UnwrappedTSN tsn, Data data) {
if (data.is_unordered) {
auto it = unordered_streams_.try_emplace(data.stream_id, this).first;
return it->second.Add(tsn, std::move(data));
}
auto it = ordered_streams_.try_emplace(data.stream_id, this).first;
return it->second.Add(tsn, std::move(data));
}
size_t TraditionalReassemblyStreams::HandleForwardTsn(
UnwrappedTSN new_cumulative_ack_tsn,
rtc::ArrayView<const AnyForwardTsnChunk::SkippedStream> skipped_streams) {
size_t bytes_removed = 0;
// The `skipped_streams` only cover ordered messages - need to
// iterate all unordered streams manually to remove those chunks.
for (auto& [unused, stream] : unordered_streams_) {
bytes_removed += stream.EraseTo(new_cumulative_ack_tsn);
}
for (const auto& skipped_stream : skipped_streams) {
auto it =
ordered_streams_.try_emplace(skipped_stream.stream_id, this).first;
bytes_removed += it->second.EraseTo(skipped_stream.ssn);
}
return bytes_removed;
}
void TraditionalReassemblyStreams::ResetStreams(
rtc::ArrayView<const StreamID> stream_ids) {
if (stream_ids.empty()) {
for (auto& [stream_id, stream] : ordered_streams_) {
RTC_DLOG(LS_VERBOSE) << log_prefix_
<< "Resetting implicit stream_id=" << *stream_id;
stream.Reset();
}
} else {
for (StreamID stream_id : stream_ids) {
auto it = ordered_streams_.find(stream_id);
if (it != ordered_streams_.end()) {
RTC_DLOG(LS_VERBOSE)
<< log_prefix_ << "Resetting explicit stream_id=" << *stream_id;
it->second.Reset();
}
}
}
}
HandoverReadinessStatus TraditionalReassemblyStreams::GetHandoverReadiness()
const {
HandoverReadinessStatus status;
for (const auto& [unused, stream] : ordered_streams_) {
if (stream.has_unassembled_chunks()) {
status.Add(HandoverUnreadinessReason::kOrderedStreamHasUnassembledChunks);
break;
}
}
for (const auto& [unused, stream] : unordered_streams_) {
if (stream.has_unassembled_chunks()) {
status.Add(
HandoverUnreadinessReason::kUnorderedStreamHasUnassembledChunks);
break;
}
}
return status;
}
void TraditionalReassemblyStreams::AddHandoverState(
DcSctpSocketHandoverState& state) {
for (const auto& [stream_id, stream] : ordered_streams_) {
DcSctpSocketHandoverState::OrderedStream state_stream;
state_stream.id = stream_id.value();
state_stream.next_ssn = stream.next_ssn().value();
state.rx.ordered_streams.push_back(std::move(state_stream));
}
for (const auto& [stream_id, unused] : unordered_streams_) {
DcSctpSocketHandoverState::UnorderedStream state_stream;
state_stream.id = stream_id.value();
state.rx.unordered_streams.push_back(std::move(state_stream));
}
}
void TraditionalReassemblyStreams::RestoreFromState(
const DcSctpSocketHandoverState& state) {
// Validate that the component is in pristine state.
RTC_DCHECK(ordered_streams_.empty());
RTC_DCHECK(unordered_streams_.empty());
for (const DcSctpSocketHandoverState::OrderedStream& state_stream :
state.rx.ordered_streams) {
ordered_streams_.emplace(
std::piecewise_construct,
std::forward_as_tuple(StreamID(state_stream.id)),
std::forward_as_tuple(this, SSN(state_stream.next_ssn)));
}
for (const DcSctpSocketHandoverState::UnorderedStream& state_stream :
state.rx.unordered_streams) {
unordered_streams_.emplace(std::piecewise_construct,
std::forward_as_tuple(StreamID(state_stream.id)),
std::forward_as_tuple(this));
}
}
} // namespace dcsctp