webrtc/net/dcsctp/timer/timer_test.cc
Henrik Boström b951dc6f4c Allow specifying delayed task precision of dcsctp::Timer.
Context: The timer precision of PostDelayedTask() is about to be lowered
to include up to 17 ms leeway. In order not to break use cases that
require high precision timers, PostDelayedHighPrecisionTask() will
continue to have the same precision that PostDelayedTask() has today.
webrtc::TaskQueueBase has an enum (kLow, kHigh) to decide which
precision to use when calling PostDelayedTaskWithPrecision().

See go/postdelayedtask-precision-in-webrtc for motivation and a table of
delayed task use cases in WebRTC that are "high" or "low" precision.

Most timers in DCSCTP are believed to only be needing low precision (see
table), but the delayed_ack_timer_ of DataTracker[1] is an example of a
use case that is likely to break if the timer precision is lowered (if
ACK is sent too late, retransmissions may occur). So this is considered
a high precision use case.

This CL makes it possible to specify the precision of dcsctp::Timer.
In a follow-up CL we will update delayed_ack_timer_ to kHigh precision.

[1] https://source.chromium.org/chromium/chromium/src/+/main:third_party/webrtc/net/dcsctp/rx/data_tracker.cc;l=340

Bug: webrtc:13604
Change-Id: I8eec5ce37044096978b5dd1985fbb00bc0d8fb7e
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/249081
Reviewed-by: Victor Boivie <boivie@webrtc.org>
Reviewed-by: Tomas Gunnarsson <tommi@webrtc.org>
Commit-Queue: Henrik Boström <hbos@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#35809}
2022-01-26 18:40:24 +00:00

459 lines
15 KiB
C++

/*
* Copyright (c) 2021 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "net/dcsctp/timer/timer.h"
#include <memory>
#include "absl/types/optional.h"
#include "api/task_queue/task_queue_base.h"
#include "net/dcsctp/public/timeout.h"
#include "net/dcsctp/timer/fake_timeout.h"
#include "rtc_base/gunit.h"
#include "test/gmock.h"
namespace dcsctp {
namespace {
using ::testing::Return;
class TimerTest : public testing::Test {
protected:
TimerTest()
: timeout_manager_([this]() { return now_; }),
manager_([this](webrtc::TaskQueueBase::DelayPrecision precision) {
return timeout_manager_.CreateTimeout(precision);
}) {
ON_CALL(on_expired_, Call).WillByDefault(Return(absl::nullopt));
}
void AdvanceTimeAndRunTimers(DurationMs duration) {
now_ = now_ + duration;
for (;;) {
absl::optional<TimeoutID> timeout_id =
timeout_manager_.GetNextExpiredTimeout();
if (!timeout_id.has_value()) {
break;
}
manager_.HandleTimeout(*timeout_id);
}
}
TimeMs now_ = TimeMs(0);
FakeTimeoutManager timeout_manager_;
TimerManager manager_;
testing::MockFunction<absl::optional<DurationMs>()> on_expired_;
};
TEST_F(TimerTest, TimerIsInitiallyStopped) {
std::unique_ptr<Timer> t1 = manager_.CreateTimer(
"t1", on_expired_.AsStdFunction(),
TimerOptions(DurationMs(5000), TimerBackoffAlgorithm::kFixed));
EXPECT_FALSE(t1->is_running());
}
TEST_F(TimerTest, TimerExpiresAtGivenTime) {
std::unique_ptr<Timer> t1 = manager_.CreateTimer(
"t1", on_expired_.AsStdFunction(),
TimerOptions(DurationMs(5000), TimerBackoffAlgorithm::kFixed));
EXPECT_CALL(on_expired_, Call).Times(0);
t1->Start();
EXPECT_TRUE(t1->is_running());
AdvanceTimeAndRunTimers(DurationMs(4000));
EXPECT_CALL(on_expired_, Call).Times(1);
AdvanceTimeAndRunTimers(DurationMs(1000));
}
TEST_F(TimerTest, TimerReschedulesAfterExpiredWithFixedBackoff) {
std::unique_ptr<Timer> t1 = manager_.CreateTimer(
"t1", on_expired_.AsStdFunction(),
TimerOptions(DurationMs(5000), TimerBackoffAlgorithm::kFixed));
EXPECT_CALL(on_expired_, Call).Times(0);
t1->Start();
EXPECT_EQ(t1->expiration_count(), 0);
AdvanceTimeAndRunTimers(DurationMs(4000));
// Fire first time
EXPECT_CALL(on_expired_, Call).Times(1);
AdvanceTimeAndRunTimers(DurationMs(1000));
EXPECT_TRUE(t1->is_running());
EXPECT_EQ(t1->expiration_count(), 1);
EXPECT_CALL(on_expired_, Call).Times(0);
AdvanceTimeAndRunTimers(DurationMs(4000));
// Second time
EXPECT_CALL(on_expired_, Call).Times(1);
AdvanceTimeAndRunTimers(DurationMs(1000));
EXPECT_TRUE(t1->is_running());
EXPECT_EQ(t1->expiration_count(), 2);
EXPECT_CALL(on_expired_, Call).Times(0);
AdvanceTimeAndRunTimers(DurationMs(4000));
// Third time
EXPECT_CALL(on_expired_, Call).Times(1);
AdvanceTimeAndRunTimers(DurationMs(1000));
EXPECT_TRUE(t1->is_running());
EXPECT_EQ(t1->expiration_count(), 3);
}
TEST_F(TimerTest, TimerWithNoRestarts) {
std::unique_ptr<Timer> t1 = manager_.CreateTimer(
"t1", on_expired_.AsStdFunction(),
TimerOptions(DurationMs(5000), TimerBackoffAlgorithm::kFixed,
/*max_restart=*/0));
EXPECT_CALL(on_expired_, Call).Times(0);
t1->Start();
AdvanceTimeAndRunTimers(DurationMs(4000));
// Fire first time
EXPECT_CALL(on_expired_, Call).Times(1);
AdvanceTimeAndRunTimers(DurationMs(1000));
EXPECT_FALSE(t1->is_running());
// Second time - shouldn't fire
EXPECT_CALL(on_expired_, Call).Times(0);
AdvanceTimeAndRunTimers(DurationMs(5000));
EXPECT_FALSE(t1->is_running());
}
TEST_F(TimerTest, TimerWithOneRestart) {
std::unique_ptr<Timer> t1 = manager_.CreateTimer(
"t1", on_expired_.AsStdFunction(),
TimerOptions(DurationMs(5000), TimerBackoffAlgorithm::kFixed,
/*max_restart=*/1));
EXPECT_CALL(on_expired_, Call).Times(0);
t1->Start();
AdvanceTimeAndRunTimers(DurationMs(4000));
// Fire first time
EXPECT_CALL(on_expired_, Call).Times(1);
AdvanceTimeAndRunTimers(DurationMs(1000));
EXPECT_TRUE(t1->is_running());
EXPECT_CALL(on_expired_, Call).Times(0);
AdvanceTimeAndRunTimers(DurationMs(4000));
// Second time - max restart limit reached.
EXPECT_CALL(on_expired_, Call).Times(1);
AdvanceTimeAndRunTimers(DurationMs(1000));
EXPECT_FALSE(t1->is_running());
// Third time - should not fire.
EXPECT_CALL(on_expired_, Call).Times(0);
AdvanceTimeAndRunTimers(DurationMs(5000));
EXPECT_FALSE(t1->is_running());
}
TEST_F(TimerTest, TimerWithTwoRestart) {
std::unique_ptr<Timer> t1 = manager_.CreateTimer(
"t1", on_expired_.AsStdFunction(),
TimerOptions(DurationMs(5000), TimerBackoffAlgorithm::kFixed,
/*max_restart=*/2));
EXPECT_CALL(on_expired_, Call).Times(0);
t1->Start();
AdvanceTimeAndRunTimers(DurationMs(4000));
// Fire first time
EXPECT_CALL(on_expired_, Call).Times(1);
AdvanceTimeAndRunTimers(DurationMs(1000));
EXPECT_TRUE(t1->is_running());
EXPECT_CALL(on_expired_, Call).Times(0);
AdvanceTimeAndRunTimers(DurationMs(4000));
// Second time
EXPECT_CALL(on_expired_, Call).Times(1);
AdvanceTimeAndRunTimers(DurationMs(1000));
EXPECT_TRUE(t1->is_running());
EXPECT_CALL(on_expired_, Call).Times(0);
AdvanceTimeAndRunTimers(DurationMs(4000));
// Third time
EXPECT_CALL(on_expired_, Call).Times(1);
AdvanceTimeAndRunTimers(DurationMs(1000));
EXPECT_FALSE(t1->is_running());
}
TEST_F(TimerTest, TimerWithExponentialBackoff) {
std::unique_ptr<Timer> t1 = manager_.CreateTimer(
"t1", on_expired_.AsStdFunction(),
TimerOptions(DurationMs(5000), TimerBackoffAlgorithm::kExponential));
t1->Start();
// Fire first time at 5 seconds
EXPECT_CALL(on_expired_, Call).Times(1);
AdvanceTimeAndRunTimers(DurationMs(5000));
// Second time at 5*2^1 = 10 seconds later.
EXPECT_CALL(on_expired_, Call).Times(0);
AdvanceTimeAndRunTimers(DurationMs(9000));
EXPECT_CALL(on_expired_, Call).Times(1);
AdvanceTimeAndRunTimers(DurationMs(1000));
// Third time at 5*2^2 = 20 seconds later.
EXPECT_CALL(on_expired_, Call).Times(0);
AdvanceTimeAndRunTimers(DurationMs(19000));
EXPECT_CALL(on_expired_, Call).Times(1);
AdvanceTimeAndRunTimers(DurationMs(1000));
// Fourth time at 5*2^3 = 40 seconds later.
EXPECT_CALL(on_expired_, Call).Times(0);
AdvanceTimeAndRunTimers(DurationMs(39000));
EXPECT_CALL(on_expired_, Call).Times(1);
AdvanceTimeAndRunTimers(DurationMs(1000));
}
TEST_F(TimerTest, StartTimerWillStopAndStart) {
std::unique_ptr<Timer> t1 = manager_.CreateTimer(
"t1", on_expired_.AsStdFunction(),
TimerOptions(DurationMs(5000), TimerBackoffAlgorithm::kExponential));
t1->Start();
AdvanceTimeAndRunTimers(DurationMs(3000));
t1->Start();
EXPECT_CALL(on_expired_, Call).Times(0);
AdvanceTimeAndRunTimers(DurationMs(2000));
EXPECT_CALL(on_expired_, Call).Times(1);
AdvanceTimeAndRunTimers(DurationMs(3000));
}
TEST_F(TimerTest, ExpirationCounterWillResetIfStopped) {
std::unique_ptr<Timer> t1 = manager_.CreateTimer(
"t1", on_expired_.AsStdFunction(),
TimerOptions(DurationMs(5000), TimerBackoffAlgorithm::kExponential));
t1->Start();
// Fire first time at 5 seconds
EXPECT_CALL(on_expired_, Call).Times(1);
AdvanceTimeAndRunTimers(DurationMs(5000));
EXPECT_EQ(t1->expiration_count(), 1);
// Second time at 5*2^1 = 10 seconds later.
EXPECT_CALL(on_expired_, Call).Times(0);
AdvanceTimeAndRunTimers(DurationMs(9000));
EXPECT_CALL(on_expired_, Call).Times(1);
AdvanceTimeAndRunTimers(DurationMs(1000));
EXPECT_EQ(t1->expiration_count(), 2);
t1->Start();
EXPECT_EQ(t1->expiration_count(), 0);
// Third time at 5*2^0 = 5 seconds later.
EXPECT_CALL(on_expired_, Call).Times(0);
AdvanceTimeAndRunTimers(DurationMs(4000));
EXPECT_CALL(on_expired_, Call).Times(1);
AdvanceTimeAndRunTimers(DurationMs(1000));
EXPECT_EQ(t1->expiration_count(), 1);
}
TEST_F(TimerTest, StopTimerWillMakeItNotExpire) {
std::unique_ptr<Timer> t1 = manager_.CreateTimer(
"t1", on_expired_.AsStdFunction(),
TimerOptions(DurationMs(5000), TimerBackoffAlgorithm::kExponential));
t1->Start();
EXPECT_TRUE(t1->is_running());
EXPECT_CALL(on_expired_, Call).Times(0);
AdvanceTimeAndRunTimers(DurationMs(4000));
t1->Stop();
EXPECT_FALSE(t1->is_running());
EXPECT_CALL(on_expired_, Call).Times(0);
AdvanceTimeAndRunTimers(DurationMs(1000));
}
TEST_F(TimerTest, ReturningNewDurationWhenExpired) {
std::unique_ptr<Timer> t1 = manager_.CreateTimer(
"t1", on_expired_.AsStdFunction(),
TimerOptions(DurationMs(5000), TimerBackoffAlgorithm::kFixed));
EXPECT_CALL(on_expired_, Call).Times(0);
t1->Start();
EXPECT_EQ(t1->duration(), DurationMs(5000));
AdvanceTimeAndRunTimers(DurationMs(4000));
// Fire first time
EXPECT_CALL(on_expired_, Call).WillOnce(Return(DurationMs(2000)));
AdvanceTimeAndRunTimers(DurationMs(1000));
EXPECT_EQ(t1->duration(), DurationMs(2000));
EXPECT_CALL(on_expired_, Call).Times(0);
AdvanceTimeAndRunTimers(DurationMs(1000));
// Second time
EXPECT_CALL(on_expired_, Call).WillOnce(Return(DurationMs(10000)));
AdvanceTimeAndRunTimers(DurationMs(1000));
EXPECT_EQ(t1->duration(), DurationMs(10000));
EXPECT_CALL(on_expired_, Call).Times(0);
AdvanceTimeAndRunTimers(DurationMs(9000));
EXPECT_CALL(on_expired_, Call).Times(1);
AdvanceTimeAndRunTimers(DurationMs(1000));
}
TEST_F(TimerTest, TimersHaveMaximumDuration) {
std::unique_ptr<Timer> t1 = manager_.CreateTimer(
"t1", on_expired_.AsStdFunction(),
TimerOptions(DurationMs(1000), TimerBackoffAlgorithm::kExponential));
t1->set_duration(DurationMs(2 * *Timer::kMaxTimerDuration));
EXPECT_EQ(t1->duration(), Timer::kMaxTimerDuration);
}
TEST_F(TimerTest, TimersHaveMaximumBackoffDuration) {
std::unique_ptr<Timer> t1 = manager_.CreateTimer(
"t1", on_expired_.AsStdFunction(),
TimerOptions(DurationMs(1000), TimerBackoffAlgorithm::kExponential));
t1->Start();
int max_exponent = static_cast<int>(log2(*Timer::kMaxTimerDuration / 1000));
for (int i = 0; i < max_exponent; ++i) {
EXPECT_CALL(on_expired_, Call).Times(1);
AdvanceTimeAndRunTimers(DurationMs(1000 * (1 << i)));
}
// Reached the maximum duration.
EXPECT_CALL(on_expired_, Call).Times(1);
AdvanceTimeAndRunTimers(Timer::kMaxTimerDuration);
EXPECT_CALL(on_expired_, Call).Times(1);
AdvanceTimeAndRunTimers(Timer::kMaxTimerDuration);
EXPECT_CALL(on_expired_, Call).Times(1);
AdvanceTimeAndRunTimers(Timer::kMaxTimerDuration);
EXPECT_CALL(on_expired_, Call).Times(1);
AdvanceTimeAndRunTimers(Timer::kMaxTimerDuration);
}
TEST_F(TimerTest, TimerCanBeStartedFromWithinExpirationHandler) {
std::unique_ptr<Timer> t1 = manager_.CreateTimer(
"t1", on_expired_.AsStdFunction(),
TimerOptions(DurationMs(1000), TimerBackoffAlgorithm::kFixed));
t1->Start();
// Start a timer, but don't return any new duration in callback.
EXPECT_CALL(on_expired_, Call).WillOnce([&]() {
EXPECT_TRUE(t1->is_running());
t1->set_duration(DurationMs(5000));
t1->Start();
return absl::nullopt;
});
AdvanceTimeAndRunTimers(DurationMs(1000));
EXPECT_CALL(on_expired_, Call).Times(0);
AdvanceTimeAndRunTimers(DurationMs(4999));
// Start a timer, and return any new duration in callback.
EXPECT_CALL(on_expired_, Call).WillOnce([&]() {
EXPECT_TRUE(t1->is_running());
t1->set_duration(DurationMs(5000));
t1->Start();
return absl::make_optional(DurationMs(8000));
});
AdvanceTimeAndRunTimers(DurationMs(1));
EXPECT_CALL(on_expired_, Call).Times(0);
AdvanceTimeAndRunTimers(DurationMs(7999));
EXPECT_CALL(on_expired_, Call).Times(1);
AdvanceTimeAndRunTimers(DurationMs(1));
}
TEST_F(TimerTest, DurationStaysWithinMaxTimerBackOffDuration) {
std::unique_ptr<Timer> t1 = manager_.CreateTimer(
"t1", on_expired_.AsStdFunction(),
TimerOptions(DurationMs(1000), TimerBackoffAlgorithm::kExponential,
/*max_restarts=*/absl::nullopt, DurationMs(5000)));
t1->Start();
// Initial timeout, 1000 ms
EXPECT_CALL(on_expired_, Call).Times(1);
AdvanceTimeAndRunTimers(DurationMs(1000));
// Exponential backoff -> 2000 ms
EXPECT_CALL(on_expired_, Call).Times(0);
AdvanceTimeAndRunTimers(DurationMs(1999));
EXPECT_CALL(on_expired_, Call).Times(1);
AdvanceTimeAndRunTimers(DurationMs(1));
// Exponential backoff -> 4000 ms
EXPECT_CALL(on_expired_, Call).Times(0);
AdvanceTimeAndRunTimers(DurationMs(3999));
EXPECT_CALL(on_expired_, Call).Times(1);
AdvanceTimeAndRunTimers(DurationMs(1));
// Limited backoff -> 5000ms
EXPECT_CALL(on_expired_, Call).Times(0);
AdvanceTimeAndRunTimers(DurationMs(4999));
EXPECT_CALL(on_expired_, Call).Times(1);
AdvanceTimeAndRunTimers(DurationMs(1));
// ... where it plateaus
EXPECT_CALL(on_expired_, Call).Times(0);
AdvanceTimeAndRunTimers(DurationMs(4999));
EXPECT_CALL(on_expired_, Call).Times(1);
AdvanceTimeAndRunTimers(DurationMs(1));
}
TEST(TimerManagerTest, TimerManagerPassesPrecisionToCreateTimeoutMethod) {
FakeTimeoutManager timeout_manager([&]() { return TimeMs(0); });
absl::optional<webrtc::TaskQueueBase::DelayPrecision> create_timer_precison;
TimerManager manager([&](webrtc::TaskQueueBase::DelayPrecision precision) {
create_timer_precison = precision;
return timeout_manager.CreateTimeout(precision);
});
// Default TimerOptions.
manager.CreateTimer(
"test_timer", []() { return absl::optional<DurationMs>(); },
TimerOptions(DurationMs(123)));
EXPECT_EQ(create_timer_precison, webrtc::TaskQueueBase::DelayPrecision::kLow);
// High precision TimerOptions.
manager.CreateTimer(
"test_timer", []() { return absl::optional<DurationMs>(); },
TimerOptions(DurationMs(123), TimerBackoffAlgorithm::kExponential,
absl::nullopt, absl::nullopt,
webrtc::TaskQueueBase::DelayPrecision::kHigh));
EXPECT_EQ(create_timer_precison,
webrtc::TaskQueueBase::DelayPrecision::kHigh);
// Low precision TimerOptions.
manager.CreateTimer(
"test_timer", []() { return absl::optional<DurationMs>(); },
TimerOptions(DurationMs(123), TimerBackoffAlgorithm::kExponential,
absl::nullopt, absl::nullopt,
webrtc::TaskQueueBase::DelayPrecision::kLow));
EXPECT_EQ(create_timer_precison, webrtc::TaskQueueBase::DelayPrecision::kLow);
}
} // namespace
} // namespace dcsctp