webrtc/test/fuzzers/audio_processing_fuzzer_helper.cc
Sam Zackrisson 3bd444ffdb Clarify and extend test support for certain sample rates in audio processing
Sample rates not divisible by 100, in particular 11025 Hz and 22050 Hz, have long been used with APM in Chrome, but the support has never been stated explicitly.

This CL makes minor modifications to the APM API to clarify how rates are handled when 10 ms is not an integer number of samples. Unit tests are also extended to cover this case better.

This does not update all references to 10 ms and implicit floor(sample_rate/100) computations, but it does at least take us closer to a correct API.

Note that not all code needs to support these sample rates. For example, audio processing submodules only need to operate on the native APM rates 16000, 32000, 48000.

Bug: chromium:1332484
Change-Id: I1dad15468f6ccb9c0d4d09c5819fe87f8388d5b8
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/268769
Reviewed-by: Henrik Andreassson <henrika@webrtc.org>
Commit-Queue: Sam Zackrisson <saza@webrtc.org>
Reviewed-by: Ivo Creusen <ivoc@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#37682}
2022-08-03 14:26:36 +00:00

143 lines
5.4 KiB
C++

/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "test/fuzzers/audio_processing_fuzzer_helper.h"
#include <algorithm>
#include <array>
#include <cmath>
#include <limits>
#include "api/audio/audio_frame.h"
#include "modules/audio_processing/include/audio_frame_proxies.h"
#include "modules/audio_processing/include/audio_processing.h"
#include "rtc_base/checks.h"
namespace webrtc {
namespace {
bool ValidForApm(float x) {
return std::isfinite(x) && -1.0f <= x && x <= 1.0f;
}
void GenerateFloatFrame(test::FuzzDataHelper* fuzz_data,
int input_rate,
int num_channels,
float* const* float_frames) {
const int samples_per_input_channel =
AudioProcessing::GetFrameSize(input_rate);
RTC_DCHECK_LE(samples_per_input_channel, 480);
for (int i = 0; i < num_channels; ++i) {
std::fill(float_frames[i], float_frames[i] + samples_per_input_channel, 0);
const size_t read_bytes = sizeof(float) * samples_per_input_channel;
if (fuzz_data->CanReadBytes(read_bytes)) {
rtc::ArrayView<const uint8_t> byte_array =
fuzz_data->ReadByteArray(read_bytes);
memmove(float_frames[i], byte_array.begin(), read_bytes);
}
// Sanitize input.
for (int j = 0; j < samples_per_input_channel; ++j) {
if (!ValidForApm(float_frames[i][j])) {
float_frames[i][j] = 0.f;
}
}
}
}
void GenerateFixedFrame(test::FuzzDataHelper* fuzz_data,
int input_rate,
int num_channels,
AudioFrame* fixed_frame) {
const int samples_per_input_channel =
AudioProcessing::GetFrameSize(input_rate);
fixed_frame->samples_per_channel_ = samples_per_input_channel;
fixed_frame->sample_rate_hz_ = input_rate;
fixed_frame->num_channels_ = num_channels;
RTC_DCHECK_LE(samples_per_input_channel * num_channels,
AudioFrame::kMaxDataSizeSamples);
for (int i = 0; i < samples_per_input_channel * num_channels; ++i) {
fixed_frame->mutable_data()[i] = fuzz_data->ReadOrDefaultValue<int16_t>(0);
}
}
} // namespace
void FuzzAudioProcessing(test::FuzzDataHelper* fuzz_data,
rtc::scoped_refptr<AudioProcessing> apm) {
AudioFrame fixed_frame;
// Normal usage is up to 8 channels. Allowing to fuzz one beyond this allows
// us to catch implicit assumptions about normal usage.
constexpr int kMaxNumChannels = 9;
std::array<std::array<float, 480>, kMaxNumChannels> float_frames;
std::array<float*, kMaxNumChannels> float_frame_ptrs;
for (int i = 0; i < kMaxNumChannels; ++i) {
float_frame_ptrs[i] = float_frames[i].data();
}
float* const* ptr_to_float_frames = &float_frame_ptrs[0];
constexpr int kSampleRatesHz[] = {8000, 11025, 16000, 22050,
32000, 44100, 48000};
// We may run out of fuzz data in the middle of a loop iteration. In
// that case, default values will be used for the rest of that
// iteration.
while (fuzz_data->CanReadBytes(1)) {
const bool is_float = fuzz_data->ReadOrDefaultValue(true);
// Decide input/output rate for this iteration.
const int input_rate = fuzz_data->SelectOneOf(kSampleRatesHz);
const int output_rate = fuzz_data->SelectOneOf(kSampleRatesHz);
const uint8_t stream_delay = fuzz_data->ReadOrDefaultValue<uint8_t>(0);
// API call needed for AECM to run.
apm->set_stream_delay_ms(stream_delay);
const bool key_pressed = fuzz_data->ReadOrDefaultValue(true);
apm->set_stream_key_pressed(key_pressed);
// Make the APM call depending on capture/render mode and float /
// fix interface.
const bool is_capture = fuzz_data->ReadOrDefaultValue(true);
// Fill the arrays with audio samples from the data.
int apm_return_code = AudioProcessing::Error::kNoError;
if (is_float) {
const int num_channels =
fuzz_data->ReadOrDefaultValue<uint8_t>(1) % kMaxNumChannels;
GenerateFloatFrame(fuzz_data, input_rate, num_channels,
ptr_to_float_frames);
if (is_capture) {
apm_return_code = apm->ProcessStream(
ptr_to_float_frames, StreamConfig(input_rate, num_channels),
StreamConfig(output_rate, num_channels), ptr_to_float_frames);
} else {
apm_return_code = apm->ProcessReverseStream(
ptr_to_float_frames, StreamConfig(input_rate, num_channels),
StreamConfig(output_rate, num_channels), ptr_to_float_frames);
}
} else {
const int num_channels = fuzz_data->ReadOrDefaultValue(true) ? 2 : 1;
GenerateFixedFrame(fuzz_data, input_rate, num_channels, &fixed_frame);
if (is_capture) {
apm_return_code = ProcessAudioFrame(apm.get(), &fixed_frame);
} else {
apm_return_code = ProcessReverseAudioFrame(apm.get(), &fixed_frame);
}
}
// Cover stats gathering code paths.
static_cast<void>(apm->GetStatistics(true /*has_remote_tracks*/));
RTC_DCHECK_NE(apm_return_code, AudioProcessing::kBadDataLengthError);
}
}
} // namespace webrtc