webrtc/modules/rtp_rtcp/source/ulpfec_generator.cc
Ilya Nikolaevskiy a5d952f4be Reland "Refactor FEC code to use COW buffers"
Reland with fixes for fuzzer found crashes.

This refactoring helps to reduce unnecessary memcpy calls on the receive side.

This CL replaces |uint8 data[IP_PACKET_SIZE]| with |rtc::CopyOnWriteBuffer data| in Packet class, removes |length| field there, and does necessary changes.

Original Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/145332

Bug: webrtc:10750
Change-Id: I6775a701bcb2ae25ec1666e1db90041cd49013b7
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/151131
Reviewed-by: Rasmus Brandt <brandtr@webrtc.org>
Reviewed-by: Stefan Holmer <stefan@webrtc.org>
Reviewed-by: Ilya Nikolaevskiy <ilnik@webrtc.org>
Commit-Queue: Ilya Nikolaevskiy <ilnik@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#29116}
2019-09-09 16:20:33 +00:00

258 lines
9.2 KiB
C++

/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/rtp_rtcp/source/ulpfec_generator.h"
#include <string.h>
#include <cstdint>
#include <memory>
#include <utility>
#include "modules/rtp_rtcp/include/rtp_rtcp_defines.h"
#include "modules/rtp_rtcp/source/byte_io.h"
#include "modules/rtp_rtcp/source/forward_error_correction.h"
#include "modules/rtp_rtcp/source/forward_error_correction_internal.h"
#include "modules/rtp_rtcp/source/rtp_utility.h"
#include "rtc_base/checks.h"
namespace webrtc {
namespace {
constexpr size_t kRedForFecHeaderLength = 1;
// This controls the maximum amount of excess overhead (actual - target)
// allowed in order to trigger EncodeFec(), before |params_.max_fec_frames|
// is reached. Overhead here is defined as relative to number of media packets.
constexpr int kMaxExcessOverhead = 50; // Q8.
// This is the minimum number of media packets required (above some protection
// level) in order to trigger EncodeFec(), before |params_.max_fec_frames| is
// reached.
constexpr size_t kMinMediaPackets = 4;
// Threshold on the received FEC protection level, above which we enforce at
// least |kMinMediaPackets| packets for the FEC code. Below this
// threshold |kMinMediaPackets| is set to default value of 1.
//
// The range is between 0 and 255, where 255 corresponds to 100% overhead
// (relative to the number of protected media packets).
constexpr uint8_t kHighProtectionThreshold = 80;
// This threshold is used to adapt the |kMinMediaPackets| threshold, based
// on the average number of packets per frame seen so far. When there are few
// packets per frame (as given by this threshold), at least
// |kMinMediaPackets| + 1 packets are sent to the FEC code.
constexpr float kMinMediaPacketsAdaptationThreshold = 2.0f;
// At construction time, we don't know the SSRC that is used for the generated
// FEC packets, but we still need to give it to the ForwardErrorCorrection ctor
// to be used in the decoding.
// TODO(brandtr): Get rid of this awkwardness by splitting
// ForwardErrorCorrection in two objects -- one encoder and one decoder.
constexpr uint32_t kUnknownSsrc = 0;
} // namespace
RedPacket::RedPacket(size_t length)
: data_(new uint8_t[length]), length_(length), header_length_(0) {}
RedPacket::~RedPacket() = default;
void RedPacket::CreateHeader(const uint8_t* rtp_header,
size_t header_length,
int red_payload_type,
int payload_type) {
RTC_DCHECK_LE(header_length + kRedForFecHeaderLength, length_);
memcpy(data_.get(), rtp_header, header_length);
// Replace payload type.
data_[1] &= 0x80;
data_[1] += red_payload_type;
// Add RED header
// f-bit always 0
data_[header_length] = static_cast<uint8_t>(payload_type);
header_length_ = header_length + kRedForFecHeaderLength;
}
void RedPacket::SetSeqNum(int seq_num) {
RTC_DCHECK_GE(seq_num, 0);
RTC_DCHECK_LT(seq_num, 1 << 16);
ByteWriter<uint16_t>::WriteBigEndian(&data_[2], seq_num);
}
void RedPacket::AssignPayload(const uint8_t* payload, size_t length) {
RTC_DCHECK_LE(header_length_ + length, length_);
memcpy(data_.get() + header_length_, payload, length);
}
void RedPacket::ClearMarkerBit() {
data_[1] &= 0x7F;
}
uint8_t* RedPacket::data() const {
return data_.get();
}
size_t RedPacket::length() const {
return length_;
}
UlpfecGenerator::UlpfecGenerator()
: UlpfecGenerator(ForwardErrorCorrection::CreateUlpfec(kUnknownSsrc)) {}
UlpfecGenerator::UlpfecGenerator(std::unique_ptr<ForwardErrorCorrection> fec)
: fec_(std::move(fec)),
last_media_packet_rtp_header_length_(0),
num_protected_frames_(0),
min_num_media_packets_(1) {
memset(&params_, 0, sizeof(params_));
memset(&new_params_, 0, sizeof(new_params_));
}
UlpfecGenerator::~UlpfecGenerator() = default;
void UlpfecGenerator::SetFecParameters(const FecProtectionParams& params) {
RTC_DCHECK_GE(params.fec_rate, 0);
RTC_DCHECK_LE(params.fec_rate, 255);
// Store the new params and apply them for the next set of FEC packets being
// produced.
new_params_ = params;
if (params.fec_rate > kHighProtectionThreshold) {
min_num_media_packets_ = kMinMediaPackets;
} else {
min_num_media_packets_ = 1;
}
}
int UlpfecGenerator::AddRtpPacketAndGenerateFec(
const rtc::CopyOnWriteBuffer& data_buffer,
size_t rtp_header_length) {
RTC_DCHECK(generated_fec_packets_.empty());
if (media_packets_.empty()) {
params_ = new_params_;
}
bool complete_frame = false;
const bool marker_bit = (data_buffer[1] & kRtpMarkerBitMask) ? true : false;
if (media_packets_.size() < kUlpfecMaxMediaPackets) {
// Our packet masks can only protect up to |kUlpfecMaxMediaPackets| packets.
std::unique_ptr<ForwardErrorCorrection::Packet> packet(
new ForwardErrorCorrection::Packet());
RTC_DCHECK_GE(data_buffer.size(), rtp_header_length);
packet->data = data_buffer;
media_packets_.push_back(std::move(packet));
// Keep track of the RTP header length, so we can copy the RTP header
// from |packet| to newly generated ULPFEC+RED packets.
RTC_DCHECK_GE(rtp_header_length, kRtpHeaderSize);
last_media_packet_rtp_header_length_ = rtp_header_length;
}
if (marker_bit) {
++num_protected_frames_;
complete_frame = true;
}
// Produce FEC over at most |params_.max_fec_frames| frames, or as soon as:
// (1) the excess overhead (actual overhead - requested/target overhead) is
// less than |kMaxExcessOverhead|, and
// (2) at least |min_num_media_packets_| media packets is reached.
if (complete_frame &&
(num_protected_frames_ == params_.max_fec_frames ||
(ExcessOverheadBelowMax() && MinimumMediaPacketsReached()))) {
// We are not using Unequal Protection feature of the parity erasure code.
constexpr int kNumImportantPackets = 0;
constexpr bool kUseUnequalProtection = false;
int ret = fec_->EncodeFec(media_packets_, params_.fec_rate,
kNumImportantPackets, kUseUnequalProtection,
params_.fec_mask_type, &generated_fec_packets_);
if (generated_fec_packets_.empty()) {
ResetState();
}
return ret;
}
return 0;
}
bool UlpfecGenerator::ExcessOverheadBelowMax() const {
return ((Overhead() - params_.fec_rate) < kMaxExcessOverhead);
}
bool UlpfecGenerator::MinimumMediaPacketsReached() const {
float average_num_packets_per_frame =
static_cast<float>(media_packets_.size()) / num_protected_frames_;
int num_media_packets = static_cast<int>(media_packets_.size());
if (average_num_packets_per_frame < kMinMediaPacketsAdaptationThreshold) {
return num_media_packets >= min_num_media_packets_;
} else {
// For larger rates (more packets/frame), increase the threshold.
// TODO(brandtr): Investigate what impact this adaptation has.
return num_media_packets >= min_num_media_packets_ + 1;
}
}
bool UlpfecGenerator::FecAvailable() const {
return !generated_fec_packets_.empty();
}
size_t UlpfecGenerator::NumAvailableFecPackets() const {
return generated_fec_packets_.size();
}
size_t UlpfecGenerator::MaxPacketOverhead() const {
return fec_->MaxPacketOverhead();
}
std::vector<std::unique_ptr<RedPacket>> UlpfecGenerator::GetUlpfecPacketsAsRed(
int red_payload_type,
int ulpfec_payload_type,
uint16_t first_seq_num) {
std::vector<std::unique_ptr<RedPacket>> red_packets;
red_packets.reserve(generated_fec_packets_.size());
RTC_DCHECK(!media_packets_.empty());
ForwardErrorCorrection::Packet* last_media_packet =
media_packets_.back().get();
uint16_t seq_num = first_seq_num;
for (const auto* fec_packet : generated_fec_packets_) {
// Wrap FEC packet (including FEC headers) in a RED packet. Since the
// FEC packets in |generated_fec_packets_| don't have RTP headers, we
// reuse the header from the last media packet.
RTC_DCHECK_GT(last_media_packet_rtp_header_length_, 0);
std::unique_ptr<RedPacket> red_packet(
new RedPacket(last_media_packet_rtp_header_length_ +
kRedForFecHeaderLength + fec_packet->data.size()));
red_packet->CreateHeader(last_media_packet->data.data(),
last_media_packet_rtp_header_length_,
red_payload_type, ulpfec_payload_type);
red_packet->SetSeqNum(seq_num++);
red_packet->ClearMarkerBit();
red_packet->AssignPayload(fec_packet->data.data(), fec_packet->data.size());
red_packets.push_back(std::move(red_packet));
}
ResetState();
return red_packets;
}
int UlpfecGenerator::Overhead() const {
RTC_DCHECK(!media_packets_.empty());
int num_fec_packets =
fec_->NumFecPackets(media_packets_.size(), params_.fec_rate);
// Return the overhead in Q8.
return (num_fec_packets << 8) / media_packets_.size();
}
void UlpfecGenerator::ResetState() {
media_packets_.clear();
last_media_packet_rtp_header_length_ = 0;
generated_fec_packets_.clear();
num_protected_frames_ = 0;
}
} // namespace webrtc