mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-14 06:10:40 +01:00

Also, pass correct max payload data size to encoders: now accounting for rtp headers. Bug: chromium:819259 Change-Id: I586924e9246218fab6072e05eca894925cfe556e Reviewed-on: https://webrtc-review.googlesource.com/61425 Commit-Queue: Ilya Nikolaevskiy <ilnik@webrtc.org> Reviewed-by: Åsa Persson <asapersson@webrtc.org> Reviewed-by: Harald Alvestrand <hta@webrtc.org> Cr-Commit-Position: refs/heads/master@{#22460}
941 lines
38 KiB
C++
941 lines
38 KiB
C++
/*
|
|
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include <memory>
|
|
#include <vector>
|
|
|
|
#include "api/array_view.h"
|
|
#include "common_video/h264/h264_common.h"
|
|
#include "modules/include/module_common_types.h"
|
|
#include "modules/rtp_rtcp/mocks/mock_rtp_rtcp.h"
|
|
#include "modules/rtp_rtcp/source/byte_io.h"
|
|
#include "modules/rtp_rtcp/source/rtp_format.h"
|
|
#include "modules/rtp_rtcp/source/rtp_packet_to_send.h"
|
|
#include "test/gmock.h"
|
|
#include "test/gtest.h"
|
|
|
|
namespace webrtc {
|
|
namespace {
|
|
|
|
using ::testing::ElementsAreArray;
|
|
|
|
constexpr RtpPacketToSend::ExtensionManager* kNoExtensions = nullptr;
|
|
const size_t kMaxPayloadSize = 1200;
|
|
const size_t kLengthFieldLength = 2;
|
|
|
|
enum Nalu {
|
|
kSlice = 1,
|
|
kIdr = 5,
|
|
kSei = 6,
|
|
kSps = 7,
|
|
kPps = 8,
|
|
kStapA = 24,
|
|
kFuA = 28
|
|
};
|
|
|
|
static const size_t kNalHeaderSize = 1;
|
|
static const size_t kFuAHeaderSize = 2;
|
|
|
|
// Bit masks for FU (A and B) indicators.
|
|
enum NalDefs { kFBit = 0x80, kNriMask = 0x60, kTypeMask = 0x1F };
|
|
|
|
// Bit masks for FU (A and B) headers.
|
|
enum FuDefs { kSBit = 0x80, kEBit = 0x40, kRBit = 0x20 };
|
|
|
|
void CreateThreeFragments(RTPFragmentationHeader* fragmentation,
|
|
size_t frameSize,
|
|
size_t payloadOffset) {
|
|
fragmentation->VerifyAndAllocateFragmentationHeader(3);
|
|
fragmentation->fragmentationOffset[0] = 0;
|
|
fragmentation->fragmentationLength[0] = 2;
|
|
fragmentation->fragmentationOffset[1] = 2;
|
|
fragmentation->fragmentationLength[1] = 2;
|
|
fragmentation->fragmentationOffset[2] = 4;
|
|
fragmentation->fragmentationLength[2] =
|
|
kNalHeaderSize + frameSize - payloadOffset;
|
|
}
|
|
|
|
RtpPacketizer* CreateH264Packetizer(H264PacketizationMode mode,
|
|
size_t max_payload_size,
|
|
size_t last_packet_reduction) {
|
|
RTPVideoTypeHeader type_header;
|
|
type_header.H264.packetization_mode = mode;
|
|
return RtpPacketizer::Create(kRtpVideoH264, max_payload_size,
|
|
last_packet_reduction, &type_header,
|
|
kEmptyFrame);
|
|
}
|
|
|
|
void VerifyFua(size_t fua_index,
|
|
const uint8_t* expected_payload,
|
|
int offset,
|
|
rtc::ArrayView<const uint8_t> packet,
|
|
const std::vector<size_t>& expected_sizes) {
|
|
ASSERT_EQ(expected_sizes[fua_index] + kFuAHeaderSize, packet.size())
|
|
<< "FUA index: " << fua_index;
|
|
const uint8_t kFuIndicator = 0x1C; // F=0, NRI=0, Type=28.
|
|
EXPECT_EQ(kFuIndicator, packet[0]) << "FUA index: " << fua_index;
|
|
bool should_be_last_fua = (fua_index == expected_sizes.size() - 1);
|
|
uint8_t fu_header = 0;
|
|
if (fua_index == 0)
|
|
fu_header = 0x85; // S=1, E=0, R=0, Type=5.
|
|
else if (should_be_last_fua)
|
|
fu_header = 0x45; // S=0, E=1, R=0, Type=5.
|
|
else
|
|
fu_header = 0x05; // S=0, E=0, R=0, Type=5.
|
|
EXPECT_EQ(fu_header, packet[1]) << "FUA index: " << fua_index;
|
|
std::vector<uint8_t> expected_packet_payload(
|
|
&expected_payload[offset],
|
|
&expected_payload[offset + expected_sizes[fua_index]]);
|
|
EXPECT_THAT(expected_packet_payload,
|
|
ElementsAreArray(&packet[2], expected_sizes[fua_index]))
|
|
<< "FUA index: " << fua_index;
|
|
}
|
|
|
|
void TestFua(size_t frame_size,
|
|
size_t max_payload_size,
|
|
size_t last_packet_reduction,
|
|
const std::vector<size_t>& expected_sizes) {
|
|
std::unique_ptr<uint8_t[]> frame;
|
|
frame.reset(new uint8_t[frame_size]);
|
|
frame[0] = 0x05; // F=0, NRI=0, Type=5.
|
|
for (size_t i = 0; i < frame_size - kNalHeaderSize; ++i) {
|
|
frame[i + kNalHeaderSize] = i;
|
|
}
|
|
RTPFragmentationHeader fragmentation;
|
|
fragmentation.VerifyAndAllocateFragmentationHeader(1);
|
|
fragmentation.fragmentationOffset[0] = 0;
|
|
fragmentation.fragmentationLength[0] = frame_size;
|
|
std::unique_ptr<RtpPacketizer> packetizer(
|
|
CreateH264Packetizer(H264PacketizationMode::NonInterleaved,
|
|
max_payload_size, last_packet_reduction));
|
|
EXPECT_EQ(
|
|
expected_sizes.size(),
|
|
packetizer->SetPayloadData(frame.get(), frame_size, &fragmentation));
|
|
|
|
RtpPacketToSend packet(kNoExtensions);
|
|
ASSERT_LE(max_payload_size, packet.FreeCapacity());
|
|
size_t offset = kNalHeaderSize;
|
|
for (size_t i = 0; i < expected_sizes.size(); ++i) {
|
|
ASSERT_TRUE(packetizer->NextPacket(&packet));
|
|
VerifyFua(i, frame.get(), offset, packet.payload(), expected_sizes);
|
|
offset += expected_sizes[i];
|
|
}
|
|
|
|
EXPECT_FALSE(packetizer->NextPacket(&packet));
|
|
}
|
|
|
|
size_t GetExpectedNaluOffset(const RTPFragmentationHeader& fragmentation,
|
|
size_t start_index,
|
|
size_t nalu_index) {
|
|
assert(nalu_index < fragmentation.fragmentationVectorSize);
|
|
size_t expected_nalu_offset = kNalHeaderSize; // STAP-A header.
|
|
for (size_t i = start_index; i < nalu_index; ++i) {
|
|
expected_nalu_offset +=
|
|
kLengthFieldLength + fragmentation.fragmentationLength[i];
|
|
}
|
|
return expected_nalu_offset;
|
|
}
|
|
|
|
void VerifyStapAPayload(const RTPFragmentationHeader& fragmentation,
|
|
size_t first_stapa_index,
|
|
size_t nalu_index,
|
|
rtc::ArrayView<const uint8_t> frame,
|
|
rtc::ArrayView<const uint8_t> packet) {
|
|
size_t expected_payload_offset =
|
|
GetExpectedNaluOffset(fragmentation, first_stapa_index, nalu_index) +
|
|
kLengthFieldLength;
|
|
size_t offset = fragmentation.fragmentationOffset[nalu_index];
|
|
const uint8_t* expected_payload = &frame[offset];
|
|
size_t expected_payload_length =
|
|
fragmentation.fragmentationLength[nalu_index];
|
|
ASSERT_LE(offset + expected_payload_length, frame.size());
|
|
ASSERT_LE(expected_payload_offset + expected_payload_length, packet.size());
|
|
std::vector<uint8_t> expected_payload_vector(
|
|
expected_payload, &expected_payload[expected_payload_length]);
|
|
EXPECT_THAT(expected_payload_vector,
|
|
ElementsAreArray(&packet[expected_payload_offset],
|
|
expected_payload_length));
|
|
}
|
|
|
|
void VerifySingleNaluPayload(const RTPFragmentationHeader& fragmentation,
|
|
size_t nalu_index,
|
|
rtc::ArrayView<const uint8_t> frame,
|
|
rtc::ArrayView<const uint8_t> packet) {
|
|
auto fragment = frame.subview(fragmentation.fragmentationOffset[nalu_index],
|
|
fragmentation.fragmentationLength[nalu_index]);
|
|
EXPECT_THAT(packet, ElementsAreArray(fragment.begin(), fragment.end()));
|
|
}
|
|
} // namespace
|
|
|
|
// Tests that should work with both packetization mode 0 and
|
|
// packetization mode 1.
|
|
class RtpPacketizerH264ModeTest
|
|
: public ::testing::TestWithParam<H264PacketizationMode> {};
|
|
|
|
TEST_P(RtpPacketizerH264ModeTest, TestSingleNalu) {
|
|
const uint8_t frame[2] = {0x05, 0xFF}; // F=0, NRI=0, Type=5.
|
|
RTPFragmentationHeader fragmentation;
|
|
fragmentation.VerifyAndAllocateFragmentationHeader(1);
|
|
fragmentation.fragmentationOffset[0] = 0;
|
|
fragmentation.fragmentationLength[0] = sizeof(frame);
|
|
std::unique_ptr<RtpPacketizer> packetizer(
|
|
CreateH264Packetizer(GetParam(), kMaxPayloadSize, 0));
|
|
ASSERT_EQ(1u,
|
|
packetizer->SetPayloadData(frame, sizeof(frame), &fragmentation));
|
|
RtpPacketToSend packet(kNoExtensions);
|
|
ASSERT_LE(kMaxPayloadSize, packet.FreeCapacity());
|
|
ASSERT_TRUE(packetizer->NextPacket(&packet));
|
|
EXPECT_EQ(2u, packet.payload_size());
|
|
VerifySingleNaluPayload(fragmentation, 0, frame, packet.payload());
|
|
EXPECT_FALSE(packetizer->NextPacket(&packet));
|
|
}
|
|
|
|
TEST_P(RtpPacketizerH264ModeTest, TestSingleNaluTwoPackets) {
|
|
const size_t kFrameSize = kMaxPayloadSize + 100;
|
|
uint8_t frame[kFrameSize] = {0};
|
|
for (size_t i = 0; i < kFrameSize; ++i)
|
|
frame[i] = i;
|
|
RTPFragmentationHeader fragmentation;
|
|
fragmentation.VerifyAndAllocateFragmentationHeader(2);
|
|
fragmentation.fragmentationOffset[0] = 0;
|
|
fragmentation.fragmentationLength[0] = kMaxPayloadSize;
|
|
fragmentation.fragmentationOffset[1] = kMaxPayloadSize;
|
|
fragmentation.fragmentationLength[1] = 100;
|
|
// Set NAL headers.
|
|
frame[fragmentation.fragmentationOffset[0]] = 0x01;
|
|
frame[fragmentation.fragmentationOffset[1]] = 0x01;
|
|
|
|
std::unique_ptr<RtpPacketizer> packetizer(
|
|
CreateH264Packetizer(GetParam(), kMaxPayloadSize, 0));
|
|
ASSERT_EQ(2u, packetizer->SetPayloadData(frame, kFrameSize, &fragmentation));
|
|
|
|
RtpPacketToSend packet(kNoExtensions);
|
|
ASSERT_TRUE(packetizer->NextPacket(&packet));
|
|
ASSERT_EQ(fragmentation.fragmentationOffset[1], packet.payload_size());
|
|
VerifySingleNaluPayload(fragmentation, 0, frame, packet.payload());
|
|
|
|
ASSERT_TRUE(packetizer->NextPacket(&packet));
|
|
ASSERT_EQ(fragmentation.fragmentationLength[1], packet.payload_size());
|
|
VerifySingleNaluPayload(fragmentation, 1, frame, packet.payload());
|
|
|
|
EXPECT_FALSE(packetizer->NextPacket(&packet));
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(
|
|
PacketMode,
|
|
RtpPacketizerH264ModeTest,
|
|
::testing::Values(H264PacketizationMode::SingleNalUnit,
|
|
H264PacketizationMode::NonInterleaved));
|
|
|
|
TEST(RtpPacketizerH264Test, TestStapA) {
|
|
const size_t kFrameSize =
|
|
kMaxPayloadSize - 3 * kLengthFieldLength - kNalHeaderSize;
|
|
uint8_t frame[kFrameSize] = {0x07, 0xFF, // F=0, NRI=0, Type=7 (SPS).
|
|
0x08, 0xFF, // F=0, NRI=0, Type=8 (PPS).
|
|
0x05}; // F=0, NRI=0, Type=5 (IDR).
|
|
const size_t kPayloadOffset = 5;
|
|
for (size_t i = 0; i < kFrameSize - kPayloadOffset; ++i)
|
|
frame[i + kPayloadOffset] = i;
|
|
RTPFragmentationHeader fragmentation;
|
|
CreateThreeFragments(&fragmentation, kFrameSize, kPayloadOffset);
|
|
std::unique_ptr<RtpPacketizer> packetizer(CreateH264Packetizer(
|
|
H264PacketizationMode::NonInterleaved, kMaxPayloadSize, 0));
|
|
ASSERT_EQ(1u, packetizer->SetPayloadData(frame, kFrameSize, &fragmentation));
|
|
|
|
RtpPacketToSend packet(kNoExtensions);
|
|
ASSERT_LE(kMaxPayloadSize, packet.FreeCapacity());
|
|
ASSERT_TRUE(packetizer->NextPacket(&packet));
|
|
size_t expected_packet_size =
|
|
kNalHeaderSize + 3 * kLengthFieldLength + kFrameSize;
|
|
ASSERT_EQ(expected_packet_size, packet.payload_size());
|
|
|
|
for (size_t i = 0; i < fragmentation.fragmentationVectorSize; ++i)
|
|
VerifyStapAPayload(fragmentation, 0, i, frame, packet.payload());
|
|
|
|
EXPECT_FALSE(packetizer->NextPacket(&packet));
|
|
}
|
|
|
|
TEST(RtpPacketizerH264Test, TestStapARespectsPacketReduction) {
|
|
const size_t kLastPacketReduction = 100;
|
|
const size_t kFrameSize = kMaxPayloadSize - 1 - kLastPacketReduction;
|
|
uint8_t frame[kFrameSize] = {0x07, 0xFF, // F=0, NRI=0, Type=7.
|
|
0x08, 0xFF, // F=0, NRI=0, Type=8.
|
|
0x05}; // F=0, NRI=0, Type=5.
|
|
const size_t kPayloadOffset = 5;
|
|
for (size_t i = 0; i < kFrameSize - kPayloadOffset; ++i)
|
|
frame[i + kPayloadOffset] = i;
|
|
RTPFragmentationHeader fragmentation;
|
|
fragmentation.VerifyAndAllocateFragmentationHeader(3);
|
|
fragmentation.fragmentationOffset[0] = 0;
|
|
fragmentation.fragmentationLength[0] = 2;
|
|
fragmentation.fragmentationOffset[1] = 2;
|
|
fragmentation.fragmentationLength[1] = 2;
|
|
fragmentation.fragmentationOffset[2] = 4;
|
|
fragmentation.fragmentationLength[2] =
|
|
kNalHeaderSize + kFrameSize - kPayloadOffset;
|
|
std::unique_ptr<RtpPacketizer> packetizer(
|
|
CreateH264Packetizer(H264PacketizationMode::NonInterleaved,
|
|
kMaxPayloadSize, kLastPacketReduction));
|
|
ASSERT_EQ(2u, packetizer->SetPayloadData(frame, kFrameSize, &fragmentation));
|
|
|
|
RtpPacketToSend packet(kNoExtensions);
|
|
ASSERT_LE(kMaxPayloadSize, packet.FreeCapacity());
|
|
ASSERT_TRUE(packetizer->NextPacket(&packet));
|
|
size_t expected_packet_size = kNalHeaderSize;
|
|
for (size_t i = 0; i < 2; ++i) {
|
|
expected_packet_size +=
|
|
kLengthFieldLength + fragmentation.fragmentationLength[i];
|
|
}
|
|
ASSERT_EQ(expected_packet_size, packet.payload_size());
|
|
for (size_t i = 0; i < 2; ++i)
|
|
VerifyStapAPayload(fragmentation, 0, i, frame, packet.payload());
|
|
|
|
ASSERT_TRUE(packetizer->NextPacket(&packet));
|
|
expected_packet_size = fragmentation.fragmentationLength[2];
|
|
ASSERT_EQ(expected_packet_size, packet.payload_size());
|
|
VerifySingleNaluPayload(fragmentation, 2, frame, packet.payload());
|
|
|
|
EXPECT_FALSE(packetizer->NextPacket(&packet));
|
|
}
|
|
|
|
TEST(RtpPacketizerH264Test, TestSingleNalUnitModeHasNoStapA) {
|
|
// This is the same setup as for the TestStapA test.
|
|
const size_t kFrameSize =
|
|
kMaxPayloadSize - 3 * kLengthFieldLength - kNalHeaderSize;
|
|
uint8_t frame[kFrameSize] = {0x07, 0xFF, // F=0, NRI=0, Type=7 (SPS).
|
|
0x08, 0xFF, // F=0, NRI=0, Type=8 (PPS).
|
|
0x05}; // F=0, NRI=0, Type=5 (IDR).
|
|
const size_t kPayloadOffset = 5;
|
|
for (size_t i = 0; i < kFrameSize - kPayloadOffset; ++i)
|
|
frame[i + kPayloadOffset] = i;
|
|
RTPFragmentationHeader fragmentation;
|
|
CreateThreeFragments(&fragmentation, kFrameSize, kPayloadOffset);
|
|
std::unique_ptr<RtpPacketizer> packetizer(CreateH264Packetizer(
|
|
H264PacketizationMode::SingleNalUnit, kMaxPayloadSize, 0));
|
|
packetizer->SetPayloadData(frame, kFrameSize, &fragmentation);
|
|
|
|
RtpPacketToSend packet(kNoExtensions);
|
|
// The three fragments should be returned as three packets.
|
|
ASSERT_TRUE(packetizer->NextPacket(&packet));
|
|
ASSERT_TRUE(packetizer->NextPacket(&packet));
|
|
ASSERT_TRUE(packetizer->NextPacket(&packet));
|
|
EXPECT_FALSE(packetizer->NextPacket(&packet));
|
|
}
|
|
|
|
TEST(RtpPacketizerH264Test, TestTooSmallForStapAHeaders) {
|
|
const size_t kFrameSize = kMaxPayloadSize - 1;
|
|
uint8_t frame[kFrameSize] = {0x07, 0xFF, // F=0, NRI=0, Type=7.
|
|
0x08, 0xFF, // F=0, NRI=0, Type=8.
|
|
0x05}; // F=0, NRI=0, Type=5.
|
|
const size_t kPayloadOffset = 5;
|
|
for (size_t i = 0; i < kFrameSize - kPayloadOffset; ++i)
|
|
frame[i + kPayloadOffset] = i;
|
|
RTPFragmentationHeader fragmentation;
|
|
fragmentation.VerifyAndAllocateFragmentationHeader(3);
|
|
fragmentation.fragmentationOffset[0] = 0;
|
|
fragmentation.fragmentationLength[0] = 2;
|
|
fragmentation.fragmentationOffset[1] = 2;
|
|
fragmentation.fragmentationLength[1] = 2;
|
|
fragmentation.fragmentationOffset[2] = 4;
|
|
fragmentation.fragmentationLength[2] =
|
|
kNalHeaderSize + kFrameSize - kPayloadOffset;
|
|
std::unique_ptr<RtpPacketizer> packetizer(CreateH264Packetizer(
|
|
H264PacketizationMode::NonInterleaved, kMaxPayloadSize, 0));
|
|
ASSERT_EQ(2u, packetizer->SetPayloadData(frame, kFrameSize, &fragmentation));
|
|
|
|
RtpPacketToSend packet(kNoExtensions);
|
|
ASSERT_LE(kMaxPayloadSize, packet.FreeCapacity());
|
|
ASSERT_TRUE(packetizer->NextPacket(&packet));
|
|
size_t expected_packet_size = kNalHeaderSize;
|
|
for (size_t i = 0; i < 2; ++i) {
|
|
expected_packet_size +=
|
|
kLengthFieldLength + fragmentation.fragmentationLength[i];
|
|
}
|
|
ASSERT_EQ(expected_packet_size, packet.payload_size());
|
|
for (size_t i = 0; i < 2; ++i)
|
|
VerifyStapAPayload(fragmentation, 0, i, frame, packet.payload());
|
|
|
|
ASSERT_TRUE(packetizer->NextPacket(&packet));
|
|
expected_packet_size = fragmentation.fragmentationLength[2];
|
|
ASSERT_EQ(expected_packet_size, packet.payload_size());
|
|
VerifySingleNaluPayload(fragmentation, 2, frame, packet.payload());
|
|
|
|
EXPECT_FALSE(packetizer->NextPacket(&packet));
|
|
}
|
|
|
|
TEST(RtpPacketizerH264Test, TestMixedStapA_FUA) {
|
|
const size_t kFuaNaluSize = 2 * (kMaxPayloadSize - 100);
|
|
const size_t kStapANaluSize = 100;
|
|
RTPFragmentationHeader fragmentation;
|
|
fragmentation.VerifyAndAllocateFragmentationHeader(3);
|
|
fragmentation.fragmentationOffset[0] = 0;
|
|
fragmentation.fragmentationLength[0] = kFuaNaluSize;
|
|
fragmentation.fragmentationOffset[1] = kFuaNaluSize;
|
|
fragmentation.fragmentationLength[1] = kStapANaluSize;
|
|
fragmentation.fragmentationOffset[2] = kFuaNaluSize + kStapANaluSize;
|
|
fragmentation.fragmentationLength[2] = kStapANaluSize;
|
|
const size_t kFrameSize = kFuaNaluSize + 2 * kStapANaluSize;
|
|
uint8_t frame[kFrameSize];
|
|
size_t nalu_offset = 0;
|
|
for (size_t i = 0; i < fragmentation.fragmentationVectorSize; ++i) {
|
|
nalu_offset = fragmentation.fragmentationOffset[i];
|
|
frame[nalu_offset] = 0x05; // F=0, NRI=0, Type=5.
|
|
for (size_t j = 1; j < fragmentation.fragmentationLength[i]; ++j) {
|
|
frame[nalu_offset + j] = i + j;
|
|
}
|
|
}
|
|
std::unique_ptr<RtpPacketizer> packetizer(CreateH264Packetizer(
|
|
H264PacketizationMode::NonInterleaved, kMaxPayloadSize, 0));
|
|
ASSERT_EQ(3u, packetizer->SetPayloadData(frame, kFrameSize, &fragmentation));
|
|
|
|
// First expecting two FU-A packets.
|
|
std::vector<size_t> fua_sizes;
|
|
fua_sizes.push_back(1099);
|
|
fua_sizes.push_back(1100);
|
|
RtpPacketToSend packet(kNoExtensions);
|
|
ASSERT_LE(kMaxPayloadSize, packet.FreeCapacity());
|
|
int fua_offset = kNalHeaderSize;
|
|
for (size_t i = 0; i < 2; ++i) {
|
|
ASSERT_TRUE(packetizer->NextPacket(&packet));
|
|
VerifyFua(i, frame, fua_offset, packet.payload(), fua_sizes);
|
|
fua_offset += fua_sizes[i];
|
|
}
|
|
// Then expecting one STAP-A packet with two nal units.
|
|
ASSERT_TRUE(packetizer->NextPacket(&packet));
|
|
size_t expected_packet_size =
|
|
kNalHeaderSize + 2 * kLengthFieldLength + 2 * kStapANaluSize;
|
|
ASSERT_EQ(expected_packet_size, packet.payload_size());
|
|
for (size_t i = 1; i < fragmentation.fragmentationVectorSize; ++i)
|
|
VerifyStapAPayload(fragmentation, 1, i, frame, packet.payload());
|
|
|
|
EXPECT_FALSE(packetizer->NextPacket(&packet));
|
|
}
|
|
|
|
TEST(RtpPacketizerH264Test, TestFUAOddSize) {
|
|
const size_t kExpectedPayloadSizes[2] = {600, 600};
|
|
TestFua(
|
|
kMaxPayloadSize + 1, kMaxPayloadSize, 0,
|
|
std::vector<size_t>(kExpectedPayloadSizes,
|
|
kExpectedPayloadSizes +
|
|
sizeof(kExpectedPayloadSizes) / sizeof(size_t)));
|
|
}
|
|
|
|
TEST(RtpPacketizerH264Test, TestFUAWithLastPacketReduction) {
|
|
const size_t kExpectedPayloadSizes[2] = {601, 597};
|
|
TestFua(
|
|
kMaxPayloadSize - 1, kMaxPayloadSize, 4,
|
|
std::vector<size_t>(kExpectedPayloadSizes,
|
|
kExpectedPayloadSizes +
|
|
sizeof(kExpectedPayloadSizes) / sizeof(size_t)));
|
|
}
|
|
|
|
TEST(RtpPacketizerH264Test, TestFUAEvenSize) {
|
|
const size_t kExpectedPayloadSizes[2] = {600, 601};
|
|
TestFua(
|
|
kMaxPayloadSize + 2, kMaxPayloadSize, 0,
|
|
std::vector<size_t>(kExpectedPayloadSizes,
|
|
kExpectedPayloadSizes +
|
|
sizeof(kExpectedPayloadSizes) / sizeof(size_t)));
|
|
}
|
|
|
|
TEST(RtpPacketizerH264Test, TestFUARounding) {
|
|
const size_t kExpectedPayloadSizes[8] = {1265, 1265, 1265, 1265,
|
|
1265, 1266, 1266, 1266};
|
|
TestFua(
|
|
10124, 1448, 0,
|
|
std::vector<size_t>(kExpectedPayloadSizes,
|
|
kExpectedPayloadSizes +
|
|
sizeof(kExpectedPayloadSizes) / sizeof(size_t)));
|
|
}
|
|
|
|
TEST(RtpPacketizerH264Test, TestFUABig) {
|
|
const size_t kExpectedPayloadSizes[10] = {1198, 1198, 1198, 1198, 1198,
|
|
1198, 1198, 1198, 1198, 1198};
|
|
// Generate 10 full sized packets, leave room for FU-A headers minus the NALU
|
|
// header.
|
|
TestFua(
|
|
10 * (kMaxPayloadSize - kFuAHeaderSize) + kNalHeaderSize, kMaxPayloadSize,
|
|
0,
|
|
std::vector<size_t>(kExpectedPayloadSizes,
|
|
kExpectedPayloadSizes +
|
|
sizeof(kExpectedPayloadSizes) / sizeof(size_t)));
|
|
}
|
|
|
|
TEST(RtpPacketizerH264Test, SendOverlongDataInPacketizationMode0) {
|
|
const size_t kFrameSize = kMaxPayloadSize + 1;
|
|
uint8_t frame[kFrameSize] = {0};
|
|
for (size_t i = 0; i < kFrameSize; ++i)
|
|
frame[i] = i;
|
|
RTPFragmentationHeader fragmentation;
|
|
fragmentation.VerifyAndAllocateFragmentationHeader(1);
|
|
fragmentation.fragmentationOffset[0] = 0;
|
|
fragmentation.fragmentationLength[0] = kFrameSize;
|
|
// Set NAL headers.
|
|
frame[fragmentation.fragmentationOffset[0]] = 0x01;
|
|
|
|
std::unique_ptr<RtpPacketizer> packetizer(CreateH264Packetizer(
|
|
H264PacketizationMode::SingleNalUnit, kMaxPayloadSize, 0));
|
|
EXPECT_EQ(0u, packetizer->SetPayloadData(frame, kFrameSize, &fragmentation));
|
|
}
|
|
|
|
namespace {
|
|
const uint8_t kStartSequence[] = {0x00, 0x00, 0x00, 0x01};
|
|
const uint8_t kOriginalSps[] = {kSps, 0x00, 0x00, 0x03, 0x03,
|
|
0xF4, 0x05, 0x03, 0xC7, 0xC0};
|
|
const uint8_t kRewrittenSps[] = {kSps, 0x00, 0x00, 0x03, 0x03, 0xF4, 0x05, 0x03,
|
|
0xC7, 0xE0, 0x1B, 0x41, 0x10, 0x8D, 0x00};
|
|
const uint8_t kIdrOne[] = {kIdr, 0xFF, 0x00, 0x00, 0x04};
|
|
const uint8_t kIdrTwo[] = {kIdr, 0xFF, 0x00, 0x11};
|
|
}
|
|
|
|
class RtpPacketizerH264TestSpsRewriting : public ::testing::Test {
|
|
public:
|
|
void SetUp() override {
|
|
fragmentation_header_.VerifyAndAllocateFragmentationHeader(3);
|
|
fragmentation_header_.fragmentationVectorSize = 3;
|
|
in_buffer_.AppendData(kStartSequence);
|
|
|
|
fragmentation_header_.fragmentationOffset[0] = in_buffer_.size();
|
|
fragmentation_header_.fragmentationLength[0] = sizeof(kOriginalSps);
|
|
in_buffer_.AppendData(kOriginalSps);
|
|
|
|
fragmentation_header_.fragmentationOffset[1] = in_buffer_.size();
|
|
fragmentation_header_.fragmentationLength[1] = sizeof(kIdrOne);
|
|
in_buffer_.AppendData(kIdrOne);
|
|
|
|
fragmentation_header_.fragmentationOffset[2] = in_buffer_.size();
|
|
fragmentation_header_.fragmentationLength[2] = sizeof(kIdrTwo);
|
|
in_buffer_.AppendData(kIdrTwo);
|
|
}
|
|
|
|
protected:
|
|
rtc::Buffer in_buffer_;
|
|
RTPFragmentationHeader fragmentation_header_;
|
|
std::unique_ptr<RtpPacketizer> packetizer_;
|
|
};
|
|
|
|
TEST_F(RtpPacketizerH264TestSpsRewriting, FuASps) {
|
|
const size_t kHeaderOverhead = kFuAHeaderSize + 1;
|
|
|
|
// Set size to fragment SPS into two FU-A packets.
|
|
packetizer_.reset(
|
|
CreateH264Packetizer(H264PacketizationMode::NonInterleaved,
|
|
sizeof(kOriginalSps) - 2 + kHeaderOverhead, 0));
|
|
|
|
packetizer_->SetPayloadData(in_buffer_.data(), in_buffer_.size(),
|
|
&fragmentation_header_);
|
|
|
|
RtpPacketToSend packet(kNoExtensions);
|
|
ASSERT_LE(sizeof(kOriginalSps) + kHeaderOverhead, packet.FreeCapacity());
|
|
|
|
EXPECT_TRUE(packetizer_->NextPacket(&packet));
|
|
size_t offset = H264::kNaluTypeSize;
|
|
size_t length = packet.payload_size() - kFuAHeaderSize;
|
|
EXPECT_THAT(packet.payload().subview(kFuAHeaderSize),
|
|
ElementsAreArray(&kRewrittenSps[offset], length));
|
|
offset += length;
|
|
|
|
EXPECT_TRUE(packetizer_->NextPacket(&packet));
|
|
length = packet.payload_size() - kFuAHeaderSize;
|
|
EXPECT_THAT(packet.payload().subview(kFuAHeaderSize),
|
|
ElementsAreArray(&kRewrittenSps[offset], length));
|
|
offset += length;
|
|
|
|
EXPECT_EQ(offset, sizeof(kRewrittenSps));
|
|
}
|
|
|
|
TEST_F(RtpPacketizerH264TestSpsRewriting, StapASps) {
|
|
const size_t kHeaderOverhead = kFuAHeaderSize + 1;
|
|
const size_t kExpectedTotalSize = H264::kNaluTypeSize + // Stap-A type.
|
|
sizeof(kRewrittenSps) + sizeof(kIdrOne) +
|
|
sizeof(kIdrTwo) + (kLengthFieldLength * 3);
|
|
|
|
// Set size to include SPS and the rest of the packets in a Stap-A package.
|
|
packetizer_.reset(CreateH264Packetizer(H264PacketizationMode::NonInterleaved,
|
|
kExpectedTotalSize + kHeaderOverhead,
|
|
0));
|
|
|
|
packetizer_->SetPayloadData(in_buffer_.data(), in_buffer_.size(),
|
|
&fragmentation_header_);
|
|
|
|
RtpPacketToSend packet(kNoExtensions);
|
|
ASSERT_LE(kExpectedTotalSize + kHeaderOverhead, packet.FreeCapacity());
|
|
|
|
EXPECT_TRUE(packetizer_->NextPacket(&packet));
|
|
EXPECT_EQ(kExpectedTotalSize, packet.payload_size());
|
|
EXPECT_THAT(packet.payload().subview(H264::kNaluTypeSize + kLengthFieldLength,
|
|
sizeof(kRewrittenSps)),
|
|
ElementsAreArray(kRewrittenSps));
|
|
}
|
|
|
|
class RtpDepacketizerH264Test : public ::testing::Test {
|
|
protected:
|
|
RtpDepacketizerH264Test()
|
|
: depacketizer_(RtpDepacketizer::Create(kRtpVideoH264)) {}
|
|
|
|
void ExpectPacket(RtpDepacketizer::ParsedPayload* parsed_payload,
|
|
const uint8_t* data,
|
|
size_t length) {
|
|
ASSERT_TRUE(parsed_payload != NULL);
|
|
EXPECT_THAT(std::vector<uint8_t>(
|
|
parsed_payload->payload,
|
|
parsed_payload->payload + parsed_payload->payload_length),
|
|
::testing::ElementsAreArray(data, length));
|
|
}
|
|
|
|
std::unique_ptr<RtpDepacketizer> depacketizer_;
|
|
};
|
|
|
|
TEST_F(RtpDepacketizerH264Test, TestSingleNalu) {
|
|
uint8_t packet[2] = {0x05, 0xFF}; // F=0, NRI=0, Type=5 (IDR).
|
|
RtpDepacketizer::ParsedPayload payload;
|
|
|
|
ASSERT_TRUE(depacketizer_->Parse(&payload, packet, sizeof(packet)));
|
|
ExpectPacket(&payload, packet, sizeof(packet));
|
|
EXPECT_EQ(kVideoFrameKey, payload.frame_type);
|
|
EXPECT_EQ(kRtpVideoH264, payload.type.Video.codec);
|
|
EXPECT_TRUE(payload.type.Video.is_first_packet_in_frame);
|
|
EXPECT_EQ(kH264SingleNalu,
|
|
payload.type.Video.codecHeader.H264.packetization_type);
|
|
EXPECT_EQ(kIdr, payload.type.Video.codecHeader.H264.nalu_type);
|
|
}
|
|
|
|
TEST_F(RtpDepacketizerH264Test, TestSingleNaluSpsWithResolution) {
|
|
uint8_t packet[] = {kSps, 0x7A, 0x00, 0x1F, 0xBC, 0xD9, 0x40, 0x50,
|
|
0x05, 0xBA, 0x10, 0x00, 0x00, 0x03, 0x00, 0xC0,
|
|
0x00, 0x00, 0x03, 0x2A, 0xE0, 0xF1, 0x83, 0x25};
|
|
RtpDepacketizer::ParsedPayload payload;
|
|
|
|
ASSERT_TRUE(depacketizer_->Parse(&payload, packet, sizeof(packet)));
|
|
ExpectPacket(&payload, packet, sizeof(packet));
|
|
EXPECT_EQ(kVideoFrameKey, payload.frame_type);
|
|
EXPECT_EQ(kRtpVideoH264, payload.type.Video.codec);
|
|
EXPECT_TRUE(payload.type.Video.is_first_packet_in_frame);
|
|
EXPECT_EQ(kH264SingleNalu,
|
|
payload.type.Video.codecHeader.H264.packetization_type);
|
|
EXPECT_EQ(1280u, payload.type.Video.width);
|
|
EXPECT_EQ(720u, payload.type.Video.height);
|
|
}
|
|
|
|
TEST_F(RtpDepacketizerH264Test, TestStapAKey) {
|
|
// clang-format off
|
|
const NaluInfo kExpectedNalus[] = { {H264::kSps, 0, -1},
|
|
{H264::kPps, 1, 2},
|
|
{H264::kIdr, -1, 0} };
|
|
uint8_t packet[] = {kStapA, // F=0, NRI=0, Type=24.
|
|
// Length, nal header, payload.
|
|
0, 0x18, kExpectedNalus[0].type,
|
|
0x7A, 0x00, 0x1F, 0xBC, 0xD9, 0x40, 0x50, 0x05, 0xBA,
|
|
0x10, 0x00, 0x00, 0x03, 0x00, 0xC0, 0x00, 0x00, 0x03,
|
|
0x2A, 0xE0, 0xF1, 0x83, 0x25,
|
|
0, 0xD, kExpectedNalus[1].type,
|
|
0x69, 0xFC, 0x0, 0x0, 0x3, 0x0, 0x7, 0xFF, 0xFF, 0xFF,
|
|
0xF6, 0x40,
|
|
0, 0xB, kExpectedNalus[2].type,
|
|
0x85, 0xB8, 0x0, 0x4, 0x0, 0x0, 0x13, 0x93, 0x12, 0x0};
|
|
// clang-format on
|
|
|
|
RtpDepacketizer::ParsedPayload payload;
|
|
ASSERT_TRUE(depacketizer_->Parse(&payload, packet, sizeof(packet)));
|
|
ExpectPacket(&payload, packet, sizeof(packet));
|
|
EXPECT_EQ(kVideoFrameKey, payload.frame_type);
|
|
EXPECT_EQ(kRtpVideoH264, payload.type.Video.codec);
|
|
EXPECT_TRUE(payload.type.Video.is_first_packet_in_frame);
|
|
const RTPVideoHeaderH264& h264 = payload.type.Video.codecHeader.H264;
|
|
EXPECT_EQ(kH264StapA, h264.packetization_type);
|
|
// NALU type for aggregated packets is the type of the first packet only.
|
|
EXPECT_EQ(kSps, h264.nalu_type);
|
|
ASSERT_EQ(3u, h264.nalus_length);
|
|
for (size_t i = 0; i < h264.nalus_length; ++i) {
|
|
EXPECT_EQ(kExpectedNalus[i].type, h264.nalus[i].type)
|
|
<< "Failed parsing nalu " << i;
|
|
EXPECT_EQ(kExpectedNalus[i].sps_id, h264.nalus[i].sps_id)
|
|
<< "Failed parsing nalu " << i;
|
|
EXPECT_EQ(kExpectedNalus[i].pps_id, h264.nalus[i].pps_id)
|
|
<< "Failed parsing nalu " << i;
|
|
}
|
|
}
|
|
|
|
TEST_F(RtpDepacketizerH264Test, TestStapANaluSpsWithResolution) {
|
|
uint8_t packet[] = {kStapA, // F=0, NRI=0, Type=24.
|
|
// Length (2 bytes), nal header, payload.
|
|
0x00, 0x19, kSps, 0x7A, 0x00, 0x1F, 0xBC, 0xD9, 0x40,
|
|
0x50, 0x05, 0xBA, 0x10, 0x00, 0x00, 0x03, 0x00, 0xC0,
|
|
0x00, 0x00, 0x03, 0x2A, 0xE0, 0xF1, 0x83, 0x25, 0x80,
|
|
0x00, 0x03, kIdr, 0xFF, 0x00, 0x00, 0x04, kIdr, 0xFF,
|
|
0x00, 0x11};
|
|
|
|
RtpDepacketizer::ParsedPayload payload;
|
|
|
|
ASSERT_TRUE(depacketizer_->Parse(&payload, packet, sizeof(packet)));
|
|
ExpectPacket(&payload, packet, sizeof(packet));
|
|
EXPECT_EQ(kVideoFrameKey, payload.frame_type);
|
|
EXPECT_EQ(kRtpVideoH264, payload.type.Video.codec);
|
|
EXPECT_TRUE(payload.type.Video.is_first_packet_in_frame);
|
|
EXPECT_EQ(kH264StapA, payload.type.Video.codecHeader.H264.packetization_type);
|
|
EXPECT_EQ(1280u, payload.type.Video.width);
|
|
EXPECT_EQ(720u, payload.type.Video.height);
|
|
}
|
|
|
|
TEST_F(RtpDepacketizerH264Test, TestEmptyStapARejected) {
|
|
uint8_t lone_empty_packet[] = {kStapA, 0x00, 0x00};
|
|
|
|
uint8_t leading_empty_packet[] = {kStapA, 0x00, 0x00, 0x00, 0x04,
|
|
kIdr, 0xFF, 0x00, 0x11};
|
|
|
|
uint8_t middle_empty_packet[] = {kStapA, 0x00, 0x03, kIdr, 0xFF, 0x00, 0x00,
|
|
0x00, 0x00, 0x04, kIdr, 0xFF, 0x00, 0x11};
|
|
|
|
uint8_t trailing_empty_packet[] = {kStapA, 0x00, 0x03, kIdr,
|
|
0xFF, 0x00, 0x00, 0x00};
|
|
|
|
RtpDepacketizer::ParsedPayload payload;
|
|
|
|
EXPECT_FALSE(depacketizer_->Parse(&payload, lone_empty_packet,
|
|
sizeof(lone_empty_packet)));
|
|
EXPECT_FALSE(depacketizer_->Parse(&payload, leading_empty_packet,
|
|
sizeof(leading_empty_packet)));
|
|
EXPECT_FALSE(depacketizer_->Parse(&payload, middle_empty_packet,
|
|
sizeof(middle_empty_packet)));
|
|
EXPECT_FALSE(depacketizer_->Parse(&payload, trailing_empty_packet,
|
|
sizeof(trailing_empty_packet)));
|
|
}
|
|
|
|
TEST_F(RtpDepacketizerH264Test, DepacketizeWithRewriting) {
|
|
rtc::Buffer in_buffer;
|
|
rtc::Buffer out_buffer;
|
|
|
|
uint8_t kHeader[2] = {kStapA};
|
|
in_buffer.AppendData(kHeader, 1);
|
|
out_buffer.AppendData(kHeader, 1);
|
|
|
|
ByteWriter<uint16_t>::WriteBigEndian(kHeader, sizeof(kOriginalSps));
|
|
in_buffer.AppendData(kHeader, 2);
|
|
in_buffer.AppendData(kOriginalSps);
|
|
ByteWriter<uint16_t>::WriteBigEndian(kHeader, sizeof(kRewrittenSps));
|
|
out_buffer.AppendData(kHeader, 2);
|
|
out_buffer.AppendData(kRewrittenSps);
|
|
|
|
ByteWriter<uint16_t>::WriteBigEndian(kHeader, sizeof(kIdrOne));
|
|
in_buffer.AppendData(kHeader, 2);
|
|
in_buffer.AppendData(kIdrOne);
|
|
out_buffer.AppendData(kHeader, 2);
|
|
out_buffer.AppendData(kIdrOne);
|
|
|
|
ByteWriter<uint16_t>::WriteBigEndian(kHeader, sizeof(kIdrTwo));
|
|
in_buffer.AppendData(kHeader, 2);
|
|
in_buffer.AppendData(kIdrTwo);
|
|
out_buffer.AppendData(kHeader, 2);
|
|
out_buffer.AppendData(kIdrTwo);
|
|
|
|
RtpDepacketizer::ParsedPayload payload;
|
|
EXPECT_TRUE(
|
|
depacketizer_->Parse(&payload, in_buffer.data(), in_buffer.size()));
|
|
|
|
std::vector<uint8_t> expected_packet_payload(
|
|
out_buffer.data(), &out_buffer.data()[out_buffer.size()]);
|
|
|
|
EXPECT_THAT(
|
|
expected_packet_payload,
|
|
::testing::ElementsAreArray(payload.payload, payload.payload_length));
|
|
}
|
|
|
|
TEST_F(RtpDepacketizerH264Test, DepacketizeWithDoubleRewriting) {
|
|
rtc::Buffer in_buffer;
|
|
rtc::Buffer out_buffer;
|
|
|
|
uint8_t kHeader[2] = {kStapA};
|
|
in_buffer.AppendData(kHeader, 1);
|
|
out_buffer.AppendData(kHeader, 1);
|
|
|
|
// First SPS will be kept...
|
|
ByteWriter<uint16_t>::WriteBigEndian(kHeader, sizeof(kOriginalSps));
|
|
in_buffer.AppendData(kHeader, 2);
|
|
in_buffer.AppendData(kOriginalSps);
|
|
out_buffer.AppendData(kHeader, 2);
|
|
out_buffer.AppendData(kOriginalSps);
|
|
|
|
// ...only the second one will be rewritten.
|
|
ByteWriter<uint16_t>::WriteBigEndian(kHeader, sizeof(kOriginalSps));
|
|
in_buffer.AppendData(kHeader, 2);
|
|
in_buffer.AppendData(kOriginalSps);
|
|
ByteWriter<uint16_t>::WriteBigEndian(kHeader, sizeof(kRewrittenSps));
|
|
out_buffer.AppendData(kHeader, 2);
|
|
out_buffer.AppendData(kRewrittenSps);
|
|
|
|
ByteWriter<uint16_t>::WriteBigEndian(kHeader, sizeof(kIdrOne));
|
|
in_buffer.AppendData(kHeader, 2);
|
|
in_buffer.AppendData(kIdrOne);
|
|
out_buffer.AppendData(kHeader, 2);
|
|
out_buffer.AppendData(kIdrOne);
|
|
|
|
ByteWriter<uint16_t>::WriteBigEndian(kHeader, sizeof(kIdrTwo));
|
|
in_buffer.AppendData(kHeader, 2);
|
|
in_buffer.AppendData(kIdrTwo);
|
|
out_buffer.AppendData(kHeader, 2);
|
|
out_buffer.AppendData(kIdrTwo);
|
|
|
|
RtpDepacketizer::ParsedPayload payload;
|
|
EXPECT_TRUE(
|
|
depacketizer_->Parse(&payload, in_buffer.data(), in_buffer.size()));
|
|
|
|
std::vector<uint8_t> expected_packet_payload(
|
|
out_buffer.data(), &out_buffer.data()[out_buffer.size()]);
|
|
|
|
EXPECT_THAT(
|
|
expected_packet_payload,
|
|
::testing::ElementsAreArray(payload.payload, payload.payload_length));
|
|
}
|
|
|
|
TEST_F(RtpDepacketizerH264Test, TestStapADelta) {
|
|
uint8_t packet[16] = {kStapA, // F=0, NRI=0, Type=24.
|
|
// Length, nal header, payload.
|
|
0, 0x02, kSlice, 0xFF, 0, 0x03, kSlice, 0xFF,
|
|
0x00, 0, 0x04, kSlice, 0xFF, 0x00, 0x11};
|
|
RtpDepacketizer::ParsedPayload payload;
|
|
|
|
ASSERT_TRUE(depacketizer_->Parse(&payload, packet, sizeof(packet)));
|
|
ExpectPacket(&payload, packet, sizeof(packet));
|
|
EXPECT_EQ(kVideoFrameDelta, payload.frame_type);
|
|
EXPECT_EQ(kRtpVideoH264, payload.type.Video.codec);
|
|
EXPECT_TRUE(payload.type.Video.is_first_packet_in_frame);
|
|
EXPECT_EQ(kH264StapA, payload.type.Video.codecHeader.H264.packetization_type);
|
|
// NALU type for aggregated packets is the type of the first packet only.
|
|
EXPECT_EQ(kSlice, payload.type.Video.codecHeader.H264.nalu_type);
|
|
}
|
|
|
|
TEST_F(RtpDepacketizerH264Test, TestFuA) {
|
|
// clang-format off
|
|
uint8_t packet1[] = {
|
|
kFuA, // F=0, NRI=0, Type=28.
|
|
kSBit | kIdr, // FU header.
|
|
0x85, 0xB8, 0x0, 0x4, 0x0, 0x0, 0x13, 0x93, 0x12, 0x0 // Payload.
|
|
};
|
|
// clang-format on
|
|
const uint8_t kExpected1[] = {kIdr, 0x85, 0xB8, 0x0, 0x4, 0x0,
|
|
0x0, 0x13, 0x93, 0x12, 0x0};
|
|
|
|
uint8_t packet2[] = {
|
|
kFuA, // F=0, NRI=0, Type=28.
|
|
kIdr, // FU header.
|
|
0x02 // Payload.
|
|
};
|
|
const uint8_t kExpected2[] = {0x02};
|
|
|
|
uint8_t packet3[] = {
|
|
kFuA, // F=0, NRI=0, Type=28.
|
|
kEBit | kIdr, // FU header.
|
|
0x03 // Payload.
|
|
};
|
|
const uint8_t kExpected3[] = {0x03};
|
|
|
|
RtpDepacketizer::ParsedPayload payload;
|
|
|
|
// We expect that the first packet is one byte shorter since the FU-A header
|
|
// has been replaced by the original nal header.
|
|
ASSERT_TRUE(depacketizer_->Parse(&payload, packet1, sizeof(packet1)));
|
|
ExpectPacket(&payload, kExpected1, sizeof(kExpected1));
|
|
EXPECT_EQ(kVideoFrameKey, payload.frame_type);
|
|
EXPECT_EQ(kRtpVideoH264, payload.type.Video.codec);
|
|
EXPECT_TRUE(payload.type.Video.is_first_packet_in_frame);
|
|
const RTPVideoHeaderH264& h264 = payload.type.Video.codecHeader.H264;
|
|
EXPECT_EQ(kH264FuA, h264.packetization_type);
|
|
EXPECT_EQ(kIdr, h264.nalu_type);
|
|
ASSERT_EQ(1u, h264.nalus_length);
|
|
EXPECT_EQ(static_cast<H264::NaluType>(kIdr), h264.nalus[0].type);
|
|
EXPECT_EQ(-1, h264.nalus[0].sps_id);
|
|
EXPECT_EQ(0, h264.nalus[0].pps_id);
|
|
|
|
// Following packets will be 2 bytes shorter since they will only be appended
|
|
// onto the first packet.
|
|
payload = RtpDepacketizer::ParsedPayload();
|
|
ASSERT_TRUE(depacketizer_->Parse(&payload, packet2, sizeof(packet2)));
|
|
ExpectPacket(&payload, kExpected2, sizeof(kExpected2));
|
|
EXPECT_EQ(kVideoFrameKey, payload.frame_type);
|
|
EXPECT_EQ(kRtpVideoH264, payload.type.Video.codec);
|
|
EXPECT_FALSE(payload.type.Video.is_first_packet_in_frame);
|
|
{
|
|
const RTPVideoHeaderH264& h264 = payload.type.Video.codecHeader.H264;
|
|
EXPECT_EQ(kH264FuA, h264.packetization_type);
|
|
EXPECT_EQ(kIdr, h264.nalu_type);
|
|
// NALU info is only expected for the first FU-A packet.
|
|
EXPECT_EQ(0u, h264.nalus_length);
|
|
}
|
|
|
|
payload = RtpDepacketizer::ParsedPayload();
|
|
ASSERT_TRUE(depacketizer_->Parse(&payload, packet3, sizeof(packet3)));
|
|
ExpectPacket(&payload, kExpected3, sizeof(kExpected3));
|
|
EXPECT_EQ(kVideoFrameKey, payload.frame_type);
|
|
EXPECT_EQ(kRtpVideoH264, payload.type.Video.codec);
|
|
EXPECT_FALSE(payload.type.Video.is_first_packet_in_frame);
|
|
{
|
|
const RTPVideoHeaderH264& h264 = payload.type.Video.codecHeader.H264;
|
|
EXPECT_EQ(kH264FuA, h264.packetization_type);
|
|
EXPECT_EQ(kIdr, h264.nalu_type);
|
|
// NALU info is only expected for the first FU-A packet.
|
|
ASSERT_EQ(0u, h264.nalus_length);
|
|
}
|
|
}
|
|
|
|
TEST_F(RtpDepacketizerH264Test, TestEmptyPayload) {
|
|
// Using a wild pointer to crash on accesses from inside the depacketizer.
|
|
uint8_t* garbage_ptr = reinterpret_cast<uint8_t*>(0x4711);
|
|
RtpDepacketizer::ParsedPayload payload;
|
|
EXPECT_FALSE(depacketizer_->Parse(&payload, garbage_ptr, 0));
|
|
}
|
|
|
|
TEST_F(RtpDepacketizerH264Test, TestTruncatedFuaNalu) {
|
|
const uint8_t kPayload[] = {0x9c};
|
|
RtpDepacketizer::ParsedPayload payload;
|
|
EXPECT_FALSE(depacketizer_->Parse(&payload, kPayload, sizeof(kPayload)));
|
|
}
|
|
|
|
TEST_F(RtpDepacketizerH264Test, TestTruncatedSingleStapANalu) {
|
|
const uint8_t kPayload[] = {0xd8, 0x27};
|
|
RtpDepacketizer::ParsedPayload payload;
|
|
EXPECT_FALSE(depacketizer_->Parse(&payload, kPayload, sizeof(kPayload)));
|
|
}
|
|
|
|
TEST_F(RtpDepacketizerH264Test, TestStapAPacketWithTruncatedNalUnits) {
|
|
const uint8_t kPayload[] = { 0x58, 0xCB, 0xED, 0xDF};
|
|
RtpDepacketizer::ParsedPayload payload;
|
|
EXPECT_FALSE(depacketizer_->Parse(&payload, kPayload, sizeof(kPayload)));
|
|
}
|
|
|
|
TEST_F(RtpDepacketizerH264Test, TestTruncationJustAfterSingleStapANalu) {
|
|
const uint8_t kPayload[] = {0x38, 0x27, 0x27};
|
|
RtpDepacketizer::ParsedPayload payload;
|
|
EXPECT_FALSE(depacketizer_->Parse(&payload, kPayload, sizeof(kPayload)));
|
|
}
|
|
|
|
TEST_F(RtpDepacketizerH264Test, TestShortSpsPacket) {
|
|
const uint8_t kPayload[] = {0x27, 0x80, 0x00};
|
|
RtpDepacketizer::ParsedPayload payload;
|
|
EXPECT_TRUE(depacketizer_->Parse(&payload, kPayload, sizeof(kPayload)));
|
|
}
|
|
|
|
TEST_F(RtpDepacketizerH264Test, TestSeiPacket) {
|
|
const uint8_t kPayload[] = {
|
|
kSei, // F=0, NRI=0, Type=6.
|
|
0x03, 0x03, 0x03, 0x03 // Payload.
|
|
};
|
|
RtpDepacketizer::ParsedPayload payload;
|
|
ASSERT_TRUE(depacketizer_->Parse(&payload, kPayload, sizeof(kPayload)));
|
|
const RTPVideoHeaderH264& h264 = payload.type.Video.codecHeader.H264;
|
|
EXPECT_EQ(kVideoFrameDelta, payload.frame_type);
|
|
EXPECT_EQ(kH264SingleNalu, h264.packetization_type);
|
|
EXPECT_EQ(kSei, h264.nalu_type);
|
|
ASSERT_EQ(1u, h264.nalus_length);
|
|
EXPECT_EQ(static_cast<H264::NaluType>(kSei), h264.nalus[0].type);
|
|
EXPECT_EQ(-1, h264.nalus[0].sps_id);
|
|
EXPECT_EQ(-1, h264.nalus[0].pps_id);
|
|
}
|
|
|
|
} // namespace webrtc
|