mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-13 13:50:40 +01:00

This CL adds a new metric to NetEq, which logs whenever a loss concealment event has lasted longer than 150 ms (an "interruption"). The number of such events, as well as the sum length of them, is kept in a SampleCounter, which can be queried at any time. Any initial PLC at the beginning of a call, before the first packet is decoded, is ignored. Unit tests and piping to neteq_rtpplay are included. Bug: webrtc:10549 Change-Id: I8a224a34254c47c74317617f420f6de997232d88 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/132796 Reviewed-by: Minyue Li <minyue@webrtc.org> Commit-Queue: Henrik Lundin <henrik.lundin@webrtc.org> Cr-Commit-Position: refs/heads/master@{#27781}
1629 lines
62 KiB
C++
1629 lines
62 KiB
C++
/*
|
|
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include <memory>
|
|
|
|
#include "absl/memory/memory.h"
|
|
#include "api/audio_codecs/builtin_audio_decoder_factory.h"
|
|
#include "modules/audio_coding/neteq/accelerate.h"
|
|
#include "modules/audio_coding/neteq/expand.h"
|
|
#include "modules/audio_coding/neteq/histogram.h"
|
|
#include "modules/audio_coding/neteq/include/neteq.h"
|
|
#include "modules/audio_coding/neteq/mock/mock_buffer_level_filter.h"
|
|
#include "modules/audio_coding/neteq/mock/mock_decoder_database.h"
|
|
#include "modules/audio_coding/neteq/mock/mock_delay_manager.h"
|
|
#include "modules/audio_coding/neteq/mock/mock_delay_peak_detector.h"
|
|
#include "modules/audio_coding/neteq/mock/mock_dtmf_buffer.h"
|
|
#include "modules/audio_coding/neteq/mock/mock_dtmf_tone_generator.h"
|
|
#include "modules/audio_coding/neteq/mock/mock_packet_buffer.h"
|
|
#include "modules/audio_coding/neteq/mock/mock_red_payload_splitter.h"
|
|
#include "modules/audio_coding/neteq/neteq_impl.h"
|
|
#include "modules/audio_coding/neteq/preemptive_expand.h"
|
|
#include "modules/audio_coding/neteq/statistics_calculator.h"
|
|
#include "modules/audio_coding/neteq/sync_buffer.h"
|
|
#include "modules/audio_coding/neteq/timestamp_scaler.h"
|
|
#include "rtc_base/numerics/safe_conversions.h"
|
|
#include "test/audio_decoder_proxy_factory.h"
|
|
#include "test/function_audio_decoder_factory.h"
|
|
#include "test/gmock.h"
|
|
#include "test/gtest.h"
|
|
#include "test/mock_audio_decoder.h"
|
|
#include "test/mock_audio_decoder_factory.h"
|
|
|
|
using ::testing::_;
|
|
using ::testing::AtLeast;
|
|
using ::testing::DoAll;
|
|
using ::testing::InSequence;
|
|
using ::testing::Invoke;
|
|
using ::testing::IsNull;
|
|
using ::testing::Pointee;
|
|
using ::testing::Return;
|
|
using ::testing::ReturnNull;
|
|
using ::testing::SetArgPointee;
|
|
using ::testing::SetArrayArgument;
|
|
using ::testing::WithArg;
|
|
|
|
namespace webrtc {
|
|
|
|
// This function is called when inserting a packet list into the mock packet
|
|
// buffer. The purpose is to delete all inserted packets properly, to avoid
|
|
// memory leaks in the test.
|
|
int DeletePacketsAndReturnOk(PacketList* packet_list) {
|
|
packet_list->clear();
|
|
return PacketBuffer::kOK;
|
|
}
|
|
|
|
class NetEqImplTest : public ::testing::Test {
|
|
protected:
|
|
NetEqImplTest() { config_.sample_rate_hz = 8000; }
|
|
|
|
void CreateInstance(
|
|
const rtc::scoped_refptr<AudioDecoderFactory>& decoder_factory) {
|
|
ASSERT_TRUE(decoder_factory);
|
|
NetEqImpl::Dependencies deps(config_, decoder_factory);
|
|
|
|
// Get a local pointer to NetEq's TickTimer object.
|
|
tick_timer_ = deps.tick_timer.get();
|
|
|
|
if (use_mock_buffer_level_filter_) {
|
|
std::unique_ptr<MockBufferLevelFilter> mock(new MockBufferLevelFilter);
|
|
mock_buffer_level_filter_ = mock.get();
|
|
deps.buffer_level_filter = std::move(mock);
|
|
}
|
|
buffer_level_filter_ = deps.buffer_level_filter.get();
|
|
|
|
if (use_mock_decoder_database_) {
|
|
std::unique_ptr<MockDecoderDatabase> mock(new MockDecoderDatabase);
|
|
mock_decoder_database_ = mock.get();
|
|
EXPECT_CALL(*mock_decoder_database_, GetActiveCngDecoder())
|
|
.WillOnce(ReturnNull());
|
|
deps.decoder_database = std::move(mock);
|
|
}
|
|
decoder_database_ = deps.decoder_database.get();
|
|
|
|
if (use_mock_delay_peak_detector_) {
|
|
std::unique_ptr<MockDelayPeakDetector> mock(
|
|
new MockDelayPeakDetector(tick_timer_, config_.enable_rtx_handling));
|
|
mock_delay_peak_detector_ = mock.get();
|
|
EXPECT_CALL(*mock_delay_peak_detector_, Reset()).Times(1);
|
|
deps.delay_peak_detector = std::move(mock);
|
|
}
|
|
delay_peak_detector_ = deps.delay_peak_detector.get();
|
|
|
|
if (use_mock_delay_manager_) {
|
|
std::unique_ptr<MockDelayManager> mock(new MockDelayManager(
|
|
config_.max_packets_in_buffer, config_.min_delay_ms, 1020054733,
|
|
DelayManager::HistogramMode::INTER_ARRIVAL_TIME,
|
|
config_.enable_rtx_handling, delay_peak_detector_, tick_timer_,
|
|
deps.stats.get(), absl::make_unique<Histogram>(50, 32745)));
|
|
mock_delay_manager_ = mock.get();
|
|
EXPECT_CALL(*mock_delay_manager_, set_streaming_mode(false)).Times(1);
|
|
deps.delay_manager = std::move(mock);
|
|
}
|
|
delay_manager_ = deps.delay_manager.get();
|
|
|
|
if (use_mock_dtmf_buffer_) {
|
|
std::unique_ptr<MockDtmfBuffer> mock(
|
|
new MockDtmfBuffer(config_.sample_rate_hz));
|
|
mock_dtmf_buffer_ = mock.get();
|
|
deps.dtmf_buffer = std::move(mock);
|
|
}
|
|
dtmf_buffer_ = deps.dtmf_buffer.get();
|
|
|
|
if (use_mock_dtmf_tone_generator_) {
|
|
std::unique_ptr<MockDtmfToneGenerator> mock(new MockDtmfToneGenerator);
|
|
mock_dtmf_tone_generator_ = mock.get();
|
|
deps.dtmf_tone_generator = std::move(mock);
|
|
}
|
|
dtmf_tone_generator_ = deps.dtmf_tone_generator.get();
|
|
|
|
if (use_mock_packet_buffer_) {
|
|
std::unique_ptr<MockPacketBuffer> mock(
|
|
new MockPacketBuffer(config_.max_packets_in_buffer, tick_timer_));
|
|
mock_packet_buffer_ = mock.get();
|
|
deps.packet_buffer = std::move(mock);
|
|
}
|
|
packet_buffer_ = deps.packet_buffer.get();
|
|
|
|
if (use_mock_payload_splitter_) {
|
|
std::unique_ptr<MockRedPayloadSplitter> mock(new MockRedPayloadSplitter);
|
|
mock_payload_splitter_ = mock.get();
|
|
deps.red_payload_splitter = std::move(mock);
|
|
}
|
|
red_payload_splitter_ = deps.red_payload_splitter.get();
|
|
|
|
deps.timestamp_scaler = std::unique_ptr<TimestampScaler>(
|
|
new TimestampScaler(*deps.decoder_database.get()));
|
|
|
|
neteq_.reset(new NetEqImpl(config_, std::move(deps)));
|
|
ASSERT_TRUE(neteq_ != NULL);
|
|
}
|
|
|
|
void CreateInstance() { CreateInstance(CreateBuiltinAudioDecoderFactory()); }
|
|
|
|
void UseNoMocks() {
|
|
ASSERT_TRUE(neteq_ == NULL) << "Must call UseNoMocks before CreateInstance";
|
|
use_mock_buffer_level_filter_ = false;
|
|
use_mock_decoder_database_ = false;
|
|
use_mock_delay_peak_detector_ = false;
|
|
use_mock_delay_manager_ = false;
|
|
use_mock_dtmf_buffer_ = false;
|
|
use_mock_dtmf_tone_generator_ = false;
|
|
use_mock_packet_buffer_ = false;
|
|
use_mock_payload_splitter_ = false;
|
|
}
|
|
|
|
virtual ~NetEqImplTest() {
|
|
if (use_mock_buffer_level_filter_) {
|
|
EXPECT_CALL(*mock_buffer_level_filter_, Die()).Times(1);
|
|
}
|
|
if (use_mock_decoder_database_) {
|
|
EXPECT_CALL(*mock_decoder_database_, Die()).Times(1);
|
|
}
|
|
if (use_mock_delay_manager_) {
|
|
EXPECT_CALL(*mock_delay_manager_, Die()).Times(1);
|
|
}
|
|
if (use_mock_delay_peak_detector_) {
|
|
EXPECT_CALL(*mock_delay_peak_detector_, Die()).Times(1);
|
|
}
|
|
if (use_mock_dtmf_buffer_) {
|
|
EXPECT_CALL(*mock_dtmf_buffer_, Die()).Times(1);
|
|
}
|
|
if (use_mock_dtmf_tone_generator_) {
|
|
EXPECT_CALL(*mock_dtmf_tone_generator_, Die()).Times(1);
|
|
}
|
|
if (use_mock_packet_buffer_) {
|
|
EXPECT_CALL(*mock_packet_buffer_, Die()).Times(1);
|
|
}
|
|
}
|
|
|
|
void TestDtmfPacket(int sample_rate_hz) {
|
|
const size_t kPayloadLength = 4;
|
|
const uint8_t kPayloadType = 110;
|
|
const uint32_t kReceiveTime = 17;
|
|
const int kSampleRateHz = 16000;
|
|
config_.sample_rate_hz = kSampleRateHz;
|
|
UseNoMocks();
|
|
CreateInstance();
|
|
// Event: 2, E bit, Volume: 17, Length: 4336.
|
|
uint8_t payload[kPayloadLength] = { 0x02, 0x80 + 0x11, 0x10, 0xF0 };
|
|
RTPHeader rtp_header;
|
|
rtp_header.payloadType = kPayloadType;
|
|
rtp_header.sequenceNumber = 0x1234;
|
|
rtp_header.timestamp = 0x12345678;
|
|
rtp_header.ssrc = 0x87654321;
|
|
|
|
EXPECT_TRUE(neteq_->RegisterPayloadType(
|
|
kPayloadType, SdpAudioFormat("telephone-event", sample_rate_hz, 1)));
|
|
|
|
// Insert first packet.
|
|
EXPECT_EQ(NetEq::kOK,
|
|
neteq_->InsertPacket(rtp_header, payload, kReceiveTime));
|
|
|
|
// Pull audio once.
|
|
const size_t kMaxOutputSize =
|
|
static_cast<size_t>(10 * kSampleRateHz / 1000);
|
|
AudioFrame output;
|
|
bool muted;
|
|
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted));
|
|
ASSERT_FALSE(muted);
|
|
ASSERT_EQ(kMaxOutputSize, output.samples_per_channel_);
|
|
EXPECT_EQ(1u, output.num_channels_);
|
|
EXPECT_EQ(AudioFrame::kNormalSpeech, output.speech_type_);
|
|
|
|
// Verify first 64 samples of actual output.
|
|
const std::vector<int16_t> kOutput({
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1578, -2816, -3460, -3403, -2709, -1594,
|
|
-363, 671, 1269, 1328, 908, 202, -513, -964, -955, -431, 504, 1617,
|
|
2602, 3164, 3101, 2364, 1073, -511, -2047, -3198, -3721, -3525, -2688,
|
|
-1440, -99, 1015, 1663, 1744, 1319, 588, -171, -680, -747, -315, 515,
|
|
1512, 2378, 2828, 2674, 1877, 568, -986, -2446, -3482, -3864, -3516,
|
|
-2534, -1163 });
|
|
ASSERT_GE(kMaxOutputSize, kOutput.size());
|
|
EXPECT_TRUE(std::equal(kOutput.begin(), kOutput.end(), output.data()));
|
|
}
|
|
|
|
std::unique_ptr<NetEqImpl> neteq_;
|
|
NetEq::Config config_;
|
|
TickTimer* tick_timer_ = nullptr;
|
|
MockBufferLevelFilter* mock_buffer_level_filter_ = nullptr;
|
|
BufferLevelFilter* buffer_level_filter_ = nullptr;
|
|
bool use_mock_buffer_level_filter_ = true;
|
|
MockDecoderDatabase* mock_decoder_database_ = nullptr;
|
|
DecoderDatabase* decoder_database_ = nullptr;
|
|
bool use_mock_decoder_database_ = true;
|
|
MockDelayPeakDetector* mock_delay_peak_detector_ = nullptr;
|
|
DelayPeakDetector* delay_peak_detector_ = nullptr;
|
|
bool use_mock_delay_peak_detector_ = true;
|
|
MockDelayManager* mock_delay_manager_ = nullptr;
|
|
DelayManager* delay_manager_ = nullptr;
|
|
bool use_mock_delay_manager_ = true;
|
|
MockDtmfBuffer* mock_dtmf_buffer_ = nullptr;
|
|
DtmfBuffer* dtmf_buffer_ = nullptr;
|
|
bool use_mock_dtmf_buffer_ = true;
|
|
MockDtmfToneGenerator* mock_dtmf_tone_generator_ = nullptr;
|
|
DtmfToneGenerator* dtmf_tone_generator_ = nullptr;
|
|
bool use_mock_dtmf_tone_generator_ = true;
|
|
MockPacketBuffer* mock_packet_buffer_ = nullptr;
|
|
PacketBuffer* packet_buffer_ = nullptr;
|
|
bool use_mock_packet_buffer_ = true;
|
|
MockRedPayloadSplitter* mock_payload_splitter_ = nullptr;
|
|
RedPayloadSplitter* red_payload_splitter_ = nullptr;
|
|
bool use_mock_payload_splitter_ = true;
|
|
};
|
|
|
|
|
|
// This tests the interface class NetEq.
|
|
// TODO(hlundin): Move to separate file?
|
|
TEST(NetEq, CreateAndDestroy) {
|
|
NetEq::Config config;
|
|
NetEq* neteq = NetEq::Create(config, CreateBuiltinAudioDecoderFactory());
|
|
delete neteq;
|
|
}
|
|
|
|
TEST_F(NetEqImplTest, RegisterPayloadType) {
|
|
CreateInstance();
|
|
constexpr int rtp_payload_type = 0;
|
|
const SdpAudioFormat format("pcmu", 8000, 1);
|
|
EXPECT_CALL(*mock_decoder_database_,
|
|
RegisterPayload(rtp_payload_type, format));
|
|
neteq_->RegisterPayloadType(rtp_payload_type, format);
|
|
}
|
|
|
|
TEST_F(NetEqImplTest, RemovePayloadType) {
|
|
CreateInstance();
|
|
uint8_t rtp_payload_type = 0;
|
|
EXPECT_CALL(*mock_decoder_database_, Remove(rtp_payload_type))
|
|
.WillOnce(Return(DecoderDatabase::kDecoderNotFound));
|
|
// Check that kOK is returned when database returns kDecoderNotFound, because
|
|
// removing a payload type that was never registered is not an error.
|
|
EXPECT_EQ(NetEq::kOK, neteq_->RemovePayloadType(rtp_payload_type));
|
|
}
|
|
|
|
TEST_F(NetEqImplTest, RemoveAllPayloadTypes) {
|
|
CreateInstance();
|
|
EXPECT_CALL(*mock_decoder_database_, RemoveAll()).WillOnce(Return());
|
|
neteq_->RemoveAllPayloadTypes();
|
|
}
|
|
|
|
TEST_F(NetEqImplTest, InsertPacket) {
|
|
CreateInstance();
|
|
const size_t kPayloadLength = 100;
|
|
const uint8_t kPayloadType = 0;
|
|
const uint16_t kFirstSequenceNumber = 0x1234;
|
|
const uint32_t kFirstTimestamp = 0x12345678;
|
|
const uint32_t kSsrc = 0x87654321;
|
|
const uint32_t kFirstReceiveTime = 17;
|
|
uint8_t payload[kPayloadLength] = {0};
|
|
RTPHeader rtp_header;
|
|
rtp_header.payloadType = kPayloadType;
|
|
rtp_header.sequenceNumber = kFirstSequenceNumber;
|
|
rtp_header.timestamp = kFirstTimestamp;
|
|
rtp_header.ssrc = kSsrc;
|
|
Packet fake_packet;
|
|
fake_packet.payload_type = kPayloadType;
|
|
fake_packet.sequence_number = kFirstSequenceNumber;
|
|
fake_packet.timestamp = kFirstTimestamp;
|
|
|
|
rtc::scoped_refptr<MockAudioDecoderFactory> mock_decoder_factory(
|
|
new rtc::RefCountedObject<MockAudioDecoderFactory>);
|
|
EXPECT_CALL(*mock_decoder_factory, MakeAudioDecoderMock(_, _, _))
|
|
.WillOnce(Invoke([&](const SdpAudioFormat& format,
|
|
absl::optional<AudioCodecPairId> codec_pair_id,
|
|
std::unique_ptr<AudioDecoder>* dec) {
|
|
EXPECT_EQ("pcmu", format.name);
|
|
|
|
std::unique_ptr<MockAudioDecoder> mock_decoder(new MockAudioDecoder);
|
|
EXPECT_CALL(*mock_decoder, Channels()).WillRepeatedly(Return(1));
|
|
EXPECT_CALL(*mock_decoder, SampleRateHz()).WillRepeatedly(Return(8000));
|
|
// BWE update function called with first packet.
|
|
EXPECT_CALL(*mock_decoder,
|
|
IncomingPacket(_, kPayloadLength, kFirstSequenceNumber,
|
|
kFirstTimestamp, kFirstReceiveTime));
|
|
// BWE update function called with second packet.
|
|
EXPECT_CALL(
|
|
*mock_decoder,
|
|
IncomingPacket(_, kPayloadLength, kFirstSequenceNumber + 1,
|
|
kFirstTimestamp + 160, kFirstReceiveTime + 155));
|
|
EXPECT_CALL(*mock_decoder, Die()).Times(1); // Called when deleted.
|
|
|
|
*dec = std::move(mock_decoder);
|
|
}));
|
|
DecoderDatabase::DecoderInfo info(SdpAudioFormat("pcmu", 8000, 1),
|
|
absl::nullopt, mock_decoder_factory);
|
|
|
|
// Expectations for decoder database.
|
|
EXPECT_CALL(*mock_decoder_database_, GetDecoderInfo(kPayloadType))
|
|
.WillRepeatedly(Return(&info));
|
|
|
|
// Expectations for packet buffer.
|
|
EXPECT_CALL(*mock_packet_buffer_, Empty())
|
|
.WillOnce(Return(false)); // Called once after first packet is inserted.
|
|
EXPECT_CALL(*mock_packet_buffer_, Flush())
|
|
.Times(1);
|
|
EXPECT_CALL(*mock_packet_buffer_, InsertPacketList(_, _, _, _, _))
|
|
.Times(2)
|
|
.WillRepeatedly(DoAll(SetArgPointee<2>(kPayloadType),
|
|
WithArg<0>(Invoke(DeletePacketsAndReturnOk))));
|
|
// SetArgPointee<2>(kPayloadType) means that the third argument (zero-based
|
|
// index) is a pointer, and the variable pointed to is set to kPayloadType.
|
|
// Also invoke the function DeletePacketsAndReturnOk to properly delete all
|
|
// packets in the list (to avoid memory leaks in the test).
|
|
EXPECT_CALL(*mock_packet_buffer_, PeekNextPacket())
|
|
.Times(1)
|
|
.WillOnce(Return(&fake_packet));
|
|
|
|
// Expectations for DTMF buffer.
|
|
EXPECT_CALL(*mock_dtmf_buffer_, Flush())
|
|
.Times(1);
|
|
|
|
// Expectations for delay manager.
|
|
{
|
|
// All expectations within this block must be called in this specific order.
|
|
InSequence sequence; // Dummy variable.
|
|
// Expectations when the first packet is inserted.
|
|
EXPECT_CALL(*mock_delay_manager_, last_pack_cng_or_dtmf())
|
|
.Times(2)
|
|
.WillRepeatedly(Return(-1));
|
|
EXPECT_CALL(*mock_delay_manager_, set_last_pack_cng_or_dtmf(0))
|
|
.Times(1);
|
|
EXPECT_CALL(*mock_delay_manager_, ResetPacketIatCount()).Times(1);
|
|
// Expectations when the second packet is inserted. Slightly different.
|
|
EXPECT_CALL(*mock_delay_manager_, last_pack_cng_or_dtmf())
|
|
.WillOnce(Return(0));
|
|
EXPECT_CALL(*mock_delay_manager_, SetPacketAudioLength(30))
|
|
.WillOnce(Return(0));
|
|
}
|
|
|
|
// Insert first packet.
|
|
neteq_->InsertPacket(rtp_header, payload, kFirstReceiveTime);
|
|
|
|
// Insert second packet.
|
|
rtp_header.timestamp += 160;
|
|
rtp_header.sequenceNumber += 1;
|
|
neteq_->InsertPacket(rtp_header, payload, kFirstReceiveTime + 155);
|
|
}
|
|
|
|
TEST_F(NetEqImplTest, InsertPacketsUntilBufferIsFull) {
|
|
UseNoMocks();
|
|
CreateInstance();
|
|
|
|
const int kPayloadLengthSamples = 80;
|
|
const size_t kPayloadLengthBytes = 2 * kPayloadLengthSamples; // PCM 16-bit.
|
|
const uint8_t kPayloadType = 17; // Just an arbitrary number.
|
|
const uint32_t kReceiveTime = 17; // Value doesn't matter for this test.
|
|
uint8_t payload[kPayloadLengthBytes] = {0};
|
|
RTPHeader rtp_header;
|
|
rtp_header.payloadType = kPayloadType;
|
|
rtp_header.sequenceNumber = 0x1234;
|
|
rtp_header.timestamp = 0x12345678;
|
|
rtp_header.ssrc = 0x87654321;
|
|
|
|
EXPECT_TRUE(neteq_->RegisterPayloadType(kPayloadType,
|
|
SdpAudioFormat("l16", 8000, 1)));
|
|
|
|
// Insert packets. The buffer should not flush.
|
|
for (size_t i = 1; i <= config_.max_packets_in_buffer; ++i) {
|
|
EXPECT_EQ(NetEq::kOK,
|
|
neteq_->InsertPacket(rtp_header, payload, kReceiveTime));
|
|
rtp_header.timestamp += kPayloadLengthSamples;
|
|
rtp_header.sequenceNumber += 1;
|
|
EXPECT_EQ(i, packet_buffer_->NumPacketsInBuffer());
|
|
}
|
|
|
|
// Insert one more packet and make sure the buffer got flushed. That is, it
|
|
// should only hold one single packet.
|
|
EXPECT_EQ(NetEq::kOK,
|
|
neteq_->InsertPacket(rtp_header, payload, kReceiveTime));
|
|
EXPECT_EQ(1u, packet_buffer_->NumPacketsInBuffer());
|
|
const Packet* test_packet = packet_buffer_->PeekNextPacket();
|
|
EXPECT_EQ(rtp_header.timestamp, test_packet->timestamp);
|
|
EXPECT_EQ(rtp_header.sequenceNumber, test_packet->sequence_number);
|
|
}
|
|
|
|
TEST_F(NetEqImplTest, TestDtmfPacketAVT) {
|
|
TestDtmfPacket(8000);
|
|
}
|
|
|
|
TEST_F(NetEqImplTest, TestDtmfPacketAVT16kHz) {
|
|
TestDtmfPacket(16000);
|
|
}
|
|
|
|
TEST_F(NetEqImplTest, TestDtmfPacketAVT32kHz) {
|
|
TestDtmfPacket(32000);
|
|
}
|
|
|
|
TEST_F(NetEqImplTest, TestDtmfPacketAVT48kHz) {
|
|
TestDtmfPacket(48000);
|
|
}
|
|
|
|
// This test verifies that timestamps propagate from the incoming packets
|
|
// through to the sync buffer and to the playout timestamp.
|
|
TEST_F(NetEqImplTest, VerifyTimestampPropagation) {
|
|
const uint8_t kPayloadType = 17; // Just an arbitrary number.
|
|
const uint32_t kReceiveTime = 17; // Value doesn't matter for this test.
|
|
const int kSampleRateHz = 8000;
|
|
const size_t kPayloadLengthSamples =
|
|
static_cast<size_t>(10 * kSampleRateHz / 1000); // 10 ms.
|
|
const size_t kPayloadLengthBytes = kPayloadLengthSamples;
|
|
uint8_t payload[kPayloadLengthBytes] = {0};
|
|
RTPHeader rtp_header;
|
|
rtp_header.payloadType = kPayloadType;
|
|
rtp_header.sequenceNumber = 0x1234;
|
|
rtp_header.timestamp = 0x12345678;
|
|
rtp_header.ssrc = 0x87654321;
|
|
|
|
// This is a dummy decoder that produces as many output samples as the input
|
|
// has bytes. The output is an increasing series, starting at 1 for the first
|
|
// sample, and then increasing by 1 for each sample.
|
|
class CountingSamplesDecoder : public AudioDecoder {
|
|
public:
|
|
CountingSamplesDecoder() : next_value_(1) {}
|
|
|
|
// Produce as many samples as input bytes (|encoded_len|).
|
|
int DecodeInternal(const uint8_t* encoded,
|
|
size_t encoded_len,
|
|
int /* sample_rate_hz */,
|
|
int16_t* decoded,
|
|
SpeechType* speech_type) override {
|
|
for (size_t i = 0; i < encoded_len; ++i) {
|
|
decoded[i] = next_value_++;
|
|
}
|
|
*speech_type = kSpeech;
|
|
return rtc::checked_cast<int>(encoded_len);
|
|
}
|
|
|
|
void Reset() override { next_value_ = 1; }
|
|
|
|
int SampleRateHz() const override { return kSampleRateHz; }
|
|
|
|
size_t Channels() const override { return 1; }
|
|
|
|
uint16_t next_value() const { return next_value_; }
|
|
|
|
private:
|
|
int16_t next_value_;
|
|
} decoder_;
|
|
|
|
rtc::scoped_refptr<AudioDecoderFactory> decoder_factory =
|
|
new rtc::RefCountedObject<test::AudioDecoderProxyFactory>(&decoder_);
|
|
|
|
UseNoMocks();
|
|
CreateInstance(decoder_factory);
|
|
|
|
EXPECT_TRUE(neteq_->RegisterPayloadType(kPayloadType,
|
|
SdpAudioFormat("L16", 8000, 1)));
|
|
|
|
// Insert one packet.
|
|
EXPECT_EQ(NetEq::kOK,
|
|
neteq_->InsertPacket(rtp_header, payload, kReceiveTime));
|
|
|
|
// Pull audio once.
|
|
const size_t kMaxOutputSize = static_cast<size_t>(10 * kSampleRateHz / 1000);
|
|
AudioFrame output;
|
|
bool muted;
|
|
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted));
|
|
ASSERT_FALSE(muted);
|
|
ASSERT_EQ(kMaxOutputSize, output.samples_per_channel_);
|
|
EXPECT_EQ(1u, output.num_channels_);
|
|
EXPECT_EQ(AudioFrame::kNormalSpeech, output.speech_type_);
|
|
|
|
// Start with a simple check that the fake decoder is behaving as expected.
|
|
EXPECT_EQ(kPayloadLengthSamples,
|
|
static_cast<size_t>(decoder_.next_value() - 1));
|
|
|
|
// The value of the last of the output samples is the same as the number of
|
|
// samples played from the decoded packet. Thus, this number + the RTP
|
|
// timestamp should match the playout timestamp.
|
|
// Wrap the expected value in an absl::optional to compare them as such.
|
|
EXPECT_EQ(
|
|
absl::optional<uint32_t>(rtp_header.timestamp +
|
|
output.data()[output.samples_per_channel_ - 1]),
|
|
neteq_->GetPlayoutTimestamp());
|
|
|
|
// Check the timestamp for the last value in the sync buffer. This should
|
|
// be one full frame length ahead of the RTP timestamp.
|
|
const SyncBuffer* sync_buffer = neteq_->sync_buffer_for_test();
|
|
ASSERT_TRUE(sync_buffer != NULL);
|
|
EXPECT_EQ(rtp_header.timestamp + kPayloadLengthSamples,
|
|
sync_buffer->end_timestamp());
|
|
|
|
// Check that the number of samples still to play from the sync buffer add
|
|
// up with what was already played out.
|
|
EXPECT_EQ(
|
|
kPayloadLengthSamples - output.data()[output.samples_per_channel_ - 1],
|
|
sync_buffer->FutureLength());
|
|
}
|
|
|
|
TEST_F(NetEqImplTest, ReorderedPacket) {
|
|
UseNoMocks();
|
|
// Create a mock decoder object.
|
|
MockAudioDecoder mock_decoder;
|
|
|
|
CreateInstance(
|
|
new rtc::RefCountedObject<test::AudioDecoderProxyFactory>(&mock_decoder));
|
|
|
|
const uint8_t kPayloadType = 17; // Just an arbitrary number.
|
|
const uint32_t kReceiveTime = 17; // Value doesn't matter for this test.
|
|
const int kSampleRateHz = 8000;
|
|
const size_t kPayloadLengthSamples =
|
|
static_cast<size_t>(10 * kSampleRateHz / 1000); // 10 ms.
|
|
const size_t kPayloadLengthBytes = kPayloadLengthSamples;
|
|
uint8_t payload[kPayloadLengthBytes] = {0};
|
|
RTPHeader rtp_header;
|
|
rtp_header.payloadType = kPayloadType;
|
|
rtp_header.sequenceNumber = 0x1234;
|
|
rtp_header.timestamp = 0x12345678;
|
|
rtp_header.ssrc = 0x87654321;
|
|
|
|
EXPECT_CALL(mock_decoder, Reset()).WillRepeatedly(Return());
|
|
EXPECT_CALL(mock_decoder, SampleRateHz())
|
|
.WillRepeatedly(Return(kSampleRateHz));
|
|
EXPECT_CALL(mock_decoder, Channels()).WillRepeatedly(Return(1));
|
|
EXPECT_CALL(mock_decoder, IncomingPacket(_, kPayloadLengthBytes, _, _, _))
|
|
.WillRepeatedly(Return(0));
|
|
EXPECT_CALL(mock_decoder, PacketDuration(_, kPayloadLengthBytes))
|
|
.WillRepeatedly(Return(rtc::checked_cast<int>(kPayloadLengthSamples)));
|
|
int16_t dummy_output[kPayloadLengthSamples] = {0};
|
|
// The below expectation will make the mock decoder write
|
|
// |kPayloadLengthSamples| zeros to the output array, and mark it as speech.
|
|
EXPECT_CALL(mock_decoder, DecodeInternal(Pointee(0), kPayloadLengthBytes,
|
|
kSampleRateHz, _, _))
|
|
.WillOnce(DoAll(SetArrayArgument<3>(dummy_output,
|
|
dummy_output + kPayloadLengthSamples),
|
|
SetArgPointee<4>(AudioDecoder::kSpeech),
|
|
Return(rtc::checked_cast<int>(kPayloadLengthSamples))));
|
|
EXPECT_TRUE(neteq_->RegisterPayloadType(kPayloadType,
|
|
SdpAudioFormat("L16", 8000, 1)));
|
|
|
|
// Insert one packet.
|
|
EXPECT_EQ(NetEq::kOK,
|
|
neteq_->InsertPacket(rtp_header, payload, kReceiveTime));
|
|
|
|
// Pull audio once.
|
|
const size_t kMaxOutputSize = static_cast<size_t>(10 * kSampleRateHz / 1000);
|
|
AudioFrame output;
|
|
bool muted;
|
|
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted));
|
|
ASSERT_EQ(kMaxOutputSize, output.samples_per_channel_);
|
|
EXPECT_EQ(1u, output.num_channels_);
|
|
EXPECT_EQ(AudioFrame::kNormalSpeech, output.speech_type_);
|
|
|
|
// Insert two more packets. The first one is out of order, and is already too
|
|
// old, the second one is the expected next packet.
|
|
rtp_header.sequenceNumber -= 1;
|
|
rtp_header.timestamp -= kPayloadLengthSamples;
|
|
payload[0] = 1;
|
|
EXPECT_EQ(NetEq::kOK,
|
|
neteq_->InsertPacket(rtp_header, payload, kReceiveTime));
|
|
rtp_header.sequenceNumber += 2;
|
|
rtp_header.timestamp += 2 * kPayloadLengthSamples;
|
|
payload[0] = 2;
|
|
EXPECT_EQ(NetEq::kOK,
|
|
neteq_->InsertPacket(rtp_header, payload, kReceiveTime));
|
|
|
|
// Expect only the second packet to be decoded (the one with "2" as the first
|
|
// payload byte).
|
|
EXPECT_CALL(mock_decoder, DecodeInternal(Pointee(2), kPayloadLengthBytes,
|
|
kSampleRateHz, _, _))
|
|
.WillOnce(DoAll(SetArrayArgument<3>(dummy_output,
|
|
dummy_output + kPayloadLengthSamples),
|
|
SetArgPointee<4>(AudioDecoder::kSpeech),
|
|
Return(rtc::checked_cast<int>(kPayloadLengthSamples))));
|
|
|
|
// Pull audio once.
|
|
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted));
|
|
ASSERT_EQ(kMaxOutputSize, output.samples_per_channel_);
|
|
EXPECT_EQ(1u, output.num_channels_);
|
|
EXPECT_EQ(AudioFrame::kNormalSpeech, output.speech_type_);
|
|
|
|
// Now check the packet buffer, and make sure it is empty, since the
|
|
// out-of-order packet should have been discarded.
|
|
EXPECT_TRUE(packet_buffer_->Empty());
|
|
|
|
EXPECT_CALL(mock_decoder, Die());
|
|
}
|
|
|
|
// This test verifies that NetEq can handle the situation where the first
|
|
// incoming packet is rejected.
|
|
TEST_F(NetEqImplTest, FirstPacketUnknown) {
|
|
UseNoMocks();
|
|
CreateInstance();
|
|
|
|
const uint8_t kPayloadType = 17; // Just an arbitrary number.
|
|
const uint32_t kReceiveTime = 17; // Value doesn't matter for this test.
|
|
const int kSampleRateHz = 8000;
|
|
const size_t kPayloadLengthSamples =
|
|
static_cast<size_t>(10 * kSampleRateHz / 1000); // 10 ms.
|
|
const size_t kPayloadLengthBytes = kPayloadLengthSamples * 2;
|
|
uint8_t payload[kPayloadLengthBytes] = {0};
|
|
RTPHeader rtp_header;
|
|
rtp_header.payloadType = kPayloadType;
|
|
rtp_header.sequenceNumber = 0x1234;
|
|
rtp_header.timestamp = 0x12345678;
|
|
rtp_header.ssrc = 0x87654321;
|
|
|
|
// Insert one packet. Note that we have not registered any payload type, so
|
|
// this packet will be rejected.
|
|
EXPECT_EQ(NetEq::kFail,
|
|
neteq_->InsertPacket(rtp_header, payload, kReceiveTime));
|
|
|
|
// Pull audio once.
|
|
const size_t kMaxOutputSize = static_cast<size_t>(10 * kSampleRateHz / 1000);
|
|
AudioFrame output;
|
|
bool muted;
|
|
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted));
|
|
ASSERT_LE(output.samples_per_channel_, kMaxOutputSize);
|
|
EXPECT_EQ(kMaxOutputSize, output.samples_per_channel_);
|
|
EXPECT_EQ(1u, output.num_channels_);
|
|
EXPECT_EQ(AudioFrame::kPLC, output.speech_type_);
|
|
|
|
// Register the payload type.
|
|
EXPECT_TRUE(neteq_->RegisterPayloadType(kPayloadType,
|
|
SdpAudioFormat("l16", 8000, 1)));
|
|
|
|
// Insert 10 packets.
|
|
for (size_t i = 0; i < 10; ++i) {
|
|
rtp_header.sequenceNumber++;
|
|
rtp_header.timestamp += kPayloadLengthSamples;
|
|
EXPECT_EQ(NetEq::kOK,
|
|
neteq_->InsertPacket(rtp_header, payload, kReceiveTime));
|
|
EXPECT_EQ(i + 1, packet_buffer_->NumPacketsInBuffer());
|
|
}
|
|
|
|
// Pull audio repeatedly and make sure we get normal output, that is not PLC.
|
|
for (size_t i = 0; i < 3; ++i) {
|
|
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted));
|
|
ASSERT_LE(output.samples_per_channel_, kMaxOutputSize);
|
|
EXPECT_EQ(kMaxOutputSize, output.samples_per_channel_);
|
|
EXPECT_EQ(1u, output.num_channels_);
|
|
EXPECT_EQ(AudioFrame::kNormalSpeech, output.speech_type_)
|
|
<< "NetEq did not decode the packets as expected.";
|
|
}
|
|
}
|
|
|
|
// This test verifies that audio interruption is not logged for the initial
|
|
// PLC period before the first packet is deocoded.
|
|
// TODO(henrik.lundin) Maybe move this test to neteq_network_stats_unittest.cc.
|
|
TEST_F(NetEqImplTest, NoAudioInterruptionLoggedBeforeFirstDecode) {
|
|
UseNoMocks();
|
|
CreateInstance();
|
|
|
|
const uint8_t kPayloadType = 17; // Just an arbitrary number.
|
|
const uint32_t kReceiveTime = 17; // Value doesn't matter for this test.
|
|
const int kSampleRateHz = 8000;
|
|
const size_t kPayloadLengthSamples =
|
|
static_cast<size_t>(10 * kSampleRateHz / 1000); // 10 ms.
|
|
const size_t kPayloadLengthBytes = kPayloadLengthSamples * 2;
|
|
uint8_t payload[kPayloadLengthBytes] = {0};
|
|
RTPHeader rtp_header;
|
|
rtp_header.payloadType = kPayloadType;
|
|
rtp_header.sequenceNumber = 0x1234;
|
|
rtp_header.timestamp = 0x12345678;
|
|
rtp_header.ssrc = 0x87654321;
|
|
|
|
// Register the payload type.
|
|
EXPECT_TRUE(neteq_->RegisterPayloadType(kPayloadType,
|
|
SdpAudioFormat("l16", 8000, 1)));
|
|
|
|
// Pull audio several times. No packets have been inserted yet.
|
|
const size_t kMaxOutputSize = static_cast<size_t>(10 * kSampleRateHz / 1000);
|
|
AudioFrame output;
|
|
bool muted;
|
|
for (int i = 0; i < 100; ++i) {
|
|
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted));
|
|
ASSERT_LE(output.samples_per_channel_, kMaxOutputSize);
|
|
EXPECT_EQ(kMaxOutputSize, output.samples_per_channel_);
|
|
EXPECT_EQ(1u, output.num_channels_);
|
|
EXPECT_NE(AudioFrame::kNormalSpeech, output.speech_type_);
|
|
}
|
|
|
|
// Insert 10 packets.
|
|
for (size_t i = 0; i < 10; ++i) {
|
|
rtp_header.sequenceNumber++;
|
|
rtp_header.timestamp += kPayloadLengthSamples;
|
|
EXPECT_EQ(NetEq::kOK,
|
|
neteq_->InsertPacket(rtp_header, payload, kReceiveTime));
|
|
EXPECT_EQ(i + 1, packet_buffer_->NumPacketsInBuffer());
|
|
}
|
|
|
|
// Pull audio repeatedly and make sure we get normal output, that is not PLC.
|
|
for (size_t i = 0; i < 3; ++i) {
|
|
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted));
|
|
ASSERT_LE(output.samples_per_channel_, kMaxOutputSize);
|
|
EXPECT_EQ(kMaxOutputSize, output.samples_per_channel_);
|
|
EXPECT_EQ(1u, output.num_channels_);
|
|
EXPECT_EQ(AudioFrame::kNormalSpeech, output.speech_type_)
|
|
<< "NetEq did not decode the packets as expected.";
|
|
}
|
|
|
|
auto lifetime_stats = neteq_->GetLifetimeStatistics();
|
|
EXPECT_EQ(0u, lifetime_stats.interruption_count);
|
|
}
|
|
|
|
// This test verifies that NetEq can handle comfort noise and enters/quits codec
|
|
// internal CNG mode properly.
|
|
TEST_F(NetEqImplTest, CodecInternalCng) {
|
|
UseNoMocks();
|
|
// Create a mock decoder object.
|
|
MockAudioDecoder mock_decoder;
|
|
CreateInstance(
|
|
new rtc::RefCountedObject<test::AudioDecoderProxyFactory>(&mock_decoder));
|
|
|
|
const uint8_t kPayloadType = 17; // Just an arbitrary number.
|
|
const uint32_t kReceiveTime = 17; // Value doesn't matter for this test.
|
|
const int kSampleRateKhz = 48;
|
|
const size_t kPayloadLengthSamples =
|
|
static_cast<size_t>(20 * kSampleRateKhz); // 20 ms.
|
|
const size_t kPayloadLengthBytes = 10;
|
|
uint8_t payload[kPayloadLengthBytes] = {0};
|
|
int16_t dummy_output[kPayloadLengthSamples] = {0};
|
|
|
|
RTPHeader rtp_header;
|
|
rtp_header.payloadType = kPayloadType;
|
|
rtp_header.sequenceNumber = 0x1234;
|
|
rtp_header.timestamp = 0x12345678;
|
|
rtp_header.ssrc = 0x87654321;
|
|
|
|
EXPECT_CALL(mock_decoder, Reset()).WillRepeatedly(Return());
|
|
EXPECT_CALL(mock_decoder, SampleRateHz())
|
|
.WillRepeatedly(Return(kSampleRateKhz * 1000));
|
|
EXPECT_CALL(mock_decoder, Channels()).WillRepeatedly(Return(1));
|
|
EXPECT_CALL(mock_decoder, IncomingPacket(_, kPayloadLengthBytes, _, _, _))
|
|
.WillRepeatedly(Return(0));
|
|
EXPECT_CALL(mock_decoder, PacketDuration(_, kPayloadLengthBytes))
|
|
.WillRepeatedly(Return(rtc::checked_cast<int>(kPayloadLengthSamples)));
|
|
// Packed duration when asking the decoder for more CNG data (without a new
|
|
// packet).
|
|
EXPECT_CALL(mock_decoder, PacketDuration(nullptr, 0))
|
|
.WillRepeatedly(Return(rtc::checked_cast<int>(kPayloadLengthSamples)));
|
|
|
|
// Pointee(x) verifies that first byte of the payload equals x, this makes it
|
|
// possible to verify that the correct payload is fed to Decode().
|
|
EXPECT_CALL(mock_decoder, DecodeInternal(Pointee(0), kPayloadLengthBytes,
|
|
kSampleRateKhz * 1000, _, _))
|
|
.WillOnce(DoAll(SetArrayArgument<3>(dummy_output,
|
|
dummy_output + kPayloadLengthSamples),
|
|
SetArgPointee<4>(AudioDecoder::kSpeech),
|
|
Return(rtc::checked_cast<int>(kPayloadLengthSamples))));
|
|
|
|
EXPECT_CALL(mock_decoder, DecodeInternal(Pointee(1), kPayloadLengthBytes,
|
|
kSampleRateKhz * 1000, _, _))
|
|
.WillOnce(DoAll(SetArrayArgument<3>(dummy_output,
|
|
dummy_output + kPayloadLengthSamples),
|
|
SetArgPointee<4>(AudioDecoder::kComfortNoise),
|
|
Return(rtc::checked_cast<int>(kPayloadLengthSamples))));
|
|
|
|
EXPECT_CALL(mock_decoder,
|
|
DecodeInternal(IsNull(), 0, kSampleRateKhz * 1000, _, _))
|
|
.WillOnce(DoAll(SetArrayArgument<3>(dummy_output,
|
|
dummy_output + kPayloadLengthSamples),
|
|
SetArgPointee<4>(AudioDecoder::kComfortNoise),
|
|
Return(rtc::checked_cast<int>(kPayloadLengthSamples))));
|
|
|
|
EXPECT_CALL(mock_decoder, DecodeInternal(Pointee(2), kPayloadLengthBytes,
|
|
kSampleRateKhz * 1000, _, _))
|
|
.WillOnce(DoAll(SetArrayArgument<3>(dummy_output,
|
|
dummy_output + kPayloadLengthSamples),
|
|
SetArgPointee<4>(AudioDecoder::kSpeech),
|
|
Return(rtc::checked_cast<int>(kPayloadLengthSamples))));
|
|
|
|
EXPECT_TRUE(neteq_->RegisterPayloadType(kPayloadType,
|
|
SdpAudioFormat("opus", 48000, 2)));
|
|
|
|
// Insert one packet (decoder will return speech).
|
|
EXPECT_EQ(NetEq::kOK,
|
|
neteq_->InsertPacket(rtp_header, payload, kReceiveTime));
|
|
|
|
// Insert second packet (decoder will return CNG).
|
|
payload[0] = 1;
|
|
rtp_header.sequenceNumber++;
|
|
rtp_header.timestamp += kPayloadLengthSamples;
|
|
EXPECT_EQ(NetEq::kOK,
|
|
neteq_->InsertPacket(rtp_header, payload, kReceiveTime));
|
|
|
|
const size_t kMaxOutputSize = static_cast<size_t>(10 * kSampleRateKhz);
|
|
AudioFrame output;
|
|
AudioFrame::SpeechType expected_type[8] = {
|
|
AudioFrame::kNormalSpeech, AudioFrame::kNormalSpeech,
|
|
AudioFrame::kCNG, AudioFrame::kCNG,
|
|
AudioFrame::kCNG, AudioFrame::kCNG,
|
|
AudioFrame::kNormalSpeech, AudioFrame::kNormalSpeech
|
|
};
|
|
int expected_timestamp_increment[8] = {
|
|
-1, // will not be used.
|
|
10 * kSampleRateKhz,
|
|
-1, -1, // timestamp will be empty during CNG mode; indicated by -1 here.
|
|
-1, -1,
|
|
50 * kSampleRateKhz, 10 * kSampleRateKhz
|
|
};
|
|
|
|
bool muted;
|
|
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted));
|
|
absl::optional<uint32_t> last_timestamp = neteq_->GetPlayoutTimestamp();
|
|
ASSERT_TRUE(last_timestamp);
|
|
|
|
// Lambda for verifying the timestamps.
|
|
auto verify_timestamp = [&last_timestamp, &expected_timestamp_increment](
|
|
absl::optional<uint32_t> ts, size_t i) {
|
|
if (expected_timestamp_increment[i] == -1) {
|
|
// Expect to get an empty timestamp value during CNG and PLC.
|
|
EXPECT_FALSE(ts) << "i = " << i;
|
|
} else {
|
|
ASSERT_TRUE(ts) << "i = " << i;
|
|
EXPECT_EQ(*ts, *last_timestamp + expected_timestamp_increment[i])
|
|
<< "i = " << i;
|
|
last_timestamp = ts;
|
|
}
|
|
};
|
|
|
|
for (size_t i = 1; i < 6; ++i) {
|
|
ASSERT_EQ(kMaxOutputSize, output.samples_per_channel_);
|
|
EXPECT_EQ(1u, output.num_channels_);
|
|
EXPECT_EQ(expected_type[i - 1], output.speech_type_);
|
|
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted));
|
|
SCOPED_TRACE("");
|
|
verify_timestamp(neteq_->GetPlayoutTimestamp(), i);
|
|
}
|
|
|
|
// Insert third packet, which leaves a gap from last packet.
|
|
payload[0] = 2;
|
|
rtp_header.sequenceNumber += 2;
|
|
rtp_header.timestamp += 2 * kPayloadLengthSamples;
|
|
EXPECT_EQ(NetEq::kOK,
|
|
neteq_->InsertPacket(rtp_header, payload, kReceiveTime));
|
|
|
|
for (size_t i = 6; i < 8; ++i) {
|
|
ASSERT_EQ(kMaxOutputSize, output.samples_per_channel_);
|
|
EXPECT_EQ(1u, output.num_channels_);
|
|
EXPECT_EQ(expected_type[i - 1], output.speech_type_);
|
|
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted));
|
|
SCOPED_TRACE("");
|
|
verify_timestamp(neteq_->GetPlayoutTimestamp(), i);
|
|
}
|
|
|
|
// Now check the packet buffer, and make sure it is empty.
|
|
EXPECT_TRUE(packet_buffer_->Empty());
|
|
|
|
EXPECT_CALL(mock_decoder, Die());
|
|
}
|
|
|
|
TEST_F(NetEqImplTest, UnsupportedDecoder) {
|
|
UseNoMocks();
|
|
::testing::NiceMock<MockAudioDecoder> decoder;
|
|
|
|
CreateInstance(
|
|
new rtc::RefCountedObject<test::AudioDecoderProxyFactory>(&decoder));
|
|
static const size_t kNetEqMaxFrameSize = 5760; // 120 ms @ 48 kHz.
|
|
static const size_t kChannels = 2;
|
|
|
|
const uint8_t kPayloadType = 17; // Just an arbitrary number.
|
|
const uint32_t kReceiveTime = 17; // Value doesn't matter for this test.
|
|
const int kSampleRateHz = 8000;
|
|
|
|
const size_t kPayloadLengthSamples =
|
|
static_cast<size_t>(10 * kSampleRateHz / 1000); // 10 ms.
|
|
const size_t kPayloadLengthBytes = 1;
|
|
uint8_t payload[kPayloadLengthBytes] = {0};
|
|
int16_t dummy_output[kPayloadLengthSamples * kChannels] = {0};
|
|
RTPHeader rtp_header;
|
|
rtp_header.payloadType = kPayloadType;
|
|
rtp_header.sequenceNumber = 0x1234;
|
|
rtp_header.timestamp = 0x12345678;
|
|
rtp_header.ssrc = 0x87654321;
|
|
|
|
const uint8_t kFirstPayloadValue = 1;
|
|
const uint8_t kSecondPayloadValue = 2;
|
|
|
|
EXPECT_CALL(decoder,
|
|
PacketDuration(Pointee(kFirstPayloadValue), kPayloadLengthBytes))
|
|
.Times(AtLeast(1))
|
|
.WillRepeatedly(Return(rtc::checked_cast<int>(kNetEqMaxFrameSize + 1)));
|
|
|
|
EXPECT_CALL(decoder, DecodeInternal(Pointee(kFirstPayloadValue), _, _, _, _))
|
|
.Times(0);
|
|
|
|
EXPECT_CALL(decoder, DecodeInternal(Pointee(kSecondPayloadValue),
|
|
kPayloadLengthBytes, kSampleRateHz, _, _))
|
|
.Times(1)
|
|
.WillOnce(DoAll(
|
|
SetArrayArgument<3>(dummy_output,
|
|
dummy_output + kPayloadLengthSamples * kChannels),
|
|
SetArgPointee<4>(AudioDecoder::kSpeech),
|
|
Return(static_cast<int>(kPayloadLengthSamples * kChannels))));
|
|
|
|
EXPECT_CALL(decoder,
|
|
PacketDuration(Pointee(kSecondPayloadValue), kPayloadLengthBytes))
|
|
.Times(AtLeast(1))
|
|
.WillRepeatedly(Return(rtc::checked_cast<int>(kNetEqMaxFrameSize)));
|
|
|
|
EXPECT_CALL(decoder, SampleRateHz())
|
|
.WillRepeatedly(Return(kSampleRateHz));
|
|
|
|
EXPECT_CALL(decoder, Channels())
|
|
.WillRepeatedly(Return(kChannels));
|
|
|
|
EXPECT_TRUE(neteq_->RegisterPayloadType(kPayloadType,
|
|
SdpAudioFormat("L16", 8000, 1)));
|
|
|
|
// Insert one packet.
|
|
payload[0] = kFirstPayloadValue; // This will make Decode() fail.
|
|
EXPECT_EQ(NetEq::kOK,
|
|
neteq_->InsertPacket(rtp_header, payload, kReceiveTime));
|
|
|
|
// Insert another packet.
|
|
payload[0] = kSecondPayloadValue; // This will make Decode() successful.
|
|
rtp_header.sequenceNumber++;
|
|
// The second timestamp needs to be at least 30 ms after the first to make
|
|
// the second packet get decoded.
|
|
rtp_header.timestamp += 3 * kPayloadLengthSamples;
|
|
EXPECT_EQ(NetEq::kOK,
|
|
neteq_->InsertPacket(rtp_header, payload, kReceiveTime));
|
|
|
|
AudioFrame output;
|
|
bool muted;
|
|
// First call to GetAudio will try to decode the "faulty" packet.
|
|
// Expect kFail return value.
|
|
EXPECT_EQ(NetEq::kFail, neteq_->GetAudio(&output, &muted));
|
|
// Output size and number of channels should be correct.
|
|
const size_t kExpectedOutputSize = 10 * (kSampleRateHz / 1000) * kChannels;
|
|
EXPECT_EQ(kExpectedOutputSize, output.samples_per_channel_ * kChannels);
|
|
EXPECT_EQ(kChannels, output.num_channels_);
|
|
|
|
// Second call to GetAudio will decode the packet that is ok. No errors are
|
|
// expected.
|
|
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted));
|
|
EXPECT_EQ(kExpectedOutputSize, output.samples_per_channel_ * kChannels);
|
|
EXPECT_EQ(kChannels, output.num_channels_);
|
|
|
|
// Die isn't called through NiceMock (since it's called by the
|
|
// MockAudioDecoder constructor), so it needs to be mocked explicitly.
|
|
EXPECT_CALL(decoder, Die());
|
|
}
|
|
|
|
// This test inserts packets until the buffer is flushed. After that, it asks
|
|
// NetEq for the network statistics. The purpose of the test is to make sure
|
|
// that even though the buffer size increment is negative (which it becomes when
|
|
// the packet causing a flush is inserted), the packet length stored in the
|
|
// decision logic remains valid.
|
|
TEST_F(NetEqImplTest, FloodBufferAndGetNetworkStats) {
|
|
UseNoMocks();
|
|
CreateInstance();
|
|
|
|
const size_t kPayloadLengthSamples = 80;
|
|
const size_t kPayloadLengthBytes = 2 * kPayloadLengthSamples; // PCM 16-bit.
|
|
const uint8_t kPayloadType = 17; // Just an arbitrary number.
|
|
const uint32_t kReceiveTime = 17; // Value doesn't matter for this test.
|
|
uint8_t payload[kPayloadLengthBytes] = {0};
|
|
RTPHeader rtp_header;
|
|
rtp_header.payloadType = kPayloadType;
|
|
rtp_header.sequenceNumber = 0x1234;
|
|
rtp_header.timestamp = 0x12345678;
|
|
rtp_header.ssrc = 0x87654321;
|
|
|
|
EXPECT_TRUE(neteq_->RegisterPayloadType(kPayloadType,
|
|
SdpAudioFormat("l16", 8000, 1)));
|
|
|
|
// Insert packets until the buffer flushes.
|
|
for (size_t i = 0; i <= config_.max_packets_in_buffer; ++i) {
|
|
EXPECT_EQ(i, packet_buffer_->NumPacketsInBuffer());
|
|
EXPECT_EQ(NetEq::kOK,
|
|
neteq_->InsertPacket(rtp_header, payload, kReceiveTime));
|
|
rtp_header.timestamp += rtc::checked_cast<uint32_t>(kPayloadLengthSamples);
|
|
++rtp_header.sequenceNumber;
|
|
}
|
|
EXPECT_EQ(1u, packet_buffer_->NumPacketsInBuffer());
|
|
|
|
// Ask for network statistics. This should not crash.
|
|
NetEqNetworkStatistics stats;
|
|
EXPECT_EQ(NetEq::kOK, neteq_->NetworkStatistics(&stats));
|
|
}
|
|
|
|
TEST_F(NetEqImplTest, DecodedPayloadTooShort) {
|
|
UseNoMocks();
|
|
// Create a mock decoder object.
|
|
MockAudioDecoder mock_decoder;
|
|
|
|
CreateInstance(
|
|
new rtc::RefCountedObject<test::AudioDecoderProxyFactory>(&mock_decoder));
|
|
|
|
const uint8_t kPayloadType = 17; // Just an arbitrary number.
|
|
const uint32_t kReceiveTime = 17; // Value doesn't matter for this test.
|
|
const int kSampleRateHz = 8000;
|
|
const size_t kPayloadLengthSamples =
|
|
static_cast<size_t>(10 * kSampleRateHz / 1000); // 10 ms.
|
|
const size_t kPayloadLengthBytes = 2 * kPayloadLengthSamples;
|
|
uint8_t payload[kPayloadLengthBytes] = {0};
|
|
RTPHeader rtp_header;
|
|
rtp_header.payloadType = kPayloadType;
|
|
rtp_header.sequenceNumber = 0x1234;
|
|
rtp_header.timestamp = 0x12345678;
|
|
rtp_header.ssrc = 0x87654321;
|
|
|
|
EXPECT_CALL(mock_decoder, Reset()).WillRepeatedly(Return());
|
|
EXPECT_CALL(mock_decoder, SampleRateHz())
|
|
.WillRepeatedly(Return(kSampleRateHz));
|
|
EXPECT_CALL(mock_decoder, Channels()).WillRepeatedly(Return(1));
|
|
EXPECT_CALL(mock_decoder, IncomingPacket(_, kPayloadLengthBytes, _, _, _))
|
|
.WillRepeatedly(Return(0));
|
|
EXPECT_CALL(mock_decoder, PacketDuration(_, _))
|
|
.WillRepeatedly(Return(rtc::checked_cast<int>(kPayloadLengthSamples)));
|
|
int16_t dummy_output[kPayloadLengthSamples] = {0};
|
|
// The below expectation will make the mock decoder write
|
|
// |kPayloadLengthSamples| - 5 zeros to the output array, and mark it as
|
|
// speech. That is, the decoded length is 5 samples shorter than the expected.
|
|
EXPECT_CALL(mock_decoder,
|
|
DecodeInternal(_, kPayloadLengthBytes, kSampleRateHz, _, _))
|
|
.WillOnce(
|
|
DoAll(SetArrayArgument<3>(dummy_output,
|
|
dummy_output + kPayloadLengthSamples - 5),
|
|
SetArgPointee<4>(AudioDecoder::kSpeech),
|
|
Return(rtc::checked_cast<int>(kPayloadLengthSamples - 5))));
|
|
EXPECT_TRUE(neteq_->RegisterPayloadType(kPayloadType,
|
|
SdpAudioFormat("L16", 8000, 1)));
|
|
|
|
// Insert one packet.
|
|
EXPECT_EQ(NetEq::kOK,
|
|
neteq_->InsertPacket(rtp_header, payload, kReceiveTime));
|
|
|
|
EXPECT_EQ(5u, neteq_->sync_buffer_for_test()->FutureLength());
|
|
|
|
// Pull audio once.
|
|
const size_t kMaxOutputSize = static_cast<size_t>(10 * kSampleRateHz / 1000);
|
|
AudioFrame output;
|
|
bool muted;
|
|
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted));
|
|
ASSERT_EQ(kMaxOutputSize, output.samples_per_channel_);
|
|
EXPECT_EQ(1u, output.num_channels_);
|
|
EXPECT_EQ(AudioFrame::kNormalSpeech, output.speech_type_);
|
|
|
|
EXPECT_CALL(mock_decoder, Die());
|
|
}
|
|
|
|
// This test checks the behavior of NetEq when audio decoder fails.
|
|
TEST_F(NetEqImplTest, DecodingError) {
|
|
UseNoMocks();
|
|
// Create a mock decoder object.
|
|
MockAudioDecoder mock_decoder;
|
|
|
|
CreateInstance(
|
|
new rtc::RefCountedObject<test::AudioDecoderProxyFactory>(&mock_decoder));
|
|
|
|
const uint8_t kPayloadType = 17; // Just an arbitrary number.
|
|
const uint32_t kReceiveTime = 17; // Value doesn't matter for this test.
|
|
const int kSampleRateHz = 8000;
|
|
const int kDecoderErrorCode = -97; // Any negative number.
|
|
|
|
// We let decoder return 5 ms each time, and therefore, 2 packets make 10 ms.
|
|
const size_t kFrameLengthSamples =
|
|
static_cast<size_t>(5 * kSampleRateHz / 1000);
|
|
|
|
const size_t kPayloadLengthBytes = 1; // This can be arbitrary.
|
|
|
|
uint8_t payload[kPayloadLengthBytes] = {0};
|
|
|
|
RTPHeader rtp_header;
|
|
rtp_header.payloadType = kPayloadType;
|
|
rtp_header.sequenceNumber = 0x1234;
|
|
rtp_header.timestamp = 0x12345678;
|
|
rtp_header.ssrc = 0x87654321;
|
|
|
|
EXPECT_CALL(mock_decoder, Reset()).WillRepeatedly(Return());
|
|
EXPECT_CALL(mock_decoder, SampleRateHz())
|
|
.WillRepeatedly(Return(kSampleRateHz));
|
|
EXPECT_CALL(mock_decoder, Channels()).WillRepeatedly(Return(1));
|
|
EXPECT_CALL(mock_decoder, IncomingPacket(_, kPayloadLengthBytes, _, _, _))
|
|
.WillRepeatedly(Return(0));
|
|
EXPECT_CALL(mock_decoder, PacketDuration(_, _))
|
|
.WillRepeatedly(Return(rtc::checked_cast<int>(kFrameLengthSamples)));
|
|
EXPECT_CALL(mock_decoder, ErrorCode())
|
|
.WillOnce(Return(kDecoderErrorCode));
|
|
EXPECT_CALL(mock_decoder, HasDecodePlc())
|
|
.WillOnce(Return(false));
|
|
int16_t dummy_output[kFrameLengthSamples] = {0};
|
|
|
|
{
|
|
InSequence sequence; // Dummy variable.
|
|
// Mock decoder works normally the first time.
|
|
EXPECT_CALL(mock_decoder,
|
|
DecodeInternal(_, kPayloadLengthBytes, kSampleRateHz, _, _))
|
|
.Times(3)
|
|
.WillRepeatedly(
|
|
DoAll(SetArrayArgument<3>(dummy_output,
|
|
dummy_output + kFrameLengthSamples),
|
|
SetArgPointee<4>(AudioDecoder::kSpeech),
|
|
Return(rtc::checked_cast<int>(kFrameLengthSamples))))
|
|
.RetiresOnSaturation();
|
|
|
|
// Then mock decoder fails. A common reason for failure can be buffer being
|
|
// too short
|
|
EXPECT_CALL(mock_decoder,
|
|
DecodeInternal(_, kPayloadLengthBytes, kSampleRateHz, _, _))
|
|
.WillOnce(Return(-1))
|
|
.RetiresOnSaturation();
|
|
|
|
// Mock decoder finally returns to normal.
|
|
EXPECT_CALL(mock_decoder,
|
|
DecodeInternal(_, kPayloadLengthBytes, kSampleRateHz, _, _))
|
|
.Times(2)
|
|
.WillRepeatedly(
|
|
DoAll(SetArrayArgument<3>(dummy_output,
|
|
dummy_output + kFrameLengthSamples),
|
|
SetArgPointee<4>(AudioDecoder::kSpeech),
|
|
Return(rtc::checked_cast<int>(kFrameLengthSamples))));
|
|
}
|
|
|
|
EXPECT_TRUE(neteq_->RegisterPayloadType(kPayloadType,
|
|
SdpAudioFormat("L16", 8000, 1)));
|
|
|
|
// Insert packets.
|
|
for (int i = 0; i < 6; ++i) {
|
|
rtp_header.sequenceNumber += 1;
|
|
rtp_header.timestamp += kFrameLengthSamples;
|
|
EXPECT_EQ(NetEq::kOK,
|
|
neteq_->InsertPacket(rtp_header, payload, kReceiveTime));
|
|
}
|
|
|
|
// Pull audio.
|
|
const size_t kMaxOutputSize = static_cast<size_t>(10 * kSampleRateHz / 1000);
|
|
AudioFrame output;
|
|
bool muted;
|
|
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted));
|
|
EXPECT_EQ(kMaxOutputSize, output.samples_per_channel_);
|
|
EXPECT_EQ(1u, output.num_channels_);
|
|
EXPECT_EQ(AudioFrame::kNormalSpeech, output.speech_type_);
|
|
|
|
// Pull audio again. Decoder fails.
|
|
EXPECT_EQ(NetEq::kFail, neteq_->GetAudio(&output, &muted));
|
|
EXPECT_EQ(kMaxOutputSize, output.samples_per_channel_);
|
|
EXPECT_EQ(1u, output.num_channels_);
|
|
// We are not expecting anything for output.speech_type_, since an error was
|
|
// returned.
|
|
|
|
// Pull audio again, should continue an expansion.
|
|
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted));
|
|
EXPECT_EQ(kMaxOutputSize, output.samples_per_channel_);
|
|
EXPECT_EQ(1u, output.num_channels_);
|
|
EXPECT_EQ(AudioFrame::kPLC, output.speech_type_);
|
|
|
|
// Pull audio again, should behave normal.
|
|
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted));
|
|
EXPECT_EQ(kMaxOutputSize, output.samples_per_channel_);
|
|
EXPECT_EQ(1u, output.num_channels_);
|
|
EXPECT_EQ(AudioFrame::kNormalSpeech, output.speech_type_);
|
|
|
|
EXPECT_CALL(mock_decoder, Die());
|
|
}
|
|
|
|
// This test checks the behavior of NetEq when audio decoder fails during CNG.
|
|
TEST_F(NetEqImplTest, DecodingErrorDuringInternalCng) {
|
|
UseNoMocks();
|
|
|
|
// Create a mock decoder object.
|
|
MockAudioDecoder mock_decoder;
|
|
CreateInstance(
|
|
new rtc::RefCountedObject<test::AudioDecoderProxyFactory>(&mock_decoder));
|
|
|
|
const uint8_t kPayloadType = 17; // Just an arbitrary number.
|
|
const uint32_t kReceiveTime = 17; // Value doesn't matter for this test.
|
|
const int kSampleRateHz = 8000;
|
|
const int kDecoderErrorCode = -97; // Any negative number.
|
|
|
|
// We let decoder return 5 ms each time, and therefore, 2 packets make 10 ms.
|
|
const size_t kFrameLengthSamples =
|
|
static_cast<size_t>(5 * kSampleRateHz / 1000);
|
|
|
|
const size_t kPayloadLengthBytes = 1; // This can be arbitrary.
|
|
|
|
uint8_t payload[kPayloadLengthBytes] = {0};
|
|
|
|
RTPHeader rtp_header;
|
|
rtp_header.payloadType = kPayloadType;
|
|
rtp_header.sequenceNumber = 0x1234;
|
|
rtp_header.timestamp = 0x12345678;
|
|
rtp_header.ssrc = 0x87654321;
|
|
|
|
EXPECT_CALL(mock_decoder, Reset()).WillRepeatedly(Return());
|
|
EXPECT_CALL(mock_decoder, SampleRateHz())
|
|
.WillRepeatedly(Return(kSampleRateHz));
|
|
EXPECT_CALL(mock_decoder, Channels()).WillRepeatedly(Return(1));
|
|
EXPECT_CALL(mock_decoder, IncomingPacket(_, kPayloadLengthBytes, _, _, _))
|
|
.WillRepeatedly(Return(0));
|
|
EXPECT_CALL(mock_decoder, PacketDuration(_, _))
|
|
.WillRepeatedly(Return(rtc::checked_cast<int>(kFrameLengthSamples)));
|
|
EXPECT_CALL(mock_decoder, ErrorCode())
|
|
.WillOnce(Return(kDecoderErrorCode));
|
|
int16_t dummy_output[kFrameLengthSamples] = {0};
|
|
|
|
{
|
|
InSequence sequence; // Dummy variable.
|
|
// Mock decoder works normally the first 2 times.
|
|
EXPECT_CALL(mock_decoder,
|
|
DecodeInternal(_, kPayloadLengthBytes, kSampleRateHz, _, _))
|
|
.Times(2)
|
|
.WillRepeatedly(
|
|
DoAll(SetArrayArgument<3>(dummy_output,
|
|
dummy_output + kFrameLengthSamples),
|
|
SetArgPointee<4>(AudioDecoder::kComfortNoise),
|
|
Return(rtc::checked_cast<int>(kFrameLengthSamples))))
|
|
.RetiresOnSaturation();
|
|
|
|
// Then mock decoder fails. A common reason for failure can be buffer being
|
|
// too short
|
|
EXPECT_CALL(mock_decoder, DecodeInternal(nullptr, 0, kSampleRateHz, _, _))
|
|
.WillOnce(Return(-1))
|
|
.RetiresOnSaturation();
|
|
|
|
// Mock decoder finally returns to normal.
|
|
EXPECT_CALL(mock_decoder, DecodeInternal(nullptr, 0, kSampleRateHz, _, _))
|
|
.Times(2)
|
|
.WillRepeatedly(
|
|
DoAll(SetArrayArgument<3>(dummy_output,
|
|
dummy_output + kFrameLengthSamples),
|
|
SetArgPointee<4>(AudioDecoder::kComfortNoise),
|
|
Return(rtc::checked_cast<int>(kFrameLengthSamples))));
|
|
}
|
|
|
|
EXPECT_TRUE(neteq_->RegisterPayloadType(kPayloadType,
|
|
SdpAudioFormat("l16", 8000, 1)));
|
|
|
|
// Insert 2 packets. This will make netEq into codec internal CNG mode.
|
|
for (int i = 0; i < 2; ++i) {
|
|
rtp_header.sequenceNumber += 1;
|
|
rtp_header.timestamp += kFrameLengthSamples;
|
|
EXPECT_EQ(NetEq::kOK,
|
|
neteq_->InsertPacket(rtp_header, payload, kReceiveTime));
|
|
}
|
|
|
|
// Pull audio.
|
|
const size_t kMaxOutputSize = static_cast<size_t>(10 * kSampleRateHz / 1000);
|
|
AudioFrame output;
|
|
bool muted;
|
|
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted));
|
|
EXPECT_EQ(kMaxOutputSize, output.samples_per_channel_);
|
|
EXPECT_EQ(1u, output.num_channels_);
|
|
EXPECT_EQ(AudioFrame::kCNG, output.speech_type_);
|
|
|
|
// Pull audio again. Decoder fails.
|
|
EXPECT_EQ(NetEq::kFail, neteq_->GetAudio(&output, &muted));
|
|
EXPECT_EQ(kMaxOutputSize, output.samples_per_channel_);
|
|
EXPECT_EQ(1u, output.num_channels_);
|
|
// We are not expecting anything for output.speech_type_, since an error was
|
|
// returned.
|
|
|
|
// Pull audio again, should resume codec CNG.
|
|
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted));
|
|
EXPECT_EQ(kMaxOutputSize, output.samples_per_channel_);
|
|
EXPECT_EQ(1u, output.num_channels_);
|
|
EXPECT_EQ(AudioFrame::kCNG, output.speech_type_);
|
|
|
|
EXPECT_CALL(mock_decoder, Die());
|
|
}
|
|
|
|
// Tests that the return value from last_output_sample_rate_hz() is equal to the
|
|
// configured inital sample rate.
|
|
TEST_F(NetEqImplTest, InitialLastOutputSampleRate) {
|
|
UseNoMocks();
|
|
config_.sample_rate_hz = 48000;
|
|
CreateInstance();
|
|
EXPECT_EQ(48000, neteq_->last_output_sample_rate_hz());
|
|
}
|
|
|
|
TEST_F(NetEqImplTest, TickTimerIncrement) {
|
|
UseNoMocks();
|
|
CreateInstance();
|
|
ASSERT_TRUE(tick_timer_);
|
|
EXPECT_EQ(0u, tick_timer_->ticks());
|
|
AudioFrame output;
|
|
bool muted;
|
|
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted));
|
|
EXPECT_EQ(1u, tick_timer_->ticks());
|
|
}
|
|
|
|
TEST_F(NetEqImplTest, SetBaseMinimumDelay) {
|
|
UseNoMocks();
|
|
use_mock_delay_manager_ = true;
|
|
CreateInstance();
|
|
|
|
EXPECT_CALL(*mock_delay_manager_, SetBaseMinimumDelay(_))
|
|
.WillOnce(Return(true))
|
|
.WillOnce(Return(false));
|
|
|
|
const int delay_ms = 200;
|
|
|
|
EXPECT_EQ(true, neteq_->SetBaseMinimumDelayMs(delay_ms));
|
|
EXPECT_EQ(false, neteq_->SetBaseMinimumDelayMs(delay_ms));
|
|
}
|
|
|
|
TEST_F(NetEqImplTest, GetBaseMinimumDelayMs) {
|
|
UseNoMocks();
|
|
use_mock_delay_manager_ = true;
|
|
CreateInstance();
|
|
|
|
const int delay_ms = 200;
|
|
|
|
EXPECT_CALL(*mock_delay_manager_, GetBaseMinimumDelay())
|
|
.WillOnce(Return(delay_ms));
|
|
|
|
EXPECT_EQ(delay_ms, neteq_->GetBaseMinimumDelayMs());
|
|
}
|
|
|
|
TEST_F(NetEqImplTest, TargetDelayMs) {
|
|
UseNoMocks();
|
|
use_mock_delay_manager_ = true;
|
|
CreateInstance();
|
|
// Let the dummy target delay be 17 packets.
|
|
constexpr int kTargetLevelPacketsQ8 = 17 << 8;
|
|
EXPECT_CALL(*mock_delay_manager_, TargetLevel())
|
|
.WillOnce(Return(kTargetLevelPacketsQ8));
|
|
// Default packet size before any packet has been decoded is 30 ms, so we are
|
|
// expecting 17 * 30 = 510 ms target delay.
|
|
EXPECT_EQ(17 * 30, neteq_->TargetDelayMs());
|
|
}
|
|
|
|
TEST_F(NetEqImplTest, InsertEmptyPacket) {
|
|
UseNoMocks();
|
|
use_mock_delay_manager_ = true;
|
|
CreateInstance();
|
|
|
|
RTPHeader rtp_header;
|
|
rtp_header.payloadType = 17;
|
|
rtp_header.sequenceNumber = 0x1234;
|
|
rtp_header.timestamp = 0x12345678;
|
|
rtp_header.ssrc = 0x87654321;
|
|
|
|
EXPECT_CALL(*mock_delay_manager_, RegisterEmptyPacket());
|
|
neteq_->InsertEmptyPacket(rtp_header);
|
|
}
|
|
|
|
TEST_F(NetEqImplTest, EnableRtxHandling) {
|
|
UseNoMocks();
|
|
use_mock_delay_manager_ = true;
|
|
config_.enable_rtx_handling = true;
|
|
CreateInstance();
|
|
EXPECT_CALL(*mock_delay_manager_, BufferLimits(_, _))
|
|
.Times(1)
|
|
.WillOnce(DoAll(SetArgPointee<0>(0), SetArgPointee<1>(0)));
|
|
|
|
const int kPayloadLengthSamples = 80;
|
|
const size_t kPayloadLengthBytes = 2 * kPayloadLengthSamples; // PCM 16-bit.
|
|
const uint8_t kPayloadType = 17; // Just an arbitrary number.
|
|
const uint32_t kReceiveTime = 17;
|
|
uint8_t payload[kPayloadLengthBytes] = {0};
|
|
RTPHeader rtp_header;
|
|
rtp_header.payloadType = kPayloadType;
|
|
rtp_header.sequenceNumber = 0x1234;
|
|
rtp_header.timestamp = 0x12345678;
|
|
rtp_header.ssrc = 0x87654321;
|
|
|
|
EXPECT_TRUE(neteq_->RegisterPayloadType(kPayloadType,
|
|
SdpAudioFormat("l16", 8000, 1)));
|
|
EXPECT_EQ(NetEq::kOK,
|
|
neteq_->InsertPacket(rtp_header, payload, kReceiveTime));
|
|
AudioFrame output;
|
|
bool muted;
|
|
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted));
|
|
|
|
// Insert second packet that was sent before the first packet.
|
|
rtp_header.sequenceNumber -= 1;
|
|
rtp_header.timestamp -= kPayloadLengthSamples;
|
|
EXPECT_CALL(*mock_delay_manager_,
|
|
Update(rtp_header.sequenceNumber, rtp_header.timestamp, _));
|
|
EXPECT_EQ(NetEq::kOK,
|
|
neteq_->InsertPacket(rtp_header, payload, kReceiveTime));
|
|
}
|
|
|
|
class Decoder120ms : public AudioDecoder {
|
|
public:
|
|
Decoder120ms(int sample_rate_hz, SpeechType speech_type)
|
|
: sample_rate_hz_(sample_rate_hz),
|
|
next_value_(1),
|
|
speech_type_(speech_type) {}
|
|
|
|
int DecodeInternal(const uint8_t* encoded,
|
|
size_t encoded_len,
|
|
int sample_rate_hz,
|
|
int16_t* decoded,
|
|
SpeechType* speech_type) override {
|
|
EXPECT_EQ(sample_rate_hz_, sample_rate_hz);
|
|
size_t decoded_len =
|
|
rtc::CheckedDivExact(sample_rate_hz, 1000) * 120 * Channels();
|
|
for (size_t i = 0; i < decoded_len; ++i) {
|
|
decoded[i] = next_value_++;
|
|
}
|
|
*speech_type = speech_type_;
|
|
return rtc::checked_cast<int>(decoded_len);
|
|
}
|
|
|
|
void Reset() override { next_value_ = 1; }
|
|
int SampleRateHz() const override { return sample_rate_hz_; }
|
|
size_t Channels() const override { return 2; }
|
|
|
|
private:
|
|
int sample_rate_hz_;
|
|
int16_t next_value_;
|
|
SpeechType speech_type_;
|
|
};
|
|
|
|
class NetEqImplTest120ms : public NetEqImplTest {
|
|
protected:
|
|
NetEqImplTest120ms() : NetEqImplTest() {}
|
|
virtual ~NetEqImplTest120ms() {}
|
|
|
|
void CreateInstanceNoMocks() {
|
|
UseNoMocks();
|
|
CreateInstance(decoder_factory_);
|
|
EXPECT_TRUE(neteq_->RegisterPayloadType(
|
|
kPayloadType, SdpAudioFormat("opus", 48000, 2, {{"stereo", "1"}})));
|
|
}
|
|
|
|
void CreateInstanceWithDelayManagerMock() {
|
|
UseNoMocks();
|
|
use_mock_delay_manager_ = true;
|
|
CreateInstance(decoder_factory_);
|
|
EXPECT_TRUE(neteq_->RegisterPayloadType(
|
|
kPayloadType, SdpAudioFormat("opus", 48000, 2, {{"stereo", "1"}})));
|
|
}
|
|
|
|
uint32_t timestamp_diff_between_packets() const {
|
|
return rtc::CheckedDivExact(kSamplingFreq_, 1000u) * 120;
|
|
}
|
|
|
|
uint32_t first_timestamp() const { return 10u; }
|
|
|
|
void GetFirstPacket() {
|
|
bool muted;
|
|
for (int i = 0; i < 12; i++) {
|
|
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output_, &muted));
|
|
EXPECT_FALSE(muted);
|
|
}
|
|
}
|
|
|
|
void InsertPacket(uint32_t timestamp) {
|
|
RTPHeader rtp_header;
|
|
rtp_header.payloadType = kPayloadType;
|
|
rtp_header.sequenceNumber = sequence_number_;
|
|
rtp_header.timestamp = timestamp;
|
|
rtp_header.ssrc = 15;
|
|
const size_t kPayloadLengthBytes = 1; // This can be arbitrary.
|
|
uint8_t payload[kPayloadLengthBytes] = {0};
|
|
EXPECT_EQ(NetEq::kOK, neteq_->InsertPacket(rtp_header, payload, 10));
|
|
sequence_number_++;
|
|
}
|
|
|
|
void Register120msCodec(AudioDecoder::SpeechType speech_type) {
|
|
const uint32_t sampling_freq = kSamplingFreq_;
|
|
decoder_factory_ =
|
|
new rtc::RefCountedObject<test::FunctionAudioDecoderFactory>(
|
|
[sampling_freq, speech_type]() {
|
|
std::unique_ptr<AudioDecoder> decoder =
|
|
absl::make_unique<Decoder120ms>(sampling_freq, speech_type);
|
|
RTC_CHECK_EQ(2, decoder->Channels());
|
|
return decoder;
|
|
});
|
|
}
|
|
|
|
rtc::scoped_refptr<AudioDecoderFactory> decoder_factory_;
|
|
AudioFrame output_;
|
|
const uint32_t kPayloadType = 17;
|
|
const uint32_t kSamplingFreq_ = 48000;
|
|
uint16_t sequence_number_ = 1;
|
|
};
|
|
|
|
TEST_F(NetEqImplTest120ms, CodecInternalCng) {
|
|
Register120msCodec(AudioDecoder::kComfortNoise);
|
|
CreateInstanceNoMocks();
|
|
|
|
InsertPacket(first_timestamp());
|
|
GetFirstPacket();
|
|
|
|
bool muted;
|
|
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output_, &muted));
|
|
EXPECT_EQ(kCodecInternalCng, neteq_->last_operation_for_test());
|
|
}
|
|
|
|
TEST_F(NetEqImplTest120ms, Normal) {
|
|
Register120msCodec(AudioDecoder::kSpeech);
|
|
CreateInstanceNoMocks();
|
|
|
|
InsertPacket(first_timestamp());
|
|
GetFirstPacket();
|
|
|
|
EXPECT_EQ(kNormal, neteq_->last_operation_for_test());
|
|
}
|
|
|
|
TEST_F(NetEqImplTest120ms, Merge) {
|
|
Register120msCodec(AudioDecoder::kSpeech);
|
|
CreateInstanceWithDelayManagerMock();
|
|
|
|
InsertPacket(first_timestamp());
|
|
|
|
GetFirstPacket();
|
|
bool muted;
|
|
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output_, &muted));
|
|
|
|
InsertPacket(first_timestamp() + 2 * timestamp_diff_between_packets());
|
|
|
|
// Delay manager reports a target level which should cause a Merge.
|
|
EXPECT_CALL(*mock_delay_manager_, TargetLevel()).WillOnce(Return(-10));
|
|
|
|
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output_, &muted));
|
|
EXPECT_EQ(kMerge, neteq_->last_operation_for_test());
|
|
}
|
|
|
|
TEST_F(NetEqImplTest120ms, Expand) {
|
|
Register120msCodec(AudioDecoder::kSpeech);
|
|
CreateInstanceNoMocks();
|
|
|
|
InsertPacket(first_timestamp());
|
|
GetFirstPacket();
|
|
|
|
bool muted;
|
|
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output_, &muted));
|
|
EXPECT_EQ(kExpand, neteq_->last_operation_for_test());
|
|
}
|
|
|
|
TEST_F(NetEqImplTest120ms, FastAccelerate) {
|
|
Register120msCodec(AudioDecoder::kSpeech);
|
|
CreateInstanceWithDelayManagerMock();
|
|
|
|
InsertPacket(first_timestamp());
|
|
GetFirstPacket();
|
|
InsertPacket(first_timestamp() + timestamp_diff_between_packets());
|
|
|
|
// Delay manager report buffer limit which should cause a FastAccelerate.
|
|
EXPECT_CALL(*mock_delay_manager_, BufferLimits(_, _))
|
|
.Times(1)
|
|
.WillOnce(DoAll(SetArgPointee<0>(0), SetArgPointee<1>(0)));
|
|
|
|
bool muted;
|
|
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output_, &muted));
|
|
EXPECT_EQ(kFastAccelerate, neteq_->last_operation_for_test());
|
|
}
|
|
|
|
TEST_F(NetEqImplTest120ms, PreemptiveExpand) {
|
|
Register120msCodec(AudioDecoder::kSpeech);
|
|
CreateInstanceWithDelayManagerMock();
|
|
|
|
InsertPacket(first_timestamp());
|
|
GetFirstPacket();
|
|
|
|
InsertPacket(first_timestamp() + timestamp_diff_between_packets());
|
|
|
|
// Delay manager report buffer limit which should cause a PreemptiveExpand.
|
|
EXPECT_CALL(*mock_delay_manager_, BufferLimits(_, _))
|
|
.Times(1)
|
|
.WillOnce(DoAll(SetArgPointee<0>(100), SetArgPointee<1>(100)));
|
|
|
|
bool muted;
|
|
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output_, &muted));
|
|
EXPECT_EQ(kPreemptiveExpand, neteq_->last_operation_for_test());
|
|
}
|
|
|
|
TEST_F(NetEqImplTest120ms, Accelerate) {
|
|
Register120msCodec(AudioDecoder::kSpeech);
|
|
CreateInstanceWithDelayManagerMock();
|
|
|
|
InsertPacket(first_timestamp());
|
|
GetFirstPacket();
|
|
|
|
InsertPacket(first_timestamp() + timestamp_diff_between_packets());
|
|
|
|
// Delay manager report buffer limit which should cause a Accelerate.
|
|
EXPECT_CALL(*mock_delay_manager_, BufferLimits(_, _))
|
|
.Times(1)
|
|
.WillOnce(DoAll(SetArgPointee<0>(1), SetArgPointee<1>(2)));
|
|
|
|
bool muted;
|
|
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output_, &muted));
|
|
EXPECT_EQ(kAccelerate, neteq_->last_operation_for_test());
|
|
}
|
|
|
|
}// namespace webrtc
|