mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-13 22:00:47 +01:00

This CL adds a new metric to NetEq, which logs whenever a loss concealment event has lasted longer than 150 ms (an "interruption"). The number of such events, as well as the sum length of them, is kept in a SampleCounter, which can be queried at any time. Any initial PLC at the beginning of a call, before the first packet is decoded, is ignored. Unit tests and piping to neteq_rtpplay are included. Bug: webrtc:10549 Change-Id: I8a224a34254c47c74317617f420f6de997232d88 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/132796 Reviewed-by: Minyue Li <minyue@webrtc.org> Commit-Queue: Henrik Lundin <henrik.lundin@webrtc.org> Cr-Commit-Position: refs/heads/master@{#27781}
418 lines
14 KiB
C++
418 lines
14 KiB
C++
/*
|
|
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/audio_coding/neteq/statistics_calculator.h"
|
|
|
|
#include <assert.h>
|
|
#include <string.h> // memset
|
|
#include <algorithm>
|
|
|
|
#include "modules/audio_coding/neteq/delay_manager.h"
|
|
#include "rtc_base/checks.h"
|
|
#include "rtc_base/numerics/safe_conversions.h"
|
|
#include "system_wrappers/include/metrics.h"
|
|
|
|
namespace webrtc {
|
|
|
|
namespace {
|
|
size_t AddIntToSizeTWithLowerCap(int a, size_t b) {
|
|
const size_t ret = b + a;
|
|
// If a + b is negative, resulting in a negative wrap, cap it to zero instead.
|
|
static_assert(sizeof(size_t) >= sizeof(int),
|
|
"int must not be wider than size_t for this to work");
|
|
return (a < 0 && ret > b) ? 0 : ret;
|
|
}
|
|
|
|
constexpr int kInterruptionLenMs = 150;
|
|
} // namespace
|
|
|
|
// Allocating the static const so that it can be passed by reference to
|
|
// RTC_DCHECK.
|
|
const size_t StatisticsCalculator::kLenWaitingTimes;
|
|
|
|
StatisticsCalculator::PeriodicUmaLogger::PeriodicUmaLogger(
|
|
const std::string& uma_name,
|
|
int report_interval_ms,
|
|
int max_value)
|
|
: uma_name_(uma_name),
|
|
report_interval_ms_(report_interval_ms),
|
|
max_value_(max_value),
|
|
timer_(0) {}
|
|
|
|
StatisticsCalculator::PeriodicUmaLogger::~PeriodicUmaLogger() = default;
|
|
|
|
void StatisticsCalculator::PeriodicUmaLogger::AdvanceClock(int step_ms) {
|
|
timer_ += step_ms;
|
|
if (timer_ < report_interval_ms_) {
|
|
return;
|
|
}
|
|
LogToUma(Metric());
|
|
Reset();
|
|
timer_ -= report_interval_ms_;
|
|
RTC_DCHECK_GE(timer_, 0);
|
|
}
|
|
|
|
void StatisticsCalculator::PeriodicUmaLogger::LogToUma(int value) const {
|
|
RTC_HISTOGRAM_COUNTS_SPARSE(uma_name_, value, 1, max_value_, 50);
|
|
}
|
|
|
|
StatisticsCalculator::PeriodicUmaCount::PeriodicUmaCount(
|
|
const std::string& uma_name,
|
|
int report_interval_ms,
|
|
int max_value)
|
|
: PeriodicUmaLogger(uma_name, report_interval_ms, max_value) {}
|
|
|
|
StatisticsCalculator::PeriodicUmaCount::~PeriodicUmaCount() {
|
|
// Log the count for the current (incomplete) interval.
|
|
LogToUma(Metric());
|
|
}
|
|
|
|
void StatisticsCalculator::PeriodicUmaCount::RegisterSample() {
|
|
++counter_;
|
|
}
|
|
|
|
int StatisticsCalculator::PeriodicUmaCount::Metric() const {
|
|
return counter_;
|
|
}
|
|
|
|
void StatisticsCalculator::PeriodicUmaCount::Reset() {
|
|
counter_ = 0;
|
|
}
|
|
|
|
StatisticsCalculator::PeriodicUmaAverage::PeriodicUmaAverage(
|
|
const std::string& uma_name,
|
|
int report_interval_ms,
|
|
int max_value)
|
|
: PeriodicUmaLogger(uma_name, report_interval_ms, max_value) {}
|
|
|
|
StatisticsCalculator::PeriodicUmaAverage::~PeriodicUmaAverage() {
|
|
// Log the average for the current (incomplete) interval.
|
|
LogToUma(Metric());
|
|
}
|
|
|
|
void StatisticsCalculator::PeriodicUmaAverage::RegisterSample(int value) {
|
|
sum_ += value;
|
|
++counter_;
|
|
}
|
|
|
|
int StatisticsCalculator::PeriodicUmaAverage::Metric() const {
|
|
return counter_ == 0 ? 0 : static_cast<int>(sum_ / counter_);
|
|
}
|
|
|
|
void StatisticsCalculator::PeriodicUmaAverage::Reset() {
|
|
sum_ = 0.0;
|
|
counter_ = 0;
|
|
}
|
|
|
|
StatisticsCalculator::StatisticsCalculator()
|
|
: preemptive_samples_(0),
|
|
accelerate_samples_(0),
|
|
added_zero_samples_(0),
|
|
expanded_speech_samples_(0),
|
|
expanded_noise_samples_(0),
|
|
discarded_packets_(0),
|
|
lost_timestamps_(0),
|
|
timestamps_since_last_report_(0),
|
|
secondary_decoded_samples_(0),
|
|
discarded_secondary_packets_(0),
|
|
delayed_packet_outage_counter_(
|
|
"WebRTC.Audio.DelayedPacketOutageEventsPerMinute",
|
|
60000, // 60 seconds report interval.
|
|
100),
|
|
excess_buffer_delay_("WebRTC.Audio.AverageExcessBufferDelayMs",
|
|
60000, // 60 seconds report interval.
|
|
1000),
|
|
buffer_full_counter_("WebRTC.Audio.JitterBufferFullPerMinute",
|
|
60000, // 60 seconds report interval.
|
|
100) {}
|
|
|
|
StatisticsCalculator::~StatisticsCalculator() = default;
|
|
|
|
void StatisticsCalculator::Reset() {
|
|
preemptive_samples_ = 0;
|
|
accelerate_samples_ = 0;
|
|
added_zero_samples_ = 0;
|
|
expanded_speech_samples_ = 0;
|
|
expanded_noise_samples_ = 0;
|
|
secondary_decoded_samples_ = 0;
|
|
discarded_secondary_packets_ = 0;
|
|
waiting_times_.clear();
|
|
}
|
|
|
|
void StatisticsCalculator::ResetMcu() {
|
|
discarded_packets_ = 0;
|
|
lost_timestamps_ = 0;
|
|
timestamps_since_last_report_ = 0;
|
|
}
|
|
|
|
void StatisticsCalculator::ExpandedVoiceSamples(size_t num_samples,
|
|
bool is_new_concealment_event) {
|
|
expanded_speech_samples_ += num_samples;
|
|
ConcealedSamplesCorrection(rtc::dchecked_cast<int>(num_samples), true);
|
|
lifetime_stats_.concealment_events += is_new_concealment_event;
|
|
}
|
|
|
|
void StatisticsCalculator::ExpandedNoiseSamples(size_t num_samples,
|
|
bool is_new_concealment_event) {
|
|
expanded_noise_samples_ += num_samples;
|
|
ConcealedSamplesCorrection(rtc::dchecked_cast<int>(num_samples), false);
|
|
lifetime_stats_.concealment_events += is_new_concealment_event;
|
|
}
|
|
|
|
void StatisticsCalculator::ExpandedVoiceSamplesCorrection(int num_samples) {
|
|
expanded_speech_samples_ =
|
|
AddIntToSizeTWithLowerCap(num_samples, expanded_speech_samples_);
|
|
ConcealedSamplesCorrection(num_samples, true);
|
|
}
|
|
|
|
void StatisticsCalculator::ExpandedNoiseSamplesCorrection(int num_samples) {
|
|
expanded_noise_samples_ =
|
|
AddIntToSizeTWithLowerCap(num_samples, expanded_noise_samples_);
|
|
ConcealedSamplesCorrection(num_samples, false);
|
|
}
|
|
|
|
void StatisticsCalculator::DecodedOutputPlayed() {
|
|
decoded_output_played_ = true;
|
|
}
|
|
|
|
void StatisticsCalculator::EndExpandEvent(int fs_hz) {
|
|
RTC_DCHECK_GE(lifetime_stats_.concealed_samples,
|
|
concealed_samples_at_event_end_);
|
|
const int event_duration_ms =
|
|
1000 *
|
|
(lifetime_stats_.concealed_samples - concealed_samples_at_event_end_) /
|
|
fs_hz;
|
|
if (event_duration_ms >= kInterruptionLenMs && decoded_output_played_) {
|
|
lifetime_stats_.interruption_count++;
|
|
lifetime_stats_.total_interruption_duration_ms += event_duration_ms;
|
|
}
|
|
concealed_samples_at_event_end_ = lifetime_stats_.concealed_samples;
|
|
}
|
|
|
|
void StatisticsCalculator::ConcealedSamplesCorrection(int num_samples,
|
|
bool is_voice) {
|
|
if (num_samples < 0) {
|
|
// Store negative correction to subtract from future positive additions.
|
|
// See also the function comment in the header file.
|
|
concealed_samples_correction_ -= num_samples;
|
|
if (!is_voice) {
|
|
silent_concealed_samples_correction_ -= num_samples;
|
|
}
|
|
return;
|
|
}
|
|
|
|
const size_t canceled_out =
|
|
std::min(static_cast<size_t>(num_samples), concealed_samples_correction_);
|
|
concealed_samples_correction_ -= canceled_out;
|
|
lifetime_stats_.concealed_samples += num_samples - canceled_out;
|
|
|
|
if (!is_voice) {
|
|
const size_t silent_canceled_out = std::min(
|
|
static_cast<size_t>(num_samples), silent_concealed_samples_correction_);
|
|
silent_concealed_samples_correction_ -= silent_canceled_out;
|
|
lifetime_stats_.silent_concealed_samples +=
|
|
num_samples - silent_canceled_out;
|
|
}
|
|
}
|
|
|
|
void StatisticsCalculator::PreemptiveExpandedSamples(size_t num_samples) {
|
|
preemptive_samples_ += num_samples;
|
|
operations_and_state_.preemptive_samples += num_samples;
|
|
lifetime_stats_.inserted_samples_for_deceleration += num_samples;
|
|
}
|
|
|
|
void StatisticsCalculator::AcceleratedSamples(size_t num_samples) {
|
|
accelerate_samples_ += num_samples;
|
|
operations_and_state_.accelerate_samples += num_samples;
|
|
lifetime_stats_.removed_samples_for_acceleration += num_samples;
|
|
}
|
|
|
|
void StatisticsCalculator::AddZeros(size_t num_samples) {
|
|
added_zero_samples_ += num_samples;
|
|
}
|
|
|
|
void StatisticsCalculator::PacketsDiscarded(size_t num_packets) {
|
|
operations_and_state_.discarded_primary_packets += num_packets;
|
|
}
|
|
|
|
void StatisticsCalculator::SecondaryPacketsDiscarded(size_t num_packets) {
|
|
discarded_secondary_packets_ += num_packets;
|
|
lifetime_stats_.fec_packets_discarded += num_packets;
|
|
}
|
|
|
|
void StatisticsCalculator::SecondaryPacketsReceived(size_t num_packets) {
|
|
lifetime_stats_.fec_packets_received += num_packets;
|
|
}
|
|
|
|
void StatisticsCalculator::LostSamples(size_t num_samples) {
|
|
lost_timestamps_ += num_samples;
|
|
}
|
|
|
|
void StatisticsCalculator::IncreaseCounter(size_t num_samples, int fs_hz) {
|
|
const int time_step_ms =
|
|
rtc::CheckedDivExact(static_cast<int>(1000 * num_samples), fs_hz);
|
|
delayed_packet_outage_counter_.AdvanceClock(time_step_ms);
|
|
excess_buffer_delay_.AdvanceClock(time_step_ms);
|
|
buffer_full_counter_.AdvanceClock(time_step_ms);
|
|
timestamps_since_last_report_ += static_cast<uint32_t>(num_samples);
|
|
if (timestamps_since_last_report_ >
|
|
static_cast<uint32_t>(fs_hz * kMaxReportPeriod)) {
|
|
lost_timestamps_ = 0;
|
|
timestamps_since_last_report_ = 0;
|
|
discarded_packets_ = 0;
|
|
}
|
|
lifetime_stats_.total_samples_received += num_samples;
|
|
}
|
|
|
|
void StatisticsCalculator::JitterBufferDelay(size_t num_samples,
|
|
uint64_t waiting_time_ms) {
|
|
lifetime_stats_.jitter_buffer_delay_ms += waiting_time_ms * num_samples;
|
|
lifetime_stats_.jitter_buffer_emitted_count += num_samples;
|
|
}
|
|
|
|
void StatisticsCalculator::SecondaryDecodedSamples(int num_samples) {
|
|
secondary_decoded_samples_ += num_samples;
|
|
}
|
|
|
|
void StatisticsCalculator::FlushedPacketBuffer() {
|
|
operations_and_state_.packet_buffer_flushes++;
|
|
buffer_full_counter_.RegisterSample();
|
|
}
|
|
|
|
void StatisticsCalculator::ReceivedPacket() {
|
|
++lifetime_stats_.jitter_buffer_packets_received;
|
|
}
|
|
|
|
void StatisticsCalculator::RelativePacketArrivalDelay(size_t delay_ms) {
|
|
lifetime_stats_.relative_packet_arrival_delay_ms += delay_ms;
|
|
}
|
|
|
|
void StatisticsCalculator::LogDelayedPacketOutageEvent(int num_samples,
|
|
int fs_hz) {
|
|
int outage_duration_ms = num_samples / (fs_hz / 1000);
|
|
RTC_HISTOGRAM_COUNTS("WebRTC.Audio.DelayedPacketOutageEventMs",
|
|
outage_duration_ms, 1 /* min */, 2000 /* max */,
|
|
100 /* bucket count */);
|
|
delayed_packet_outage_counter_.RegisterSample();
|
|
lifetime_stats_.delayed_packet_outage_samples += num_samples;
|
|
}
|
|
|
|
void StatisticsCalculator::StoreWaitingTime(int waiting_time_ms) {
|
|
excess_buffer_delay_.RegisterSample(waiting_time_ms);
|
|
RTC_DCHECK_LE(waiting_times_.size(), kLenWaitingTimes);
|
|
if (waiting_times_.size() == kLenWaitingTimes) {
|
|
// Erase first value.
|
|
waiting_times_.pop_front();
|
|
}
|
|
waiting_times_.push_back(waiting_time_ms);
|
|
operations_and_state_.last_waiting_time_ms = waiting_time_ms;
|
|
}
|
|
|
|
void StatisticsCalculator::GetNetworkStatistics(int fs_hz,
|
|
size_t num_samples_in_buffers,
|
|
size_t samples_per_packet,
|
|
NetEqNetworkStatistics* stats) {
|
|
RTC_DCHECK_GT(fs_hz, 0);
|
|
RTC_DCHECK(stats);
|
|
|
|
stats->added_zero_samples = added_zero_samples_;
|
|
stats->current_buffer_size_ms =
|
|
static_cast<uint16_t>(num_samples_in_buffers * 1000 / fs_hz);
|
|
|
|
stats->packet_loss_rate =
|
|
CalculateQ14Ratio(lost_timestamps_, timestamps_since_last_report_);
|
|
|
|
stats->accelerate_rate =
|
|
CalculateQ14Ratio(accelerate_samples_, timestamps_since_last_report_);
|
|
|
|
stats->preemptive_rate =
|
|
CalculateQ14Ratio(preemptive_samples_, timestamps_since_last_report_);
|
|
|
|
stats->expand_rate =
|
|
CalculateQ14Ratio(expanded_speech_samples_ + expanded_noise_samples_,
|
|
timestamps_since_last_report_);
|
|
|
|
stats->speech_expand_rate = CalculateQ14Ratio(expanded_speech_samples_,
|
|
timestamps_since_last_report_);
|
|
|
|
stats->secondary_decoded_rate = CalculateQ14Ratio(
|
|
secondary_decoded_samples_, timestamps_since_last_report_);
|
|
|
|
const size_t discarded_secondary_samples =
|
|
discarded_secondary_packets_ * samples_per_packet;
|
|
stats->secondary_discarded_rate =
|
|
CalculateQ14Ratio(discarded_secondary_samples,
|
|
static_cast<uint32_t>(discarded_secondary_samples +
|
|
secondary_decoded_samples_));
|
|
|
|
if (waiting_times_.size() == 0) {
|
|
stats->mean_waiting_time_ms = -1;
|
|
stats->median_waiting_time_ms = -1;
|
|
stats->min_waiting_time_ms = -1;
|
|
stats->max_waiting_time_ms = -1;
|
|
} else {
|
|
std::sort(waiting_times_.begin(), waiting_times_.end());
|
|
// Find mid-point elements. If the size is odd, the two values
|
|
// |middle_left| and |middle_right| will both be the one middle element; if
|
|
// the size is even, they will be the the two neighboring elements at the
|
|
// middle of the list.
|
|
const int middle_left = waiting_times_[(waiting_times_.size() - 1) / 2];
|
|
const int middle_right = waiting_times_[waiting_times_.size() / 2];
|
|
// Calculate the average of the two. (Works also for odd sizes.)
|
|
stats->median_waiting_time_ms = (middle_left + middle_right) / 2;
|
|
stats->min_waiting_time_ms = waiting_times_.front();
|
|
stats->max_waiting_time_ms = waiting_times_.back();
|
|
double sum = 0;
|
|
for (auto time : waiting_times_) {
|
|
sum += time;
|
|
}
|
|
stats->mean_waiting_time_ms = static_cast<int>(sum / waiting_times_.size());
|
|
}
|
|
|
|
// Reset counters.
|
|
ResetMcu();
|
|
Reset();
|
|
}
|
|
|
|
void StatisticsCalculator::PopulateDelayManagerStats(
|
|
int ms_per_packet,
|
|
const DelayManager& delay_manager,
|
|
NetEqNetworkStatistics* stats) {
|
|
RTC_DCHECK(stats);
|
|
stats->preferred_buffer_size_ms =
|
|
(delay_manager.TargetLevel() >> 8) * ms_per_packet;
|
|
stats->jitter_peaks_found = delay_manager.PeakFound();
|
|
stats->clockdrift_ppm =
|
|
rtc::saturated_cast<int32_t>(delay_manager.EstimatedClockDriftPpm());
|
|
}
|
|
|
|
NetEqLifetimeStatistics StatisticsCalculator::GetLifetimeStatistics() const {
|
|
return lifetime_stats_;
|
|
}
|
|
|
|
NetEqOperationsAndState StatisticsCalculator::GetOperationsAndState() const {
|
|
return operations_and_state_;
|
|
}
|
|
|
|
uint16_t StatisticsCalculator::CalculateQ14Ratio(size_t numerator,
|
|
uint32_t denominator) {
|
|
if (numerator == 0) {
|
|
return 0;
|
|
} else if (numerator < denominator) {
|
|
// Ratio must be smaller than 1 in Q14.
|
|
assert((numerator << 14) / denominator < (1 << 14));
|
|
return static_cast<uint16_t>((numerator << 14) / denominator);
|
|
} else {
|
|
// Will not produce a ratio larger than 1, since this is probably an error.
|
|
return 1 << 14;
|
|
}
|
|
}
|
|
|
|
} // namespace webrtc
|