mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-13 22:00:47 +01:00

This CL refactors AGC2 and fixes the order with which the fixed and the adaptive digital gain controllers are applied - i.e., fixed first, then adaptive and finally limiter. FixedGainController has been removed since we need to split the processing done by the gain applier and the limiter. Also, GainApplier and Limiter are easy enough to be used without a wrapper and a wrapper would need 2 separated calls in the right order - i.e., error prone. FrameCombiner in audio mixer has been adapted and now only uses the limiter (which is what is needed since no gain is applied). The unit tests for FixedGainController have been moved to gain_controller2_unittests. They have been re-adapted and ChangeFixedGainShouldBeFastAndTimeInvariant has been re-tuned. Bug: webrtc:7494 Change-Id: I4d7daeae917257ac019a645b74deba6642f77322 Reviewed-on: https://webrtc-review.googlesource.com/c/108624 Commit-Queue: Alessio Bazzica <alessiob@webrtc.org> Reviewed-by: Alex Loiko <aleloi@webrtc.org> Cr-Commit-Position: refs/heads/master@{#25477}
150 lines
5.5 KiB
C++
150 lines
5.5 KiB
C++
/*
|
|
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/audio_processing/agc2/limiter.h"
|
|
|
|
#include <algorithm>
|
|
#include <array>
|
|
#include <cmath>
|
|
|
|
#include "api/array_view.h"
|
|
#include "modules/audio_processing/agc2/agc2_common.h"
|
|
#include "modules/audio_processing/logging/apm_data_dumper.h"
|
|
#include "rtc_base/checks.h"
|
|
#include "rtc_base/numerics/safe_minmax.h"
|
|
|
|
namespace webrtc {
|
|
namespace {
|
|
|
|
// This constant affects the way scaling factors are interpolated for the first
|
|
// sub-frame of a frame. Only in the case in which the first sub-frame has an
|
|
// estimated level which is greater than the that of the previous analyzed
|
|
// sub-frame, linear interpolation is replaced with a power function which
|
|
// reduces the chances of over-shooting (and hence saturation), however reducing
|
|
// the fixed gain effectiveness.
|
|
constexpr float kAttackFirstSubframeInterpolationPower = 8.f;
|
|
|
|
void InterpolateFirstSubframe(float last_factor,
|
|
float current_factor,
|
|
rtc::ArrayView<float> subframe) {
|
|
const auto n = subframe.size();
|
|
constexpr auto p = kAttackFirstSubframeInterpolationPower;
|
|
for (size_t i = 0; i < n; ++i) {
|
|
subframe[i] = std::pow(1.f - i / n, p) * (last_factor - current_factor) +
|
|
current_factor;
|
|
}
|
|
}
|
|
|
|
void ComputePerSampleSubframeFactors(
|
|
const std::array<float, kSubFramesInFrame + 1>& scaling_factors,
|
|
size_t samples_per_channel,
|
|
rtc::ArrayView<float> per_sample_scaling_factors) {
|
|
const size_t num_subframes = scaling_factors.size() - 1;
|
|
const size_t subframe_size =
|
|
rtc::CheckedDivExact(samples_per_channel, num_subframes);
|
|
|
|
// Handle first sub-frame differently in case of attack.
|
|
const bool is_attack = scaling_factors[0] > scaling_factors[1];
|
|
if (is_attack) {
|
|
InterpolateFirstSubframe(
|
|
scaling_factors[0], scaling_factors[1],
|
|
rtc::ArrayView<float>(
|
|
per_sample_scaling_factors.subview(0, subframe_size)));
|
|
}
|
|
|
|
for (size_t i = is_attack ? 1 : 0; i < num_subframes; ++i) {
|
|
const size_t subframe_start = i * subframe_size;
|
|
const float scaling_start = scaling_factors[i];
|
|
const float scaling_end = scaling_factors[i + 1];
|
|
const float scaling_diff = (scaling_end - scaling_start) / subframe_size;
|
|
for (size_t j = 0; j < subframe_size; ++j) {
|
|
per_sample_scaling_factors[subframe_start + j] =
|
|
scaling_start + scaling_diff * j;
|
|
}
|
|
}
|
|
}
|
|
|
|
void ScaleSamples(rtc::ArrayView<const float> per_sample_scaling_factors,
|
|
AudioFrameView<float> signal) {
|
|
const size_t samples_per_channel = signal.samples_per_channel();
|
|
RTC_DCHECK_EQ(samples_per_channel, per_sample_scaling_factors.size());
|
|
for (size_t i = 0; i < signal.num_channels(); ++i) {
|
|
auto channel = signal.channel(i);
|
|
for (size_t j = 0; j < samples_per_channel; ++j) {
|
|
channel[j] = rtc::SafeClamp(channel[j] * per_sample_scaling_factors[j],
|
|
kMinFloatS16Value, kMaxFloatS16Value);
|
|
}
|
|
}
|
|
}
|
|
|
|
void CheckLimiterSampleRate(size_t sample_rate_hz) {
|
|
// Check that per_sample_scaling_factors_ is large enough.
|
|
RTC_DCHECK_LE(sample_rate_hz,
|
|
kMaximalNumberOfSamplesPerChannel * 1000 / kFrameDurationMs);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
Limiter::Limiter(size_t sample_rate_hz,
|
|
ApmDataDumper* apm_data_dumper,
|
|
std::string histogram_name)
|
|
: interp_gain_curve_(apm_data_dumper, histogram_name),
|
|
level_estimator_(sample_rate_hz, apm_data_dumper),
|
|
apm_data_dumper_(apm_data_dumper) {
|
|
CheckLimiterSampleRate(sample_rate_hz);
|
|
}
|
|
|
|
Limiter::~Limiter() = default;
|
|
|
|
void Limiter::Process(AudioFrameView<float> signal) {
|
|
const auto level_estimate = level_estimator_.ComputeLevel(signal);
|
|
|
|
RTC_DCHECK_EQ(level_estimate.size() + 1, scaling_factors_.size());
|
|
scaling_factors_[0] = last_scaling_factor_;
|
|
std::transform(level_estimate.begin(), level_estimate.end(),
|
|
scaling_factors_.begin() + 1, [this](float x) {
|
|
return interp_gain_curve_.LookUpGainToApply(x);
|
|
});
|
|
|
|
const size_t samples_per_channel = signal.samples_per_channel();
|
|
RTC_DCHECK_LE(samples_per_channel, kMaximalNumberOfSamplesPerChannel);
|
|
|
|
auto per_sample_scaling_factors = rtc::ArrayView<float>(
|
|
&per_sample_scaling_factors_[0], samples_per_channel);
|
|
ComputePerSampleSubframeFactors(scaling_factors_, samples_per_channel,
|
|
per_sample_scaling_factors);
|
|
ScaleSamples(per_sample_scaling_factors, signal);
|
|
|
|
last_scaling_factor_ = scaling_factors_.back();
|
|
|
|
// Dump data for debug.
|
|
apm_data_dumper_->DumpRaw("agc2_gain_curve_applier_scaling_factors",
|
|
samples_per_channel,
|
|
per_sample_scaling_factors_.data());
|
|
}
|
|
|
|
InterpolatedGainCurve::Stats Limiter::GetGainCurveStats() const {
|
|
return interp_gain_curve_.get_stats();
|
|
}
|
|
|
|
void Limiter::SetSampleRate(size_t sample_rate_hz) {
|
|
CheckLimiterSampleRate(sample_rate_hz);
|
|
level_estimator_.SetSampleRate(sample_rate_hz);
|
|
}
|
|
|
|
void Limiter::Reset() {
|
|
level_estimator_.Reset();
|
|
}
|
|
|
|
float Limiter::LastAudioLevel() const {
|
|
return level_estimator_.LastAudioLevel();
|
|
}
|
|
|
|
} // namespace webrtc
|