mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-13 13:50:40 +01:00

This CL was generated by running git ls-files | grep -P "(\.h|\.cc)$" | grep -v 'sdk/' | grep -v 'rtc_base/ssl_' | \ grep -v 'fake_rtc_certificate_generator.h' | grep -v 'modules/audio_device/win/' | \ grep -v 'system_wrappers/source/clock.cc' | grep -v 'rtc_base/trace_event.h' | \ grep -v 'modules/audio_coding/codecs/ilbc/' | grep -v 'screen_capturer_mac.h' | \ grep -v 'spl_inl_mips.h' | grep -v 'data_size_unittest.cc' | grep -v 'timestamp_unittest.cc' \ | xargs clang-format -i ; git cl format Most of these changes are clang-format grouping and reordering includes differently. Bug: webrtc:9340 Change-Id: Ic83ddbc169bfacd21883e381b5181c3dd4fe8a63 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/144051 Commit-Queue: Jonas Olsson <jonasolsson@webrtc.org> Reviewed-by: Karl Wiberg <kwiberg@webrtc.org> Cr-Commit-Position: refs/heads/master@{#28505}
165 lines
5.6 KiB
C++
165 lines
5.6 KiB
C++
/*
|
|
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/remote_bitrate_estimator/overuse_estimator.h"
|
|
|
|
#include <assert.h>
|
|
#include <math.h>
|
|
#include <string.h>
|
|
|
|
#include <algorithm>
|
|
|
|
#include "modules/remote_bitrate_estimator/include/bwe_defines.h"
|
|
#include "modules/remote_bitrate_estimator/test/bwe_test_logging.h"
|
|
#include "rtc_base/logging.h"
|
|
|
|
namespace webrtc {
|
|
|
|
enum { kMinFramePeriodHistoryLength = 60 };
|
|
enum { kDeltaCounterMax = 1000 };
|
|
|
|
OveruseEstimator::OveruseEstimator(const OverUseDetectorOptions& options)
|
|
: options_(options),
|
|
num_of_deltas_(0),
|
|
slope_(options_.initial_slope),
|
|
offset_(options_.initial_offset),
|
|
prev_offset_(options_.initial_offset),
|
|
E_(),
|
|
process_noise_(),
|
|
avg_noise_(options_.initial_avg_noise),
|
|
var_noise_(options_.initial_var_noise),
|
|
ts_delta_hist_() {
|
|
memcpy(E_, options_.initial_e, sizeof(E_));
|
|
memcpy(process_noise_, options_.initial_process_noise,
|
|
sizeof(process_noise_));
|
|
}
|
|
|
|
OveruseEstimator::~OveruseEstimator() {
|
|
ts_delta_hist_.clear();
|
|
}
|
|
|
|
void OveruseEstimator::Update(int64_t t_delta,
|
|
double ts_delta,
|
|
int size_delta,
|
|
BandwidthUsage current_hypothesis,
|
|
int64_t now_ms) {
|
|
const double min_frame_period = UpdateMinFramePeriod(ts_delta);
|
|
const double t_ts_delta = t_delta - ts_delta;
|
|
BWE_TEST_LOGGING_PLOT(1, "dm_ms", now_ms, t_ts_delta);
|
|
double fs_delta = size_delta;
|
|
|
|
++num_of_deltas_;
|
|
if (num_of_deltas_ > kDeltaCounterMax) {
|
|
num_of_deltas_ = kDeltaCounterMax;
|
|
}
|
|
|
|
// Update the Kalman filter.
|
|
E_[0][0] += process_noise_[0];
|
|
E_[1][1] += process_noise_[1];
|
|
|
|
if ((current_hypothesis == BandwidthUsage::kBwOverusing &&
|
|
offset_ < prev_offset_) ||
|
|
(current_hypothesis == BandwidthUsage::kBwUnderusing &&
|
|
offset_ > prev_offset_)) {
|
|
E_[1][1] += 10 * process_noise_[1];
|
|
}
|
|
|
|
const double h[2] = {fs_delta, 1.0};
|
|
const double Eh[2] = {E_[0][0] * h[0] + E_[0][1] * h[1],
|
|
E_[1][0] * h[0] + E_[1][1] * h[1]};
|
|
|
|
BWE_TEST_LOGGING_PLOT(1, "d_ms", now_ms, slope_ * h[0] - offset_);
|
|
|
|
const double residual = t_ts_delta - slope_ * h[0] - offset_;
|
|
|
|
const bool in_stable_state =
|
|
(current_hypothesis == BandwidthUsage::kBwNormal);
|
|
const double max_residual = 3.0 * sqrt(var_noise_);
|
|
// We try to filter out very late frames. For instance periodic key
|
|
// frames doesn't fit the Gaussian model well.
|
|
if (fabs(residual) < max_residual) {
|
|
UpdateNoiseEstimate(residual, min_frame_period, in_stable_state);
|
|
} else {
|
|
UpdateNoiseEstimate(residual < 0 ? -max_residual : max_residual,
|
|
min_frame_period, in_stable_state);
|
|
}
|
|
|
|
const double denom = var_noise_ + h[0] * Eh[0] + h[1] * Eh[1];
|
|
|
|
const double K[2] = {Eh[0] / denom, Eh[1] / denom};
|
|
|
|
const double IKh[2][2] = {{1.0 - K[0] * h[0], -K[0] * h[1]},
|
|
{-K[1] * h[0], 1.0 - K[1] * h[1]}};
|
|
const double e00 = E_[0][0];
|
|
const double e01 = E_[0][1];
|
|
|
|
// Update state.
|
|
E_[0][0] = e00 * IKh[0][0] + E_[1][0] * IKh[0][1];
|
|
E_[0][1] = e01 * IKh[0][0] + E_[1][1] * IKh[0][1];
|
|
E_[1][0] = e00 * IKh[1][0] + E_[1][0] * IKh[1][1];
|
|
E_[1][1] = e01 * IKh[1][0] + E_[1][1] * IKh[1][1];
|
|
|
|
// The covariance matrix must be positive semi-definite.
|
|
bool positive_semi_definite =
|
|
E_[0][0] + E_[1][1] >= 0 &&
|
|
E_[0][0] * E_[1][1] - E_[0][1] * E_[1][0] >= 0 && E_[0][0] >= 0;
|
|
assert(positive_semi_definite);
|
|
if (!positive_semi_definite) {
|
|
RTC_LOG(LS_ERROR)
|
|
<< "The over-use estimator's covariance matrix is no longer "
|
|
"semi-definite.";
|
|
}
|
|
|
|
slope_ = slope_ + K[0] * residual;
|
|
prev_offset_ = offset_;
|
|
offset_ = offset_ + K[1] * residual;
|
|
|
|
BWE_TEST_LOGGING_PLOT(1, "kc", now_ms, K[0]);
|
|
BWE_TEST_LOGGING_PLOT(1, "km", now_ms, K[1]);
|
|
BWE_TEST_LOGGING_PLOT(1, "slope_1/bps", now_ms, slope_);
|
|
BWE_TEST_LOGGING_PLOT(1, "var_noise", now_ms, var_noise_);
|
|
}
|
|
|
|
double OveruseEstimator::UpdateMinFramePeriod(double ts_delta) {
|
|
double min_frame_period = ts_delta;
|
|
if (ts_delta_hist_.size() >= kMinFramePeriodHistoryLength) {
|
|
ts_delta_hist_.pop_front();
|
|
}
|
|
for (const double old_ts_delta : ts_delta_hist_) {
|
|
min_frame_period = std::min(old_ts_delta, min_frame_period);
|
|
}
|
|
ts_delta_hist_.push_back(ts_delta);
|
|
return min_frame_period;
|
|
}
|
|
|
|
void OveruseEstimator::UpdateNoiseEstimate(double residual,
|
|
double ts_delta,
|
|
bool stable_state) {
|
|
if (!stable_state) {
|
|
return;
|
|
}
|
|
// Faster filter during startup to faster adapt to the jitter level
|
|
// of the network. |alpha| is tuned for 30 frames per second, but is scaled
|
|
// according to |ts_delta|.
|
|
double alpha = 0.01;
|
|
if (num_of_deltas_ > 10 * 30) {
|
|
alpha = 0.002;
|
|
}
|
|
// Only update the noise estimate if we're not over-using. |beta| is a
|
|
// function of alpha and the time delta since the previous update.
|
|
const double beta = pow(1 - alpha, ts_delta * 30.0 / 1000.0);
|
|
avg_noise_ = beta * avg_noise_ + (1 - beta) * residual;
|
|
var_noise_ = beta * var_noise_ +
|
|
(1 - beta) * (avg_noise_ - residual) * (avg_noise_ - residual);
|
|
if (var_noise_ < 1) {
|
|
var_noise_ = 1;
|
|
}
|
|
}
|
|
} // namespace webrtc
|