mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-13 05:40:42 +01:00

WebRTC is now using C++14 so there is no need to use the Abseil version of std::make_unique. This CL has been created with the following steps: git grep -l absl::make_unique | sort | uniq > /tmp/make_unique.txt git grep -l absl::WrapUnique | sort | uniq > /tmp/wrap_unique.txt git grep -l "#include <memory>" | sort | uniq > /tmp/memory.txt diff --new-line-format="" --unchanged-line-format="" \ /tmp/make_unique.txt /tmp/wrap_unique.txt | sort | \ uniq > /tmp/only_make_unique.txt diff --new-line-format="" --unchanged-line-format="" \ /tmp/only_make_unique.txt /tmp/memory.txt | \ xargs grep -l "absl/memory" > /tmp/add-memory.txt git grep -l "\babsl::make_unique\b" | \ xargs sed -i "s/\babsl::make_unique\b/std::make_unique/g" git checkout PRESUBMIT.py abseil-in-webrtc.md cat /tmp/add-memory.txt | \ xargs sed -i \ 's/#include "absl\/memory\/memory.h"/#include <memory>/g' git cl format # Manual fix order of the new inserted #include <memory> cat /tmp/only_make_unique | xargs grep -l "#include <memory>" | \ xargs sed -i '/#include "absl\/memory\/memory.h"/d' git ls-files | grep BUILD.gn | \ xargs sed -i '/\/\/third_party\/abseil-cpp\/absl\/memory/d' python tools_webrtc/gn_check_autofix.py \ -m tryserver.webrtc -b linux_rel # Repead the gn_check_autofix step for other platforms git ls-files | grep BUILD.gn | \ xargs sed -i 's/absl\/memory:memory/absl\/memory/g' git cl format Bug: webrtc:10945 Change-Id: I3fe28ea80f4dd3ba3cf28effd151d5e1f19aff89 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/153221 Commit-Queue: Mirko Bonadei <mbonadei@webrtc.org> Reviewed-by: Alessio Bazzica <alessiob@webrtc.org> Reviewed-by: Karl Wiberg <kwiberg@webrtc.org> Cr-Commit-Position: refs/heads/master@{#29209}
445 lines
14 KiB
C++
445 lines
14 KiB
C++
/*
|
|
* Copyright 2019 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
#include "test/time_controller/simulated_time_controller.h"
|
|
|
|
#include <algorithm>
|
|
#include <deque>
|
|
#include <list>
|
|
#include <map>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <thread>
|
|
#include <vector>
|
|
|
|
#include "absl/strings/string_view.h"
|
|
|
|
namespace webrtc {
|
|
namespace {
|
|
// Helper function to remove from a std container by value.
|
|
template <class C>
|
|
bool RemoveByValue(C& vec, typename C::value_type val) {
|
|
auto it = std::find(vec.begin(), vec.end(), val);
|
|
if (it == vec.end())
|
|
return false;
|
|
vec.erase(it);
|
|
return true;
|
|
}
|
|
} // namespace
|
|
|
|
namespace sim_time_impl {
|
|
class SimulatedSequenceRunner : public ProcessThread, public TaskQueueBase {
|
|
public:
|
|
SimulatedSequenceRunner(SimulatedTimeControllerImpl* handler,
|
|
absl::string_view queue_name)
|
|
: handler_(handler), name_(queue_name) {}
|
|
~SimulatedSequenceRunner() override { handler_->Unregister(this); }
|
|
|
|
// Provides next run time.
|
|
Timestamp GetNextRunTime() const;
|
|
|
|
// Iterates through delayed tasks and modules and moves them to the ready set
|
|
// if they are supposed to execute by |at time|.
|
|
void UpdateReady(Timestamp at_time);
|
|
// Runs all ready tasks and modules and updates next run time.
|
|
void Run(Timestamp at_time);
|
|
|
|
// TaskQueueBase interface
|
|
void Delete() override;
|
|
// Note: PostTask is also in ProcessThread interface.
|
|
void PostTask(std::unique_ptr<QueuedTask> task) override;
|
|
void PostDelayedTask(std::unique_ptr<QueuedTask> task,
|
|
uint32_t milliseconds) override;
|
|
|
|
// ProcessThread interface
|
|
void Start() override;
|
|
void Stop() override;
|
|
void WakeUp(Module* module) override;
|
|
void RegisterModule(Module* module, const rtc::Location& from) override;
|
|
void DeRegisterModule(Module* module) override;
|
|
// Promoted to public for use in SimulatedTimeControllerImpl::YieldExecution.
|
|
using CurrentTaskQueueSetter = TaskQueueBase::CurrentTaskQueueSetter;
|
|
|
|
private:
|
|
Timestamp GetCurrentTime() const { return handler_->CurrentTime(); }
|
|
void RunReadyTasks(Timestamp at_time) RTC_LOCKS_EXCLUDED(lock_);
|
|
void RunReadyModules(Timestamp at_time) RTC_EXCLUSIVE_LOCKS_REQUIRED(lock_);
|
|
void UpdateNextRunTime() RTC_EXCLUSIVE_LOCKS_REQUIRED(lock_);
|
|
Timestamp GetNextTime(Module* module, Timestamp at_time);
|
|
|
|
SimulatedTimeControllerImpl* const handler_;
|
|
const std::string name_;
|
|
|
|
rtc::CriticalSection lock_;
|
|
|
|
std::deque<std::unique_ptr<QueuedTask>> ready_tasks_ RTC_GUARDED_BY(lock_);
|
|
std::map<Timestamp, std::vector<std::unique_ptr<QueuedTask>>> delayed_tasks_
|
|
RTC_GUARDED_BY(lock_);
|
|
|
|
bool process_thread_running_ RTC_GUARDED_BY(lock_) = false;
|
|
std::vector<Module*> stopped_modules_ RTC_GUARDED_BY(lock_);
|
|
std::vector<Module*> ready_modules_ RTC_GUARDED_BY(lock_);
|
|
std::map<Timestamp, std::list<Module*>> delayed_modules_
|
|
RTC_GUARDED_BY(lock_);
|
|
|
|
Timestamp next_run_time_ RTC_GUARDED_BY(lock_) = Timestamp::PlusInfinity();
|
|
};
|
|
|
|
Timestamp SimulatedSequenceRunner::GetNextRunTime() const {
|
|
rtc::CritScope lock(&lock_);
|
|
return next_run_time_;
|
|
}
|
|
|
|
void SimulatedSequenceRunner::UpdateReady(Timestamp at_time) {
|
|
rtc::CritScope lock(&lock_);
|
|
for (auto it = delayed_tasks_.begin();
|
|
it != delayed_tasks_.end() && it->first <= at_time;
|
|
it = delayed_tasks_.erase(it)) {
|
|
for (auto& task : it->second) {
|
|
ready_tasks_.emplace_back(std::move(task));
|
|
}
|
|
}
|
|
for (auto it = delayed_modules_.begin();
|
|
it != delayed_modules_.end() && it->first <= at_time;
|
|
it = delayed_modules_.erase(it)) {
|
|
for (auto module : it->second) {
|
|
ready_modules_.push_back(module);
|
|
}
|
|
}
|
|
}
|
|
|
|
void SimulatedSequenceRunner::Run(Timestamp at_time) {
|
|
RunReadyTasks(at_time);
|
|
rtc::CritScope lock(&lock_);
|
|
RunReadyModules(at_time);
|
|
UpdateNextRunTime();
|
|
}
|
|
|
|
void SimulatedSequenceRunner::Delete() {
|
|
{
|
|
rtc::CritScope lock(&lock_);
|
|
ready_tasks_.clear();
|
|
delayed_tasks_.clear();
|
|
}
|
|
delete this;
|
|
}
|
|
|
|
void SimulatedSequenceRunner::RunReadyTasks(Timestamp at_time) {
|
|
std::deque<std::unique_ptr<QueuedTask>> ready_tasks;
|
|
{
|
|
rtc::CritScope lock(&lock_);
|
|
ready_tasks.swap(ready_tasks_);
|
|
}
|
|
if (!ready_tasks.empty()) {
|
|
CurrentTaskQueueSetter set_current(this);
|
|
for (auto& ready : ready_tasks) {
|
|
bool delete_task = ready->Run();
|
|
if (delete_task) {
|
|
ready.reset();
|
|
} else {
|
|
ready.release();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void SimulatedSequenceRunner::RunReadyModules(Timestamp at_time) {
|
|
if (!ready_modules_.empty()) {
|
|
CurrentTaskQueueSetter set_current(this);
|
|
for (auto* module : ready_modules_) {
|
|
module->Process();
|
|
delayed_modules_[GetNextTime(module, at_time)].push_back(module);
|
|
}
|
|
}
|
|
ready_modules_.clear();
|
|
}
|
|
|
|
void SimulatedSequenceRunner::UpdateNextRunTime() {
|
|
if (!ready_tasks_.empty() || !ready_modules_.empty()) {
|
|
next_run_time_ = Timestamp::MinusInfinity();
|
|
} else {
|
|
next_run_time_ = Timestamp::PlusInfinity();
|
|
if (!delayed_tasks_.empty())
|
|
next_run_time_ = std::min(next_run_time_, delayed_tasks_.begin()->first);
|
|
if (!delayed_modules_.empty())
|
|
next_run_time_ =
|
|
std::min(next_run_time_, delayed_modules_.begin()->first);
|
|
}
|
|
}
|
|
|
|
void SimulatedSequenceRunner::PostTask(std::unique_ptr<QueuedTask> task) {
|
|
rtc::CritScope lock(&lock_);
|
|
ready_tasks_.emplace_back(std::move(task));
|
|
next_run_time_ = Timestamp::MinusInfinity();
|
|
}
|
|
|
|
void SimulatedSequenceRunner::PostDelayedTask(std::unique_ptr<QueuedTask> task,
|
|
uint32_t milliseconds) {
|
|
rtc::CritScope lock(&lock_);
|
|
Timestamp target_time = GetCurrentTime() + TimeDelta::ms(milliseconds);
|
|
delayed_tasks_[target_time].push_back(std::move(task));
|
|
next_run_time_ = std::min(next_run_time_, target_time);
|
|
}
|
|
|
|
void SimulatedSequenceRunner::Start() {
|
|
std::vector<Module*> starting;
|
|
{
|
|
rtc::CritScope lock(&lock_);
|
|
if (process_thread_running_)
|
|
return;
|
|
process_thread_running_ = true;
|
|
starting.swap(stopped_modules_);
|
|
}
|
|
for (auto& module : starting)
|
|
module->ProcessThreadAttached(this);
|
|
|
|
Timestamp at_time = GetCurrentTime();
|
|
rtc::CritScope lock(&lock_);
|
|
for (auto& module : starting)
|
|
delayed_modules_[GetNextTime(module, at_time)].push_back(module);
|
|
UpdateNextRunTime();
|
|
}
|
|
|
|
void SimulatedSequenceRunner::Stop() {
|
|
std::vector<Module*> stopping;
|
|
{
|
|
rtc::CritScope lock(&lock_);
|
|
process_thread_running_ = false;
|
|
|
|
for (auto* ready : ready_modules_)
|
|
stopped_modules_.push_back(ready);
|
|
ready_modules_.clear();
|
|
|
|
for (auto& delayed : delayed_modules_) {
|
|
for (auto mod : delayed.second)
|
|
stopped_modules_.push_back(mod);
|
|
}
|
|
delayed_modules_.clear();
|
|
|
|
stopping = stopped_modules_;
|
|
}
|
|
for (auto& module : stopping)
|
|
module->ProcessThreadAttached(nullptr);
|
|
}
|
|
|
|
void SimulatedSequenceRunner::WakeUp(Module* module) {
|
|
rtc::CritScope lock(&lock_);
|
|
// If we already are planning to run this module as soon as possible, we don't
|
|
// need to do anything.
|
|
for (auto mod : ready_modules_)
|
|
if (mod == module)
|
|
return;
|
|
|
|
for (auto it = delayed_modules_.begin(); it != delayed_modules_.end(); ++it) {
|
|
if (RemoveByValue(it->second, module))
|
|
break;
|
|
}
|
|
Timestamp next_time = GetNextTime(module, GetCurrentTime());
|
|
delayed_modules_[next_time].push_back(module);
|
|
next_run_time_ = std::min(next_run_time_, next_time);
|
|
}
|
|
|
|
void SimulatedSequenceRunner::RegisterModule(Module* module,
|
|
const rtc::Location& from) {
|
|
module->ProcessThreadAttached(this);
|
|
rtc::CritScope lock(&lock_);
|
|
if (!process_thread_running_) {
|
|
stopped_modules_.push_back(module);
|
|
} else {
|
|
Timestamp next_time = GetNextTime(module, GetCurrentTime());
|
|
delayed_modules_[next_time].push_back(module);
|
|
next_run_time_ = std::min(next_run_time_, next_time);
|
|
}
|
|
}
|
|
|
|
void SimulatedSequenceRunner::DeRegisterModule(Module* module) {
|
|
bool modules_running;
|
|
{
|
|
rtc::CritScope lock(&lock_);
|
|
if (!process_thread_running_) {
|
|
RemoveByValue(stopped_modules_, module);
|
|
} else {
|
|
bool removed = RemoveByValue(ready_modules_, module);
|
|
if (!removed) {
|
|
for (auto& pair : delayed_modules_) {
|
|
if (RemoveByValue(pair.second, module))
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
modules_running = process_thread_running_;
|
|
}
|
|
if (modules_running)
|
|
module->ProcessThreadAttached(nullptr);
|
|
}
|
|
|
|
Timestamp SimulatedSequenceRunner::GetNextTime(Module* module,
|
|
Timestamp at_time) {
|
|
CurrentTaskQueueSetter set_current(this);
|
|
return at_time + TimeDelta::ms(module->TimeUntilNextProcess());
|
|
}
|
|
|
|
SimulatedTimeControllerImpl::SimulatedTimeControllerImpl(Timestamp start_time)
|
|
: thread_id_(rtc::CurrentThreadId()), current_time_(start_time) {}
|
|
|
|
SimulatedTimeControllerImpl::~SimulatedTimeControllerImpl() = default;
|
|
|
|
std::unique_ptr<TaskQueueBase, TaskQueueDeleter>
|
|
SimulatedTimeControllerImpl::CreateTaskQueue(
|
|
absl::string_view name,
|
|
TaskQueueFactory::Priority priority) const {
|
|
// TODO(srte): Remove the const cast when the interface is made mutable.
|
|
auto mutable_this = const_cast<SimulatedTimeControllerImpl*>(this);
|
|
auto task_queue = std::unique_ptr<SimulatedSequenceRunner, TaskQueueDeleter>(
|
|
new SimulatedSequenceRunner(mutable_this, name));
|
|
rtc::CritScope lock(&mutable_this->lock_);
|
|
mutable_this->runners_.push_back(task_queue.get());
|
|
return task_queue;
|
|
}
|
|
|
|
std::unique_ptr<ProcessThread> SimulatedTimeControllerImpl::CreateProcessThread(
|
|
const char* thread_name) {
|
|
rtc::CritScope lock(&lock_);
|
|
auto process_thread =
|
|
std::make_unique<SimulatedSequenceRunner>(this, thread_name);
|
|
runners_.push_back(process_thread.get());
|
|
return process_thread;
|
|
}
|
|
|
|
void SimulatedTimeControllerImpl::YieldExecution() {
|
|
if (rtc::CurrentThreadId() == thread_id_) {
|
|
TaskQueueBase* yielding_from = TaskQueueBase::Current();
|
|
// Since we might continue execution on a process thread, we should reset
|
|
// the thread local task queue reference. This ensures that thread checkers
|
|
// won't think we are executing on the yielding task queue. It also ensure
|
|
// that TaskQueueBase::Current() won't return the yielding task queue.
|
|
SimulatedSequenceRunner::CurrentTaskQueueSetter reset_queue(nullptr);
|
|
RTC_DCHECK_RUN_ON(&thread_checker_);
|
|
// When we yield, we don't want to risk executing further tasks on the
|
|
// currently executing task queue. If there's a ready task that also yields,
|
|
// it's added to this set as well and only tasks on the remaining task
|
|
// queues are executed.
|
|
auto inserted = yielded_.insert(yielding_from);
|
|
RTC_DCHECK(inserted.second);
|
|
RunReadyRunners();
|
|
yielded_.erase(inserted.first);
|
|
}
|
|
}
|
|
|
|
void SimulatedTimeControllerImpl::RunReadyRunners() {
|
|
RTC_DCHECK_RUN_ON(&thread_checker_);
|
|
rtc::CritScope lock(&lock_);
|
|
RTC_DCHECK_EQ(rtc::CurrentThreadId(), thread_id_);
|
|
Timestamp current_time = CurrentTime();
|
|
// Clearing |ready_runners_| in case this is a recursive call:
|
|
// RunReadyRunners -> Run -> Event::Wait -> Yield ->RunReadyRunners
|
|
ready_runners_.clear();
|
|
|
|
// We repeat until we have no ready left to handle tasks posted by ready
|
|
// runners.
|
|
while (true) {
|
|
for (auto* runner : runners_) {
|
|
if (yielded_.find(runner) == yielded_.end() &&
|
|
runner->GetNextRunTime() <= current_time) {
|
|
ready_runners_.push_back(runner);
|
|
}
|
|
}
|
|
if (ready_runners_.empty())
|
|
return;
|
|
while (!ready_runners_.empty()) {
|
|
auto* runner = ready_runners_.front();
|
|
ready_runners_.pop_front();
|
|
runner->UpdateReady(current_time);
|
|
// Note that the Run function might indirectly cause a call to
|
|
// Unregister() which will recursively grab |lock_| again to remove items
|
|
// from |ready_runners_|.
|
|
runner->Run(current_time);
|
|
}
|
|
}
|
|
}
|
|
|
|
Timestamp SimulatedTimeControllerImpl::CurrentTime() const {
|
|
rtc::CritScope lock(&time_lock_);
|
|
return current_time_;
|
|
}
|
|
|
|
Timestamp SimulatedTimeControllerImpl::NextRunTime() const {
|
|
Timestamp current_time = CurrentTime();
|
|
Timestamp next_time = Timestamp::PlusInfinity();
|
|
rtc::CritScope lock(&lock_);
|
|
for (auto* runner : runners_) {
|
|
Timestamp next_run_time = runner->GetNextRunTime();
|
|
if (next_run_time <= current_time)
|
|
return current_time;
|
|
next_time = std::min(next_time, next_run_time);
|
|
}
|
|
return next_time;
|
|
}
|
|
|
|
void SimulatedTimeControllerImpl::AdvanceTime(Timestamp target_time) {
|
|
rtc::CritScope time_lock(&time_lock_);
|
|
RTC_DCHECK_GE(target_time, current_time_);
|
|
current_time_ = target_time;
|
|
}
|
|
|
|
void SimulatedTimeControllerImpl::Unregister(SimulatedSequenceRunner* runner) {
|
|
rtc::CritScope lock(&lock_);
|
|
bool removed = RemoveByValue(runners_, runner);
|
|
RTC_CHECK(removed);
|
|
RemoveByValue(ready_runners_, runner);
|
|
}
|
|
|
|
} // namespace sim_time_impl
|
|
|
|
GlobalSimulatedTimeController::GlobalSimulatedTimeController(
|
|
Timestamp start_time)
|
|
: sim_clock_(start_time.us()), impl_(start_time) {
|
|
global_clock_.SetTime(start_time);
|
|
}
|
|
|
|
GlobalSimulatedTimeController::~GlobalSimulatedTimeController() = default;
|
|
|
|
Clock* GlobalSimulatedTimeController::GetClock() {
|
|
return &sim_clock_;
|
|
}
|
|
|
|
TaskQueueFactory* GlobalSimulatedTimeController::GetTaskQueueFactory() {
|
|
return &impl_;
|
|
}
|
|
|
|
std::unique_ptr<ProcessThread>
|
|
GlobalSimulatedTimeController::CreateProcessThread(const char* thread_name) {
|
|
return impl_.CreateProcessThread(thread_name);
|
|
}
|
|
|
|
void GlobalSimulatedTimeController::Sleep(TimeDelta duration) {
|
|
rtc::ScopedYieldPolicy yield_policy(&impl_);
|
|
Timestamp current_time = impl_.CurrentTime();
|
|
Timestamp target_time = current_time + duration;
|
|
RTC_DCHECK_EQ(current_time.us(), rtc::TimeMicros());
|
|
while (current_time < target_time) {
|
|
impl_.RunReadyRunners();
|
|
Timestamp next_time = std::min(impl_.NextRunTime(), target_time);
|
|
impl_.AdvanceTime(next_time);
|
|
auto delta = next_time - current_time;
|
|
current_time = next_time;
|
|
sim_clock_.AdvanceTimeMicroseconds(delta.us());
|
|
global_clock_.AdvanceTime(delta);
|
|
}
|
|
}
|
|
|
|
void GlobalSimulatedTimeController::InvokeWithControlledYield(
|
|
std::function<void()> closure) {
|
|
rtc::ScopedYieldPolicy yield_policy(&impl_);
|
|
closure();
|
|
}
|
|
|
|
// namespace sim_time_impl
|
|
|
|
} // namespace webrtc
|