mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-20 09:07:52 +01:00

At the point where an EncodedImage is reported to the EncoderBitrateAdjuster (in order to estimate utilization), the image data has been cleared so the size is 0 - meaning the esimtated utilization is 0 so pushback is in effect only applied at the beginning before an estimate is available. This CL fixes that by explicitly using spatial/temporal id and size in bytes, rather than passing along the EncodedImage proxy. It is unclear when this broke, but the regression seems rather old. This CL will affect the encoded bitrate (and thus indirectly BWE ramp-up rate), but should avoid exessive delay at low bitrates. Perf bots will likely trigger alerts, this is expected. In case there are undesired side-effects, we can entirely disable the adjuster using existing field-trials. Bug: webrtc:12606 Change-Id: I936c2045f554696d8b4bb518eee6871ffc12c47d Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/212900 Commit-Queue: Erik Språng <sprang@webrtc.org> Reviewed-by: Philip Eliasson <philipel@webrtc.org> Cr-Commit-Position: refs/heads/master@{#33550}
339 lines
14 KiB
C++
339 lines
14 KiB
C++
/*
|
|
* Copyright (c) 2019 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "video/encoder_bitrate_adjuster.h"
|
|
|
|
#include <algorithm>
|
|
#include <memory>
|
|
#include <vector>
|
|
|
|
#include "rtc_base/experiments/rate_control_settings.h"
|
|
#include "rtc_base/logging.h"
|
|
#include "rtc_base/time_utils.h"
|
|
#include "system_wrappers/include/field_trial.h"
|
|
|
|
namespace webrtc {
|
|
namespace {
|
|
// Helper struct with metadata for a single spatial layer.
|
|
struct LayerRateInfo {
|
|
double link_utilization_factor = 0.0;
|
|
double media_utilization_factor = 0.0;
|
|
DataRate target_rate = DataRate::Zero();
|
|
|
|
DataRate WantedOvershoot() const {
|
|
// If there is headroom, allow bitrate to go up to media rate limit.
|
|
// Still limit media utilization to 1.0, so we don't overshoot over long
|
|
// runs even if we have headroom.
|
|
const double max_media_utilization =
|
|
std::max(1.0, media_utilization_factor);
|
|
if (link_utilization_factor > max_media_utilization) {
|
|
return (link_utilization_factor - max_media_utilization) * target_rate;
|
|
}
|
|
return DataRate::Zero();
|
|
}
|
|
};
|
|
} // namespace
|
|
constexpr int64_t EncoderBitrateAdjuster::kWindowSizeMs;
|
|
constexpr size_t EncoderBitrateAdjuster::kMinFramesSinceLayoutChange;
|
|
constexpr double EncoderBitrateAdjuster::kDefaultUtilizationFactor;
|
|
|
|
EncoderBitrateAdjuster::EncoderBitrateAdjuster(const VideoCodec& codec_settings)
|
|
: utilize_bandwidth_headroom_(RateControlSettings::ParseFromFieldTrials()
|
|
.BitrateAdjusterCanUseNetworkHeadroom()),
|
|
frames_since_layout_change_(0),
|
|
min_bitrates_bps_{} {
|
|
if (codec_settings.codecType == VideoCodecType::kVideoCodecVP9) {
|
|
for (size_t si = 0; si < codec_settings.VP9().numberOfSpatialLayers; ++si) {
|
|
if (codec_settings.spatialLayers[si].active) {
|
|
min_bitrates_bps_[si] =
|
|
std::max(codec_settings.minBitrate * 1000,
|
|
codec_settings.spatialLayers[si].minBitrate * 1000);
|
|
}
|
|
}
|
|
} else {
|
|
for (size_t si = 0; si < codec_settings.numberOfSimulcastStreams; ++si) {
|
|
if (codec_settings.simulcastStream[si].active) {
|
|
min_bitrates_bps_[si] =
|
|
std::max(codec_settings.minBitrate * 1000,
|
|
codec_settings.simulcastStream[si].minBitrate * 1000);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
EncoderBitrateAdjuster::~EncoderBitrateAdjuster() = default;
|
|
|
|
VideoBitrateAllocation EncoderBitrateAdjuster::AdjustRateAllocation(
|
|
const VideoEncoder::RateControlParameters& rates) {
|
|
current_rate_control_parameters_ = rates;
|
|
|
|
// First check that overshoot detectors exist, and store per spatial layer
|
|
// how many active temporal layers we have.
|
|
size_t active_tls_[kMaxSpatialLayers] = {};
|
|
for (size_t si = 0; si < kMaxSpatialLayers; ++si) {
|
|
active_tls_[si] = 0;
|
|
for (size_t ti = 0; ti < kMaxTemporalStreams; ++ti) {
|
|
// Layer is enabled iff it has both positive bitrate and framerate target.
|
|
if (rates.bitrate.GetBitrate(si, ti) > 0 &&
|
|
current_fps_allocation_[si].size() > ti &&
|
|
current_fps_allocation_[si][ti] > 0) {
|
|
++active_tls_[si];
|
|
if (!overshoot_detectors_[si][ti]) {
|
|
overshoot_detectors_[si][ti] =
|
|
std::make_unique<EncoderOvershootDetector>(kWindowSizeMs);
|
|
frames_since_layout_change_ = 0;
|
|
}
|
|
} else if (overshoot_detectors_[si][ti]) {
|
|
// Layer removed, destroy overshoot detector.
|
|
overshoot_detectors_[si][ti].reset();
|
|
frames_since_layout_change_ = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Next poll the overshoot detectors and populate the adjusted allocation.
|
|
const int64_t now_ms = rtc::TimeMillis();
|
|
VideoBitrateAllocation adjusted_allocation;
|
|
std::vector<LayerRateInfo> layer_infos;
|
|
DataRate wanted_overshoot_sum = DataRate::Zero();
|
|
|
|
for (size_t si = 0; si < kMaxSpatialLayers; ++si) {
|
|
layer_infos.emplace_back();
|
|
LayerRateInfo& layer_info = layer_infos.back();
|
|
|
|
layer_info.target_rate =
|
|
DataRate::BitsPerSec(rates.bitrate.GetSpatialLayerSum(si));
|
|
|
|
// Adjustment is done per spatial layer only (not per temporal layer).
|
|
if (frames_since_layout_change_ < kMinFramesSinceLayoutChange) {
|
|
layer_info.link_utilization_factor = kDefaultUtilizationFactor;
|
|
layer_info.media_utilization_factor = kDefaultUtilizationFactor;
|
|
} else if (active_tls_[si] == 0 ||
|
|
layer_info.target_rate == DataRate::Zero()) {
|
|
// No signaled temporal layers, or no bitrate set. Could either be unused
|
|
// spatial layer or bitrate dynamic mode; pass bitrate through without any
|
|
// change.
|
|
layer_info.link_utilization_factor = 1.0;
|
|
layer_info.media_utilization_factor = 1.0;
|
|
} else if (active_tls_[si] == 1) {
|
|
// A single active temporal layer, this might mean single layer or that
|
|
// encoder does not support temporal layers. Merge target bitrates for
|
|
// this spatial layer.
|
|
RTC_DCHECK(overshoot_detectors_[si][0]);
|
|
layer_info.link_utilization_factor =
|
|
overshoot_detectors_[si][0]
|
|
->GetNetworkRateUtilizationFactor(now_ms)
|
|
.value_or(kDefaultUtilizationFactor);
|
|
layer_info.media_utilization_factor =
|
|
overshoot_detectors_[si][0]
|
|
->GetMediaRateUtilizationFactor(now_ms)
|
|
.value_or(kDefaultUtilizationFactor);
|
|
} else if (layer_info.target_rate > DataRate::Zero()) {
|
|
// Multiple temporal layers enabled for this spatial layer. Update rate
|
|
// for each of them and make a weighted average of utilization factors,
|
|
// with bitrate fraction used as weight.
|
|
// If any layer is missing a utilization factor, fall back to default.
|
|
layer_info.link_utilization_factor = 0.0;
|
|
layer_info.media_utilization_factor = 0.0;
|
|
for (size_t ti = 0; ti < active_tls_[si]; ++ti) {
|
|
RTC_DCHECK(overshoot_detectors_[si][ti]);
|
|
const absl::optional<double> ti_link_utilization_factor =
|
|
overshoot_detectors_[si][ti]->GetNetworkRateUtilizationFactor(
|
|
now_ms);
|
|
const absl::optional<double> ti_media_utilization_factor =
|
|
overshoot_detectors_[si][ti]->GetMediaRateUtilizationFactor(now_ms);
|
|
if (!ti_link_utilization_factor || !ti_media_utilization_factor) {
|
|
layer_info.link_utilization_factor = kDefaultUtilizationFactor;
|
|
layer_info.media_utilization_factor = kDefaultUtilizationFactor;
|
|
break;
|
|
}
|
|
const double weight =
|
|
static_cast<double>(rates.bitrate.GetBitrate(si, ti)) /
|
|
layer_info.target_rate.bps();
|
|
layer_info.link_utilization_factor +=
|
|
weight * ti_link_utilization_factor.value();
|
|
layer_info.media_utilization_factor +=
|
|
weight * ti_media_utilization_factor.value();
|
|
}
|
|
} else {
|
|
RTC_NOTREACHED();
|
|
}
|
|
|
|
if (layer_info.link_utilization_factor < 1.0) {
|
|
// TODO(sprang): Consider checking underuse and allowing it to cancel some
|
|
// potential overuse by other streams.
|
|
|
|
// Don't boost target bitrate if encoder is under-using.
|
|
layer_info.link_utilization_factor = 1.0;
|
|
} else {
|
|
// Don't reduce encoder target below 50%, in which case the frame dropper
|
|
// should kick in instead.
|
|
layer_info.link_utilization_factor =
|
|
std::min(layer_info.link_utilization_factor, 2.0);
|
|
|
|
// Keep track of sum of desired overshoot bitrate.
|
|
wanted_overshoot_sum += layer_info.WantedOvershoot();
|
|
}
|
|
}
|
|
|
|
// Available link headroom that can be used to fill wanted overshoot.
|
|
DataRate available_headroom = DataRate::Zero();
|
|
if (utilize_bandwidth_headroom_) {
|
|
available_headroom = rates.bandwidth_allocation -
|
|
DataRate::BitsPerSec(rates.bitrate.get_sum_bps());
|
|
}
|
|
|
|
// All wanted overshoots are satisfied in the same proportion based on
|
|
// available headroom.
|
|
const double granted_overshoot_ratio =
|
|
wanted_overshoot_sum == DataRate::Zero()
|
|
? 0.0
|
|
: std::min(1.0, available_headroom.bps<double>() /
|
|
wanted_overshoot_sum.bps());
|
|
|
|
for (size_t si = 0; si < kMaxSpatialLayers; ++si) {
|
|
LayerRateInfo& layer_info = layer_infos[si];
|
|
double utilization_factor = layer_info.link_utilization_factor;
|
|
DataRate allowed_overshoot =
|
|
granted_overshoot_ratio * layer_info.WantedOvershoot();
|
|
if (allowed_overshoot > DataRate::Zero()) {
|
|
// Pretend the target bitrate is higher by the allowed overshoot.
|
|
// Since utilization_factor = actual_bitrate / target_bitrate, it can be
|
|
// done by multiplying by old_target_bitrate / new_target_bitrate.
|
|
utilization_factor *= layer_info.target_rate.bps<double>() /
|
|
(allowed_overshoot.bps<double>() +
|
|
layer_info.target_rate.bps<double>());
|
|
}
|
|
|
|
if (min_bitrates_bps_[si] > 0 &&
|
|
layer_info.target_rate > DataRate::Zero() &&
|
|
DataRate::BitsPerSec(min_bitrates_bps_[si]) < layer_info.target_rate) {
|
|
// Make sure rate adjuster doesn't push target bitrate below minimum.
|
|
utilization_factor =
|
|
std::min(utilization_factor, layer_info.target_rate.bps<double>() /
|
|
min_bitrates_bps_[si]);
|
|
}
|
|
|
|
if (layer_info.target_rate > DataRate::Zero()) {
|
|
RTC_LOG(LS_VERBOSE) << "Utilization factors for spatial index " << si
|
|
<< ": link = " << layer_info.link_utilization_factor
|
|
<< ", media = " << layer_info.media_utilization_factor
|
|
<< ", wanted overshoot = "
|
|
<< layer_info.WantedOvershoot().bps()
|
|
<< " bps, available headroom = "
|
|
<< available_headroom.bps()
|
|
<< " bps, total utilization factor = "
|
|
<< utilization_factor;
|
|
}
|
|
|
|
// Populate the adjusted allocation with determined utilization factor.
|
|
if (active_tls_[si] == 1 &&
|
|
layer_info.target_rate >
|
|
DataRate::BitsPerSec(rates.bitrate.GetBitrate(si, 0))) {
|
|
// Bitrate allocation indicates temporal layer usage, but encoder
|
|
// does not seem to support it. Pipe all bitrate into a single
|
|
// overshoot detector.
|
|
uint32_t adjusted_layer_bitrate_bps =
|
|
std::min(static_cast<uint32_t>(
|
|
layer_info.target_rate.bps() / utilization_factor + 0.5),
|
|
layer_info.target_rate.bps<uint32_t>());
|
|
adjusted_allocation.SetBitrate(si, 0, adjusted_layer_bitrate_bps);
|
|
} else {
|
|
for (size_t ti = 0; ti < kMaxTemporalStreams; ++ti) {
|
|
if (rates.bitrate.HasBitrate(si, ti)) {
|
|
uint32_t adjusted_layer_bitrate_bps = std::min(
|
|
static_cast<uint32_t>(
|
|
rates.bitrate.GetBitrate(si, ti) / utilization_factor + 0.5),
|
|
rates.bitrate.GetBitrate(si, ti));
|
|
adjusted_allocation.SetBitrate(si, ti, adjusted_layer_bitrate_bps);
|
|
}
|
|
}
|
|
}
|
|
|
|
// In case of rounding errors, add bitrate to TL0 until min bitrate
|
|
// constraint has been met.
|
|
const uint32_t adjusted_spatial_layer_sum =
|
|
adjusted_allocation.GetSpatialLayerSum(si);
|
|
if (layer_info.target_rate > DataRate::Zero() &&
|
|
adjusted_spatial_layer_sum < min_bitrates_bps_[si]) {
|
|
adjusted_allocation.SetBitrate(si, 0,
|
|
adjusted_allocation.GetBitrate(si, 0) +
|
|
min_bitrates_bps_[si] -
|
|
adjusted_spatial_layer_sum);
|
|
}
|
|
|
|
// Update all detectors with the new adjusted bitrate targets.
|
|
for (size_t ti = 0; ti < kMaxTemporalStreams; ++ti) {
|
|
const uint32_t layer_bitrate_bps = adjusted_allocation.GetBitrate(si, ti);
|
|
// Overshoot detector may not exist, eg for ScreenshareLayers case.
|
|
if (layer_bitrate_bps > 0 && overshoot_detectors_[si][ti]) {
|
|
// Number of frames in this layer alone is not cumulative, so
|
|
// subtract fps from any low temporal layer.
|
|
const double fps_fraction =
|
|
static_cast<double>(
|
|
current_fps_allocation_[si][ti] -
|
|
(ti == 0 ? 0 : current_fps_allocation_[si][ti - 1])) /
|
|
VideoEncoder::EncoderInfo::kMaxFramerateFraction;
|
|
|
|
if (fps_fraction <= 0.0) {
|
|
RTC_LOG(LS_WARNING)
|
|
<< "Encoder config has temporal layer with non-zero bitrate "
|
|
"allocation but zero framerate allocation.";
|
|
continue;
|
|
}
|
|
|
|
overshoot_detectors_[si][ti]->SetTargetRate(
|
|
DataRate::BitsPerSec(layer_bitrate_bps),
|
|
fps_fraction * rates.framerate_fps, now_ms);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Since no spatial layers or streams are toggled by the adjustment
|
|
// bw-limited flag stays the same.
|
|
adjusted_allocation.set_bw_limited(rates.bitrate.is_bw_limited());
|
|
|
|
return adjusted_allocation;
|
|
}
|
|
|
|
void EncoderBitrateAdjuster::OnEncoderInfo(
|
|
const VideoEncoder::EncoderInfo& encoder_info) {
|
|
// Copy allocation into current state and re-allocate.
|
|
for (size_t si = 0; si < kMaxSpatialLayers; ++si) {
|
|
current_fps_allocation_[si] = encoder_info.fps_allocation[si];
|
|
}
|
|
|
|
// Trigger re-allocation so that overshoot detectors have correct targets.
|
|
AdjustRateAllocation(current_rate_control_parameters_);
|
|
}
|
|
|
|
void EncoderBitrateAdjuster::OnEncodedFrame(DataSize size,
|
|
int spatial_index,
|
|
int temporal_index) {
|
|
++frames_since_layout_change_;
|
|
// Detectors may not exist, for instance if ScreenshareLayers is used.
|
|
auto& detector = overshoot_detectors_[spatial_index][temporal_index];
|
|
if (detector) {
|
|
detector->OnEncodedFrame(size.bytes(), rtc::TimeMillis());
|
|
}
|
|
}
|
|
|
|
void EncoderBitrateAdjuster::Reset() {
|
|
for (size_t si = 0; si < kMaxSpatialLayers; ++si) {
|
|
for (size_t ti = 0; ti < kMaxTemporalStreams; ++ti) {
|
|
overshoot_detectors_[si][ti].reset();
|
|
}
|
|
}
|
|
// Call AdjustRateAllocation() with the last know bitrate allocation, so that
|
|
// the appropriate overuse detectors are immediately re-created.
|
|
AdjustRateAllocation(current_rate_control_parameters_);
|
|
}
|
|
|
|
} // namespace webrtc
|