webrtc/net/dcsctp/socket/dcsctp_socket_test.cc
Victor Boivie 2bfb5db548 dcsctp: Update zero checksum option to v-06 draft
https://datatracker.ietf.org/doc/draft-ietf-tsvwg-sctp-zero-checksum/06/

The previous implementation was for version 00, and since then changes
have been made. The chunk that is used to negotiate this capability has
now grown to include an additional property - the sender's alternate
error detection method.

Bug: webrtc:14997
Change-Id: I78043d187b79f40bbadbcba02eae6eedf54f30f9
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/336380
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#41759}
2024-02-19 10:25:17 +00:00

3257 lines
116 KiB
C++

/*
* Copyright (c) 2021 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "net/dcsctp/socket/dcsctp_socket.h"
#include <algorithm>
#include <cstdint>
#include <deque>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "absl/flags/flag.h"
#include "absl/memory/memory.h"
#include "absl/strings/string_view.h"
#include "absl/types/optional.h"
#include "api/array_view.h"
#include "net/dcsctp/common/handover_testing.h"
#include "net/dcsctp/common/math.h"
#include "net/dcsctp/packet/chunk/abort_chunk.h"
#include "net/dcsctp/packet/chunk/chunk.h"
#include "net/dcsctp/packet/chunk/cookie_ack_chunk.h"
#include "net/dcsctp/packet/chunk/cookie_echo_chunk.h"
#include "net/dcsctp/packet/chunk/data_chunk.h"
#include "net/dcsctp/packet/chunk/data_common.h"
#include "net/dcsctp/packet/chunk/error_chunk.h"
#include "net/dcsctp/packet/chunk/forward_tsn_chunk.h"
#include "net/dcsctp/packet/chunk/heartbeat_ack_chunk.h"
#include "net/dcsctp/packet/chunk/heartbeat_request_chunk.h"
#include "net/dcsctp/packet/chunk/idata_chunk.h"
#include "net/dcsctp/packet/chunk/init_ack_chunk.h"
#include "net/dcsctp/packet/chunk/init_chunk.h"
#include "net/dcsctp/packet/chunk/reconfig_chunk.h"
#include "net/dcsctp/packet/chunk/sack_chunk.h"
#include "net/dcsctp/packet/chunk/shutdown_chunk.h"
#include "net/dcsctp/packet/error_cause/error_cause.h"
#include "net/dcsctp/packet/error_cause/unrecognized_chunk_type_cause.h"
#include "net/dcsctp/packet/parameter/heartbeat_info_parameter.h"
#include "net/dcsctp/packet/parameter/outgoing_ssn_reset_request_parameter.h"
#include "net/dcsctp/packet/parameter/parameter.h"
#include "net/dcsctp/packet/parameter/reconfiguration_response_parameter.h"
#include "net/dcsctp/packet/sctp_packet.h"
#include "net/dcsctp/packet/tlv_trait.h"
#include "net/dcsctp/public/dcsctp_message.h"
#include "net/dcsctp/public/dcsctp_options.h"
#include "net/dcsctp/public/dcsctp_socket.h"
#include "net/dcsctp/public/text_pcap_packet_observer.h"
#include "net/dcsctp/public/types.h"
#include "net/dcsctp/rx/reassembly_queue.h"
#include "net/dcsctp/socket/mock_dcsctp_socket_callbacks.h"
#include "net/dcsctp/testing/testing_macros.h"
#include "rtc_base/gunit.h"
#include "test/gmock.h"
ABSL_FLAG(bool, dcsctp_capture_packets, false, "Print packet capture.");
namespace dcsctp {
namespace {
using ::testing::_;
using ::testing::AllOf;
using ::testing::ElementsAre;
using ::testing::ElementsAreArray;
using ::testing::Eq;
using ::testing::HasSubstr;
using ::testing::IsEmpty;
using ::testing::Not;
using ::testing::Property;
using ::testing::SizeIs;
using ::testing::UnorderedElementsAre;
using ::webrtc::TimeDelta;
using ::webrtc::Timestamp;
constexpr SendOptions kSendOptions;
constexpr size_t kLargeMessageSize = DcSctpOptions::kMaxSafeMTUSize * 20;
constexpr size_t kSmallMessageSize = 10;
constexpr int kMaxBurstPackets = 4;
constexpr DcSctpOptions kDefaultOptions;
MATCHER_P(HasChunks, chunks, "") {
absl::optional<SctpPacket> packet = SctpPacket::Parse(arg, kDefaultOptions);
if (!packet.has_value()) {
*result_listener << "data didn't parse as an SctpPacket";
return false;
}
return ExplainMatchResult(chunks, packet->descriptors(), result_listener);
}
MATCHER_P(IsChunkType, chunk_type, "") {
return ExplainMatchResult(chunk_type, arg.type, result_listener);
}
MATCHER_P(IsDataChunk, properties, "") {
if (arg.type != DataChunk::kType) {
*result_listener << "the chunk is not a data chunk";
return false;
}
absl::optional<DataChunk> chunk = DataChunk::Parse(arg.data);
if (!chunk.has_value()) {
*result_listener << "The chunk didn't parse as a data chunk";
return false;
}
return ExplainMatchResult(properties, *chunk, result_listener);
}
MATCHER_P(IsSack, properties, "") {
if (arg.type != SackChunk::kType) {
*result_listener << "the chunk is not a sack chunk";
return false;
}
absl::optional<SackChunk> chunk = SackChunk::Parse(arg.data);
if (!chunk.has_value()) {
*result_listener << "The chunk didn't parse as a sack chunk";
return false;
}
return ExplainMatchResult(properties, *chunk, result_listener);
}
MATCHER_P(IsReConfig, properties, "") {
if (arg.type != ReConfigChunk::kType) {
*result_listener << "the chunk is not a re-config chunk";
return false;
}
absl::optional<ReConfigChunk> chunk = ReConfigChunk::Parse(arg.data);
if (!chunk.has_value()) {
*result_listener << "The chunk didn't parse as a re-config chunk";
return false;
}
return ExplainMatchResult(properties, *chunk, result_listener);
}
MATCHER_P(IsHeartbeatAck, properties, "") {
if (arg.type != HeartbeatAckChunk::kType) {
*result_listener << "the chunk is not a HeartbeatAckChunk";
return false;
}
absl::optional<HeartbeatAckChunk> chunk = HeartbeatAckChunk::Parse(arg.data);
if (!chunk.has_value()) {
*result_listener << "The chunk didn't parse as a HeartbeatAckChunk";
return false;
}
return ExplainMatchResult(properties, *chunk, result_listener);
}
MATCHER_P(IsHeartbeatRequest, properties, "") {
if (arg.type != HeartbeatRequestChunk::kType) {
*result_listener << "the chunk is not a HeartbeatRequestChunk";
return false;
}
absl::optional<HeartbeatRequestChunk> chunk =
HeartbeatRequestChunk::Parse(arg.data);
if (!chunk.has_value()) {
*result_listener << "The chunk didn't parse as a HeartbeatRequestChunk";
return false;
}
return ExplainMatchResult(properties, *chunk, result_listener);
}
MATCHER_P(HasParameters, parameters, "") {
return ExplainMatchResult(parameters, arg.parameters().descriptors(),
result_listener);
}
MATCHER_P(IsOutgoingResetRequest, properties, "") {
if (arg.type != OutgoingSSNResetRequestParameter::kType) {
*result_listener
<< "the parameter is not an OutgoingSSNResetRequestParameter";
return false;
}
absl::optional<OutgoingSSNResetRequestParameter> parameter =
OutgoingSSNResetRequestParameter::Parse(arg.data);
if (!parameter.has_value()) {
*result_listener
<< "The parameter didn't parse as an OutgoingSSNResetRequestParameter";
return false;
}
return ExplainMatchResult(properties, *parameter, result_listener);
}
MATCHER_P(IsReconfigurationResponse, properties, "") {
if (arg.type != ReconfigurationResponseParameter::kType) {
*result_listener
<< "the parameter is not an ReconfigurationResponseParameter";
return false;
}
absl::optional<ReconfigurationResponseParameter> parameter =
ReconfigurationResponseParameter::Parse(arg.data);
if (!parameter.has_value()) {
*result_listener
<< "The parameter didn't parse as an ReconfigurationResponseParameter";
return false;
}
return ExplainMatchResult(properties, *parameter, result_listener);
}
TSN AddTo(TSN tsn, int delta) {
return TSN(*tsn + delta);
}
DcSctpOptions FixupOptions(DcSctpOptions options = {}) {
DcSctpOptions fixup = options;
// To make the interval more predictable in tests.
fixup.heartbeat_interval_include_rtt = false;
fixup.max_burst = kMaxBurstPackets;
return fixup;
}
std::unique_ptr<PacketObserver> GetPacketObserver(absl::string_view name) {
if (absl::GetFlag(FLAGS_dcsctp_capture_packets)) {
return std::make_unique<TextPcapPacketObserver>(name);
}
return nullptr;
}
struct SocketUnderTest {
explicit SocketUnderTest(absl::string_view name,
const DcSctpOptions& opts = kDefaultOptions)
: options(FixupOptions(opts)),
cb(name),
socket(name, cb, GetPacketObserver(name), options) {}
const DcSctpOptions options;
testing::NiceMock<MockDcSctpSocketCallbacks> cb;
DcSctpSocket socket;
};
void ExchangeMessages(SocketUnderTest& a, SocketUnderTest& z) {
bool delivered_packet = false;
do {
delivered_packet = false;
std::vector<uint8_t> packet_from_a = a.cb.ConsumeSentPacket();
if (!packet_from_a.empty()) {
delivered_packet = true;
z.socket.ReceivePacket(std::move(packet_from_a));
}
std::vector<uint8_t> packet_from_z = z.cb.ConsumeSentPacket();
if (!packet_from_z.empty()) {
delivered_packet = true;
a.socket.ReceivePacket(std::move(packet_from_z));
}
} while (delivered_packet);
}
void RunTimers(SocketUnderTest& s) {
for (;;) {
absl::optional<TimeoutID> timeout_id = s.cb.GetNextExpiredTimeout();
if (!timeout_id.has_value()) {
break;
}
s.socket.HandleTimeout(*timeout_id);
}
}
void AdvanceTime(SocketUnderTest& a, SocketUnderTest& z, TimeDelta duration) {
a.cb.AdvanceTime(duration);
z.cb.AdvanceTime(duration);
RunTimers(a);
RunTimers(z);
}
// Exchanges messages between `a` and `z`, advancing time until there are no
// more pending timers, or until `max_timeout` is reached.
void ExchangeMessagesAndAdvanceTime(
SocketUnderTest& a,
SocketUnderTest& z,
TimeDelta max_timeout = TimeDelta::Seconds(10)) {
Timestamp time_started = a.cb.Now();
while (a.cb.Now() - time_started < max_timeout) {
ExchangeMessages(a, z);
TimeDelta time_to_next_timeout =
std::min(a.cb.GetTimeToNextTimeout(), z.cb.GetTimeToNextTimeout());
if (time_to_next_timeout.IsPlusInfinity()) {
// No more pending timer.
return;
}
AdvanceTime(a, z, time_to_next_timeout);
}
}
// Calls Connect() on `sock_a_` and make the connection established.
void ConnectSockets(SocketUnderTest& a, SocketUnderTest& z) {
EXPECT_CALL(a.cb, OnConnected).Times(1);
EXPECT_CALL(z.cb, OnConnected).Times(1);
a.socket.Connect();
// Z reads INIT, INIT_ACK, COOKIE_ECHO, COOKIE_ACK
z.socket.ReceivePacket(a.cb.ConsumeSentPacket());
a.socket.ReceivePacket(z.cb.ConsumeSentPacket());
z.socket.ReceivePacket(a.cb.ConsumeSentPacket());
a.socket.ReceivePacket(z.cb.ConsumeSentPacket());
EXPECT_EQ(a.socket.state(), SocketState::kConnected);
EXPECT_EQ(z.socket.state(), SocketState::kConnected);
}
std::unique_ptr<SocketUnderTest> HandoverSocket(
std::unique_ptr<SocketUnderTest> sut) {
EXPECT_EQ(sut->socket.GetHandoverReadiness(), HandoverReadinessStatus());
bool is_closed = sut->socket.state() == SocketState::kClosed;
if (!is_closed) {
EXPECT_CALL(sut->cb, OnClosed).Times(1);
}
absl::optional<DcSctpSocketHandoverState> handover_state =
sut->socket.GetHandoverStateAndClose();
EXPECT_TRUE(handover_state.has_value());
g_handover_state_transformer_for_test(&*handover_state);
auto handover_socket = std::make_unique<SocketUnderTest>("H", sut->options);
if (!is_closed) {
EXPECT_CALL(handover_socket->cb, OnConnected).Times(1);
}
handover_socket->socket.RestoreFromState(*handover_state);
return handover_socket;
}
std::vector<uint32_t> GetReceivedMessagePpids(SocketUnderTest& z) {
std::vector<uint32_t> ppids;
for (;;) {
absl::optional<DcSctpMessage> msg = z.cb.ConsumeReceivedMessage();
if (!msg.has_value()) {
break;
}
ppids.push_back(*msg->ppid());
}
return ppids;
}
// Test parameter that controls whether to perform handovers during the test. A
// test can have multiple points where it conditionally hands over socket Z.
// Either socket Z will be handed over at all those points or handed over never.
enum class HandoverMode {
kNoHandover,
kPerformHandovers,
};
class DcSctpSocketParametrizedTest
: public ::testing::Test,
public ::testing::WithParamInterface<HandoverMode> {
protected:
// Trigger handover for `sut` depending on the current test param.
std::unique_ptr<SocketUnderTest> MaybeHandoverSocket(
std::unique_ptr<SocketUnderTest> sut) {
if (GetParam() == HandoverMode::kPerformHandovers) {
return HandoverSocket(std::move(sut));
}
return sut;
}
// Trigger handover for socket Z depending on the current test param.
// Then checks message passing to verify the handed over socket is functional.
void MaybeHandoverSocketAndSendMessage(SocketUnderTest& a,
std::unique_ptr<SocketUnderTest> z) {
if (GetParam() == HandoverMode::kPerformHandovers) {
z = HandoverSocket(std::move(z));
}
ExchangeMessages(a, *z);
a.socket.Send(DcSctpMessage(StreamID(1), PPID(53), {1, 2}), kSendOptions);
ExchangeMessages(a, *z);
absl::optional<DcSctpMessage> msg = z->cb.ConsumeReceivedMessage();
ASSERT_TRUE(msg.has_value());
EXPECT_EQ(msg->stream_id(), StreamID(1));
}
};
INSTANTIATE_TEST_SUITE_P(Handovers,
DcSctpSocketParametrizedTest,
testing::Values(HandoverMode::kNoHandover,
HandoverMode::kPerformHandovers),
[](const auto& test_info) {
return test_info.param ==
HandoverMode::kPerformHandovers
? "WithHandovers"
: "NoHandover";
});
TEST(DcSctpSocketTest, EstablishConnection) {
SocketUnderTest a("A");
SocketUnderTest z("Z");
EXPECT_CALL(a.cb, OnConnected).Times(1);
EXPECT_CALL(z.cb, OnConnected).Times(1);
EXPECT_CALL(a.cb, OnConnectionRestarted).Times(0);
EXPECT_CALL(z.cb, OnConnectionRestarted).Times(0);
a.socket.Connect();
// Z reads INIT, produces INIT_ACK
z.socket.ReceivePacket(a.cb.ConsumeSentPacket());
// A reads INIT_ACK, produces COOKIE_ECHO
a.socket.ReceivePacket(z.cb.ConsumeSentPacket());
// Z reads COOKIE_ECHO, produces COOKIE_ACK
z.socket.ReceivePacket(a.cb.ConsumeSentPacket());
// A reads COOKIE_ACK.
a.socket.ReceivePacket(z.cb.ConsumeSentPacket());
EXPECT_EQ(a.socket.state(), SocketState::kConnected);
EXPECT_EQ(z.socket.state(), SocketState::kConnected);
}
TEST(DcSctpSocketTest, EstablishConnectionWithSetupCollision) {
SocketUnderTest a("A");
SocketUnderTest z("Z");
EXPECT_CALL(a.cb, OnConnected).Times(1);
EXPECT_CALL(z.cb, OnConnected).Times(1);
EXPECT_CALL(a.cb, OnConnectionRestarted).Times(0);
EXPECT_CALL(z.cb, OnConnectionRestarted).Times(0);
a.socket.Connect();
z.socket.Connect();
ExchangeMessages(a, z);
EXPECT_EQ(a.socket.state(), SocketState::kConnected);
EXPECT_EQ(z.socket.state(), SocketState::kConnected);
}
TEST(DcSctpSocketTest, ShuttingDownWhileEstablishingConnection) {
SocketUnderTest a("A");
SocketUnderTest z("Z");
EXPECT_CALL(a.cb, OnConnected).Times(0);
EXPECT_CALL(z.cb, OnConnected).Times(1);
a.socket.Connect();
// Z reads INIT, produces INIT_ACK
z.socket.ReceivePacket(a.cb.ConsumeSentPacket());
// A reads INIT_ACK, produces COOKIE_ECHO
a.socket.ReceivePacket(z.cb.ConsumeSentPacket());
// Z reads COOKIE_ECHO, produces COOKIE_ACK
z.socket.ReceivePacket(a.cb.ConsumeSentPacket());
// Drop COOKIE_ACK, just to more easily verify shutdown protocol.
z.cb.ConsumeSentPacket();
// As Socket A has received INIT_ACK, it has a TCB and is connected, while
// Socket Z needs to receive COOKIE_ECHO to get there. Socket A still has
// timers running at this point.
EXPECT_EQ(a.socket.state(), SocketState::kConnecting);
EXPECT_EQ(z.socket.state(), SocketState::kConnected);
// Socket A is now shut down, which should make it stop those timers.
a.socket.Shutdown();
EXPECT_CALL(a.cb, OnClosed).Times(1);
EXPECT_CALL(z.cb, OnClosed).Times(1);
// Z reads SHUTDOWN, produces SHUTDOWN_ACK
z.socket.ReceivePacket(a.cb.ConsumeSentPacket());
// A reads SHUTDOWN_ACK, produces SHUTDOWN_COMPLETE
a.socket.ReceivePacket(z.cb.ConsumeSentPacket());
// Z reads SHUTDOWN_COMPLETE.
z.socket.ReceivePacket(a.cb.ConsumeSentPacket());
EXPECT_TRUE(a.cb.ConsumeSentPacket().empty());
EXPECT_TRUE(z.cb.ConsumeSentPacket().empty());
EXPECT_EQ(a.socket.state(), SocketState::kClosed);
EXPECT_EQ(z.socket.state(), SocketState::kClosed);
}
TEST(DcSctpSocketTest, EstablishSimultaneousConnection) {
SocketUnderTest a("A");
SocketUnderTest z("Z");
EXPECT_CALL(a.cb, OnConnected).Times(1);
EXPECT_CALL(z.cb, OnConnected).Times(1);
EXPECT_CALL(a.cb, OnConnectionRestarted).Times(0);
EXPECT_CALL(z.cb, OnConnectionRestarted).Times(0);
a.socket.Connect();
// INIT isn't received by Z, as it wasn't ready yet.
a.cb.ConsumeSentPacket();
z.socket.Connect();
// A reads INIT, produces INIT_ACK
a.socket.ReceivePacket(z.cb.ConsumeSentPacket());
// Z reads INIT_ACK, sends COOKIE_ECHO
z.socket.ReceivePacket(a.cb.ConsumeSentPacket());
// A reads COOKIE_ECHO - establishes connection.
a.socket.ReceivePacket(z.cb.ConsumeSentPacket());
EXPECT_EQ(a.socket.state(), SocketState::kConnected);
// Proceed with the remaining packets.
ExchangeMessages(a, z);
EXPECT_EQ(a.socket.state(), SocketState::kConnected);
EXPECT_EQ(z.socket.state(), SocketState::kConnected);
}
TEST(DcSctpSocketTest, EstablishConnectionLostCookieAck) {
SocketUnderTest a("A");
SocketUnderTest z("Z");
EXPECT_CALL(a.cb, OnConnected).Times(1);
EXPECT_CALL(z.cb, OnConnected).Times(1);
EXPECT_CALL(a.cb, OnConnectionRestarted).Times(0);
EXPECT_CALL(z.cb, OnConnectionRestarted).Times(0);
a.socket.Connect();
// Z reads INIT, produces INIT_ACK
z.socket.ReceivePacket(a.cb.ConsumeSentPacket());
// A reads INIT_ACK, produces COOKIE_ECHO
a.socket.ReceivePacket(z.cb.ConsumeSentPacket());
// Z reads COOKIE_ECHO, produces COOKIE_ACK
z.socket.ReceivePacket(a.cb.ConsumeSentPacket());
// COOKIE_ACK is lost.
z.cb.ConsumeSentPacket();
EXPECT_EQ(a.socket.state(), SocketState::kConnecting);
EXPECT_EQ(z.socket.state(), SocketState::kConnected);
// This will make A re-send the COOKIE_ECHO
AdvanceTime(a, z, a.options.t1_cookie_timeout.ToTimeDelta());
// Z reads COOKIE_ECHO, produces COOKIE_ACK
z.socket.ReceivePacket(a.cb.ConsumeSentPacket());
// A reads COOKIE_ACK.
a.socket.ReceivePacket(z.cb.ConsumeSentPacket());
EXPECT_EQ(a.socket.state(), SocketState::kConnected);
EXPECT_EQ(z.socket.state(), SocketState::kConnected);
}
TEST(DcSctpSocketTest, ResendInitAndEstablishConnection) {
SocketUnderTest a("A");
SocketUnderTest z("Z");
a.socket.Connect();
// INIT is never received by Z.
EXPECT_THAT(a.cb.ConsumeSentPacket(),
HasChunks(ElementsAre(IsChunkType(InitChunk::kType))));
AdvanceTime(a, z, a.options.t1_init_timeout.ToTimeDelta());
// Z reads INIT, produces INIT_ACK
z.socket.ReceivePacket(a.cb.ConsumeSentPacket());
// A reads INIT_ACK, produces COOKIE_ECHO
a.socket.ReceivePacket(z.cb.ConsumeSentPacket());
// Z reads COOKIE_ECHO, produces COOKIE_ACK
z.socket.ReceivePacket(a.cb.ConsumeSentPacket());
// A reads COOKIE_ACK.
a.socket.ReceivePacket(z.cb.ConsumeSentPacket());
EXPECT_EQ(a.socket.state(), SocketState::kConnected);
EXPECT_EQ(z.socket.state(), SocketState::kConnected);
}
TEST(DcSctpSocketTest, ResendingInitTooManyTimesAborts) {
SocketUnderTest a("A");
SocketUnderTest z("Z");
a.socket.Connect();
// INIT is never received by Z.
EXPECT_THAT(a.cb.ConsumeSentPacket(),
HasChunks(ElementsAre(IsChunkType(InitChunk::kType))));
for (int i = 0; i < *a.options.max_init_retransmits; ++i) {
AdvanceTime(a, z, a.options.t1_init_timeout.ToTimeDelta() * (1 << i));
// INIT is resent
EXPECT_THAT(a.cb.ConsumeSentPacket(),
HasChunks(ElementsAre(IsChunkType(InitChunk::kType))));
}
// Another timeout, after the max init retransmits.
EXPECT_CALL(a.cb, OnAborted).Times(1);
AdvanceTime(a, z,
a.options.t1_init_timeout.ToTimeDelta() *
(1 << *a.options.max_init_retransmits));
EXPECT_EQ(a.socket.state(), SocketState::kClosed);
}
TEST(DcSctpSocketTest, ResendCookieEchoAndEstablishConnection) {
SocketUnderTest a("A");
SocketUnderTest z("Z");
a.socket.Connect();
// Z reads INIT, produces INIT_ACK
z.socket.ReceivePacket(a.cb.ConsumeSentPacket());
// A reads INIT_ACK, produces COOKIE_ECHO
a.socket.ReceivePacket(z.cb.ConsumeSentPacket());
// COOKIE_ECHO is never received by Z.
EXPECT_THAT(a.cb.ConsumeSentPacket(),
HasChunks(ElementsAre(IsChunkType(CookieEchoChunk::kType))));
AdvanceTime(a, z, a.options.t1_init_timeout.ToTimeDelta());
// Z reads COOKIE_ECHO, produces COOKIE_ACK
z.socket.ReceivePacket(a.cb.ConsumeSentPacket());
// A reads COOKIE_ACK.
a.socket.ReceivePacket(z.cb.ConsumeSentPacket());
EXPECT_EQ(a.socket.state(), SocketState::kConnected);
EXPECT_EQ(z.socket.state(), SocketState::kConnected);
}
TEST(DcSctpSocketTest, ResendingCookieEchoTooManyTimesAborts) {
SocketUnderTest a("A");
SocketUnderTest z("Z");
a.socket.Connect();
// Z reads INIT, produces INIT_ACK
z.socket.ReceivePacket(a.cb.ConsumeSentPacket());
// A reads INIT_ACK, produces COOKIE_ECHO
a.socket.ReceivePacket(z.cb.ConsumeSentPacket());
// COOKIE_ECHO is never received by Z.
EXPECT_THAT(a.cb.ConsumeSentPacket(),
HasChunks(ElementsAre(IsChunkType(CookieEchoChunk::kType))));
for (int i = 0; i < *a.options.max_init_retransmits; ++i) {
AdvanceTime(a, z, a.options.t1_cookie_timeout.ToTimeDelta() * (1 << i));
// COOKIE_ECHO is resent
EXPECT_THAT(a.cb.ConsumeSentPacket(),
HasChunks(ElementsAre(IsChunkType(CookieEchoChunk::kType))));
}
// Another timeout, after the max init retransmits.
EXPECT_CALL(a.cb, OnAborted).Times(1);
AdvanceTime(a, z,
a.options.t1_cookie_timeout.ToTimeDelta() *
(1 << *a.options.max_init_retransmits));
EXPECT_EQ(a.socket.state(), SocketState::kClosed);
}
TEST(DcSctpSocketTest, DoesntSendMorePacketsUntilCookieAckHasBeenReceived) {
SocketUnderTest a("A");
SocketUnderTest z("Z");
a.socket.Send(DcSctpMessage(StreamID(1), PPID(53),
std::vector<uint8_t>(kLargeMessageSize)),
kSendOptions);
a.socket.Connect();
// Z reads INIT, produces INIT_ACK
z.socket.ReceivePacket(a.cb.ConsumeSentPacket());
// A reads INIT_ACK, produces COOKIE_ECHO
a.socket.ReceivePacket(z.cb.ConsumeSentPacket());
// COOKIE_ECHO is never received by Z.
EXPECT_THAT(a.cb.ConsumeSentPacket(),
HasChunks(ElementsAre(IsChunkType(CookieEchoChunk::kType),
IsDataChunk(_))));
EXPECT_THAT(a.cb.ConsumeSentPacket(), IsEmpty());
// There are DATA chunks in the sent packet (that was lost), which means that
// the T3-RTX timer is running, but as the socket is in kCookieEcho state, it
// will be T1-COOKIE that drives retransmissions, so when the T3-RTX expires,
// nothing should be retransmitted.
ASSERT_TRUE(a.options.rto_initial < a.options.t1_cookie_timeout);
AdvanceTime(a, z, a.options.rto_initial.ToTimeDelta());
EXPECT_THAT(a.cb.ConsumeSentPacket(), IsEmpty());
// When T1-COOKIE expires, both the COOKIE-ECHO and DATA should be present.
AdvanceTime(a, z,
a.options.t1_cookie_timeout.ToTimeDelta() -
a.options.rto_initial.ToTimeDelta());
// And this COOKIE-ECHO and DATA is also lost - never received by Z.
EXPECT_THAT(a.cb.ConsumeSentPacket(),
HasChunks(ElementsAre(IsChunkType(CookieEchoChunk::kType),
IsDataChunk(_))));
EXPECT_THAT(a.cb.ConsumeSentPacket(), IsEmpty());
// COOKIE_ECHO has exponential backoff.
AdvanceTime(a, z, a.options.t1_cookie_timeout.ToTimeDelta() * 2);
// Z reads COOKIE_ECHO, produces COOKIE_ACK
z.socket.ReceivePacket(a.cb.ConsumeSentPacket());
// A reads COOKIE_ACK.
a.socket.ReceivePacket(z.cb.ConsumeSentPacket());
EXPECT_EQ(a.socket.state(), SocketState::kConnected);
EXPECT_EQ(z.socket.state(), SocketState::kConnected);
ExchangeMessages(a, z);
EXPECT_THAT(z.cb.ConsumeReceivedMessage()->payload(),
SizeIs(kLargeMessageSize));
}
TEST_P(DcSctpSocketParametrizedTest, ShutdownConnection) {
SocketUnderTest a("A");
auto z = std::make_unique<SocketUnderTest>("Z");
ConnectSockets(a, *z);
z = MaybeHandoverSocket(std::move(z));
RTC_LOG(LS_INFO) << "Shutting down";
EXPECT_CALL(z->cb, OnClosed).Times(1);
a.socket.Shutdown();
// Z reads SHUTDOWN, produces SHUTDOWN_ACK
z->socket.ReceivePacket(a.cb.ConsumeSentPacket());
// A reads SHUTDOWN_ACK, produces SHUTDOWN_COMPLETE
a.socket.ReceivePacket(z->cb.ConsumeSentPacket());
// Z reads SHUTDOWN_COMPLETE.
z->socket.ReceivePacket(a.cb.ConsumeSentPacket());
EXPECT_EQ(a.socket.state(), SocketState::kClosed);
EXPECT_EQ(z->socket.state(), SocketState::kClosed);
z = MaybeHandoverSocket(std::move(z));
EXPECT_EQ(z->socket.state(), SocketState::kClosed);
}
TEST(DcSctpSocketTest, ShutdownTimerExpiresTooManyTimeClosesConnection) {
SocketUnderTest a("A");
SocketUnderTest z("Z");
ConnectSockets(a, z);
a.socket.Shutdown();
// Drop first SHUTDOWN packet.
a.cb.ConsumeSentPacket();
EXPECT_EQ(a.socket.state(), SocketState::kShuttingDown);
for (int i = 0; i < *a.options.max_retransmissions; ++i) {
AdvanceTime(a, z, a.options.rto_initial.ToTimeDelta() * (1 << i));
// Dropping every shutdown chunk.
EXPECT_THAT(a.cb.ConsumeSentPacket(),
HasChunks(ElementsAre(IsChunkType(ShutdownChunk::kType))));
EXPECT_TRUE(a.cb.ConsumeSentPacket().empty());
}
// The last expiry, makes it abort the connection.
EXPECT_CALL(a.cb, OnAborted).Times(1);
AdvanceTime(a, z,
a.options.rto_initial.ToTimeDelta() *
(1 << *a.options.max_retransmissions));
EXPECT_EQ(a.socket.state(), SocketState::kClosed);
EXPECT_THAT(a.cb.ConsumeSentPacket(),
HasChunks(ElementsAre(IsChunkType(AbortChunk::kType))));
EXPECT_TRUE(a.cb.ConsumeSentPacket().empty());
}
TEST(DcSctpSocketTest, EstablishConnectionWhileSendingData) {
SocketUnderTest a("A");
SocketUnderTest z("Z");
a.socket.Connect();
a.socket.Send(DcSctpMessage(StreamID(1), PPID(53), {1, 2}), kSendOptions);
// Z reads INIT, produces INIT_ACK
z.socket.ReceivePacket(a.cb.ConsumeSentPacket());
// // A reads INIT_ACK, produces COOKIE_ECHO
a.socket.ReceivePacket(z.cb.ConsumeSentPacket());
// // Z reads COOKIE_ECHO, produces COOKIE_ACK
z.socket.ReceivePacket(a.cb.ConsumeSentPacket());
// // A reads COOKIE_ACK.
a.socket.ReceivePacket(z.cb.ConsumeSentPacket());
EXPECT_EQ(a.socket.state(), SocketState::kConnected);
EXPECT_EQ(z.socket.state(), SocketState::kConnected);
absl::optional<DcSctpMessage> msg = z.cb.ConsumeReceivedMessage();
ASSERT_TRUE(msg.has_value());
EXPECT_EQ(msg->stream_id(), StreamID(1));
}
TEST(DcSctpSocketTest, SendMessageAfterEstablished) {
SocketUnderTest a("A");
SocketUnderTest z("Z");
ConnectSockets(a, z);
a.socket.Send(DcSctpMessage(StreamID(1), PPID(53), {1, 2}), kSendOptions);
z.socket.ReceivePacket(a.cb.ConsumeSentPacket());
absl::optional<DcSctpMessage> msg = z.cb.ConsumeReceivedMessage();
ASSERT_TRUE(msg.has_value());
EXPECT_EQ(msg->stream_id(), StreamID(1));
}
TEST_P(DcSctpSocketParametrizedTest, TimeoutResendsPacket) {
SocketUnderTest a("A");
auto z = std::make_unique<SocketUnderTest>("Z");
ConnectSockets(a, *z);
z = MaybeHandoverSocket(std::move(z));
a.socket.Send(DcSctpMessage(StreamID(1), PPID(53), {1, 2}), kSendOptions);
a.cb.ConsumeSentPacket();
RTC_LOG(LS_INFO) << "Advancing time";
AdvanceTime(a, *z, a.options.rto_initial.ToTimeDelta());
z->socket.ReceivePacket(a.cb.ConsumeSentPacket());
absl::optional<DcSctpMessage> msg = z->cb.ConsumeReceivedMessage();
ASSERT_TRUE(msg.has_value());
EXPECT_EQ(msg->stream_id(), StreamID(1));
MaybeHandoverSocketAndSendMessage(a, std::move(z));
}
TEST_P(DcSctpSocketParametrizedTest, SendALotOfBytesMissedSecondPacket) {
SocketUnderTest a("A");
auto z = std::make_unique<SocketUnderTest>("Z");
ConnectSockets(a, *z);
z = MaybeHandoverSocket(std::move(z));
std::vector<uint8_t> payload(kLargeMessageSize);
a.socket.Send(DcSctpMessage(StreamID(1), PPID(53), payload), kSendOptions);
// First DATA
z->socket.ReceivePacket(a.cb.ConsumeSentPacket());
// Second DATA (lost)
a.cb.ConsumeSentPacket();
// Retransmit and handle the rest
ExchangeMessages(a, *z);
absl::optional<DcSctpMessage> msg = z->cb.ConsumeReceivedMessage();
ASSERT_TRUE(msg.has_value());
EXPECT_EQ(msg->stream_id(), StreamID(1));
EXPECT_THAT(msg->payload(), testing::ElementsAreArray(payload));
MaybeHandoverSocketAndSendMessage(a, std::move(z));
}
TEST_P(DcSctpSocketParametrizedTest, SendingHeartbeatAnswersWithAck) {
SocketUnderTest a("A");
auto z = std::make_unique<SocketUnderTest>("Z");
ConnectSockets(a, *z);
z = MaybeHandoverSocket(std::move(z));
// Inject a HEARTBEAT chunk
SctpPacket::Builder b(a.socket.verification_tag(), DcSctpOptions());
uint8_t info[] = {1, 2, 3, 4};
Parameters::Builder params_builder;
params_builder.Add(HeartbeatInfoParameter(info));
b.Add(HeartbeatRequestChunk(params_builder.Build()));
a.socket.ReceivePacket(b.Build());
// HEARTBEAT_ACK is sent as a reply. Capture it.
EXPECT_THAT(a.cb.ConsumeSentPacket(),
HasChunks(ElementsAre(IsHeartbeatAck(
Property(&HeartbeatAckChunk::info,
Optional(Property(&HeartbeatInfoParameter::info,
ElementsAre(1, 2, 3, 4))))))));
MaybeHandoverSocketAndSendMessage(a, std::move(z));
}
TEST_P(DcSctpSocketParametrizedTest, ExpectHeartbeatToBeSent) {
SocketUnderTest a("A");
auto z = std::make_unique<SocketUnderTest>("Z");
ConnectSockets(a, *z);
z = MaybeHandoverSocket(std::move(z));
EXPECT_THAT(a.cb.ConsumeSentPacket(), IsEmpty());
AdvanceTime(a, *z, a.options.heartbeat_interval.ToTimeDelta());
std::vector<uint8_t> packet = a.cb.ConsumeSentPacket();
// The info is a single 64-bit number.
EXPECT_THAT(
packet,
HasChunks(ElementsAre(IsHeartbeatRequest(Property(
&HeartbeatRequestChunk::info,
Optional(Property(&HeartbeatInfoParameter::info, SizeIs(8))))))));
// Feed it to Sock-z and expect a HEARTBEAT_ACK that will be propagated back.
z->socket.ReceivePacket(packet);
a.socket.ReceivePacket(z->cb.ConsumeSentPacket());
MaybeHandoverSocketAndSendMessage(a, std::move(z));
}
TEST_P(DcSctpSocketParametrizedTest,
CloseConnectionAfterTooManyLostHeartbeats) {
SocketUnderTest a("A");
auto z = std::make_unique<SocketUnderTest>("Z");
ConnectSockets(a, *z);
z = MaybeHandoverSocket(std::move(z));
EXPECT_CALL(z->cb, OnClosed).Times(1);
EXPECT_THAT(a.cb.ConsumeSentPacket(), testing::IsEmpty());
// Force-close socket Z so that it doesn't interfere from now on.
z->socket.Close();
DurationMs time_to_next_hearbeat = a.options.heartbeat_interval;
for (int i = 0; i < *a.options.max_retransmissions; ++i) {
RTC_LOG(LS_INFO) << "Letting HEARTBEAT interval timer expire - sending...";
AdvanceTime(a, *z, time_to_next_hearbeat.ToTimeDelta());
// Dropping every heartbeat.
ASSERT_HAS_VALUE_AND_ASSIGN(
SctpPacket hb_packet,
SctpPacket::Parse(a.cb.ConsumeSentPacket(), z->options));
EXPECT_EQ(hb_packet.descriptors()[0].type, HeartbeatRequestChunk::kType);
RTC_LOG(LS_INFO) << "Letting the heartbeat expire.";
AdvanceTime(a, *z, TimeDelta::Millis(1000));
time_to_next_hearbeat = a.options.heartbeat_interval - DurationMs(1000);
}
RTC_LOG(LS_INFO) << "Letting HEARTBEAT interval timer expire - sending...";
AdvanceTime(a, *z, time_to_next_hearbeat.ToTimeDelta());
// Last heartbeat
EXPECT_THAT(a.cb.ConsumeSentPacket(), Not(IsEmpty()));
EXPECT_CALL(a.cb, OnAborted).Times(1);
// Should suffice as exceeding RTO
AdvanceTime(a, *z, TimeDelta::Millis(1000));
z = MaybeHandoverSocket(std::move(z));
}
TEST_P(DcSctpSocketParametrizedTest, RecoversAfterASuccessfulAck) {
SocketUnderTest a("A");
auto z = std::make_unique<SocketUnderTest>("Z");
ConnectSockets(a, *z);
z = MaybeHandoverSocket(std::move(z));
EXPECT_THAT(a.cb.ConsumeSentPacket(), testing::IsEmpty());
EXPECT_CALL(z->cb, OnClosed).Times(1);
// Force-close socket Z so that it doesn't interfere from now on.
z->socket.Close();
TimeDelta time_to_next_hearbeat = a.options.heartbeat_interval.ToTimeDelta();
for (int i = 0; i < *a.options.max_retransmissions; ++i) {
AdvanceTime(a, *z, time_to_next_hearbeat);
// Dropping every heartbeat.
a.cb.ConsumeSentPacket();
RTC_LOG(LS_INFO) << "Letting the heartbeat expire.";
AdvanceTime(a, *z, TimeDelta::Seconds(1));
time_to_next_hearbeat =
a.options.heartbeat_interval.ToTimeDelta() - TimeDelta::Seconds(1);
}
RTC_LOG(LS_INFO) << "Getting the last heartbeat - and acking it";
AdvanceTime(a, *z, time_to_next_hearbeat);
std::vector<uint8_t> hb_packet_raw = a.cb.ConsumeSentPacket();
ASSERT_HAS_VALUE_AND_ASSIGN(SctpPacket hb_packet,
SctpPacket::Parse(hb_packet_raw, z->options));
ASSERT_THAT(hb_packet.descriptors(), SizeIs(1));
ASSERT_HAS_VALUE_AND_ASSIGN(
HeartbeatRequestChunk hb,
HeartbeatRequestChunk::Parse(hb_packet.descriptors()[0].data));
SctpPacket::Builder b(a.socket.verification_tag(), a.options);
b.Add(HeartbeatAckChunk(std::move(hb).extract_parameters()));
a.socket.ReceivePacket(b.Build());
// Should suffice as exceeding RTO - which will not fire.
EXPECT_CALL(a.cb, OnAborted).Times(0);
AdvanceTime(a, *z, TimeDelta::Seconds(1));
EXPECT_THAT(a.cb.ConsumeSentPacket(), IsEmpty());
// Verify that we get new heartbeats again.
RTC_LOG(LS_INFO) << "Expecting a new heartbeat";
AdvanceTime(a, *z, time_to_next_hearbeat);
EXPECT_THAT(a.cb.ConsumeSentPacket(),
HasChunks(ElementsAre(IsHeartbeatRequest(_))));
}
TEST_P(DcSctpSocketParametrizedTest, ResetStream) {
SocketUnderTest a("A");
auto z = std::make_unique<SocketUnderTest>("Z");
ConnectSockets(a, *z);
z = MaybeHandoverSocket(std::move(z));
a.socket.Send(DcSctpMessage(StreamID(1), PPID(53), {1, 2}), {});
z->socket.ReceivePacket(a.cb.ConsumeSentPacket());
absl::optional<DcSctpMessage> msg = z->cb.ConsumeReceivedMessage();
ASSERT_TRUE(msg.has_value());
EXPECT_EQ(msg->stream_id(), StreamID(1));
// Handle SACK
a.socket.ReceivePacket(z->cb.ConsumeSentPacket());
// Reset the outgoing stream. This will directly send a RE-CONFIG.
a.socket.ResetStreams(std::vector<StreamID>({StreamID(1)}));
// Receiving the packet will trigger a callback, indicating that A has
// reset its stream. It will also send a RE-CONFIG with a response.
EXPECT_CALL(z->cb, OnIncomingStreamsReset).Times(1);
z->socket.ReceivePacket(a.cb.ConsumeSentPacket());
// Receiving a response will trigger a callback. Streams are now reset.
EXPECT_CALL(a.cb, OnStreamsResetPerformed).Times(1);
a.socket.ReceivePacket(z->cb.ConsumeSentPacket());
MaybeHandoverSocketAndSendMessage(a, std::move(z));
}
TEST_P(DcSctpSocketParametrizedTest, ResetStreamWillMakeChunksStartAtZeroSsn) {
SocketUnderTest a("A");
auto z = std::make_unique<SocketUnderTest>("Z");
ConnectSockets(a, *z);
z = MaybeHandoverSocket(std::move(z));
std::vector<uint8_t> payload(a.options.mtu - 100);
a.socket.Send(DcSctpMessage(StreamID(1), PPID(53), payload), {});
a.socket.Send(DcSctpMessage(StreamID(1), PPID(53), payload), {});
auto packet1 = a.cb.ConsumeSentPacket();
EXPECT_THAT(
packet1,
HasChunks(ElementsAre(IsDataChunk(Property(&DataChunk::ssn, SSN(0))))));
z->socket.ReceivePacket(packet1);
auto packet2 = a.cb.ConsumeSentPacket();
EXPECT_THAT(
packet2,
HasChunks(ElementsAre(IsDataChunk(Property(&DataChunk::ssn, SSN(1))))));
z->socket.ReceivePacket(packet2);
// Handle SACK
a.socket.ReceivePacket(z->cb.ConsumeSentPacket());
absl::optional<DcSctpMessage> msg1 = z->cb.ConsumeReceivedMessage();
ASSERT_TRUE(msg1.has_value());
EXPECT_EQ(msg1->stream_id(), StreamID(1));
absl::optional<DcSctpMessage> msg2 = z->cb.ConsumeReceivedMessage();
ASSERT_TRUE(msg2.has_value());
EXPECT_EQ(msg2->stream_id(), StreamID(1));
// Reset the outgoing stream. This will directly send a RE-CONFIG.
a.socket.ResetStreams(std::vector<StreamID>({StreamID(1)}));
// RE-CONFIG, req
z->socket.ReceivePacket(a.cb.ConsumeSentPacket());
// RE-CONFIG, resp
a.socket.ReceivePacket(z->cb.ConsumeSentPacket());
a.socket.Send(DcSctpMessage(StreamID(1), PPID(53), payload), {});
a.socket.Send(DcSctpMessage(StreamID(1), PPID(53), payload), {});
auto packet3 = a.cb.ConsumeSentPacket();
EXPECT_THAT(
packet3,
HasChunks(ElementsAre(IsDataChunk(Property(&DataChunk::ssn, SSN(0))))));
z->socket.ReceivePacket(packet3);
auto packet4 = a.cb.ConsumeSentPacket();
EXPECT_THAT(
packet4,
HasChunks(ElementsAre(IsDataChunk(Property(&DataChunk::ssn, SSN(1))))));
z->socket.ReceivePacket(packet4);
// Handle SACK
a.socket.ReceivePacket(z->cb.ConsumeSentPacket());
MaybeHandoverSocketAndSendMessage(a, std::move(z));
}
TEST_P(DcSctpSocketParametrizedTest,
ResetStreamWillOnlyResetTheRequestedStreams) {
SocketUnderTest a("A");
auto z = std::make_unique<SocketUnderTest>("Z");
ConnectSockets(a, *z);
z = MaybeHandoverSocket(std::move(z));
std::vector<uint8_t> payload(a.options.mtu - 100);
// Send two ordered messages on SID 1
a.socket.Send(DcSctpMessage(StreamID(1), PPID(53), payload), {});
a.socket.Send(DcSctpMessage(StreamID(1), PPID(53), payload), {});
auto packet1 = a.cb.ConsumeSentPacket();
EXPECT_THAT(packet1, HasChunks(ElementsAre(IsDataChunk(
AllOf(Property(&DataChunk::stream_id, StreamID(1)),
Property(&DataChunk::ssn, SSN(0)))))));
z->socket.ReceivePacket(packet1);
auto packet2 = a.cb.ConsumeSentPacket();
EXPECT_THAT(packet2, HasChunks(ElementsAre(IsDataChunk(
AllOf(Property(&DataChunk::stream_id, StreamID(1)),
Property(&DataChunk::ssn, SSN(1)))))));
z->socket.ReceivePacket(packet2);
// Handle SACK
a.socket.ReceivePacket(z->cb.ConsumeSentPacket());
// Do the same, for SID 3
a.socket.Send(DcSctpMessage(StreamID(3), PPID(53), payload), {});
a.socket.Send(DcSctpMessage(StreamID(3), PPID(53), payload), {});
auto packet3 = a.cb.ConsumeSentPacket();
EXPECT_THAT(packet3, HasChunks(ElementsAre(IsDataChunk(
AllOf(Property(&DataChunk::stream_id, StreamID(3)),
Property(&DataChunk::ssn, SSN(0)))))));
z->socket.ReceivePacket(packet3);
auto packet4 = a.cb.ConsumeSentPacket();
EXPECT_THAT(packet4, HasChunks(ElementsAre(IsDataChunk(
AllOf(Property(&DataChunk::stream_id, StreamID(3)),
Property(&DataChunk::ssn, SSN(1)))))));
z->socket.ReceivePacket(packet4);
a.socket.ReceivePacket(z->cb.ConsumeSentPacket());
// Receive all messages.
absl::optional<DcSctpMessage> msg1 = z->cb.ConsumeReceivedMessage();
ASSERT_TRUE(msg1.has_value());
EXPECT_EQ(msg1->stream_id(), StreamID(1));
absl::optional<DcSctpMessage> msg2 = z->cb.ConsumeReceivedMessage();
ASSERT_TRUE(msg2.has_value());
EXPECT_EQ(msg2->stream_id(), StreamID(1));
absl::optional<DcSctpMessage> msg3 = z->cb.ConsumeReceivedMessage();
ASSERT_TRUE(msg3.has_value());
EXPECT_EQ(msg3->stream_id(), StreamID(3));
absl::optional<DcSctpMessage> msg4 = z->cb.ConsumeReceivedMessage();
ASSERT_TRUE(msg4.has_value());
EXPECT_EQ(msg4->stream_id(), StreamID(3));
// Reset SID 1. This will directly send a RE-CONFIG.
a.socket.ResetStreams(std::vector<StreamID>({StreamID(3)}));
// RE-CONFIG, req
z->socket.ReceivePacket(a.cb.ConsumeSentPacket());
// RE-CONFIG, resp
a.socket.ReceivePacket(z->cb.ConsumeSentPacket());
// Send a message on SID 1 and 3 - SID 1 should not be reset, but 3 should.
a.socket.Send(DcSctpMessage(StreamID(1), PPID(53), payload), {});
a.socket.Send(DcSctpMessage(StreamID(3), PPID(53), payload), {});
auto packet5 = a.cb.ConsumeSentPacket();
EXPECT_THAT(packet5,
HasChunks(ElementsAre(IsDataChunk(
AllOf(Property(&DataChunk::stream_id, StreamID(1)),
Property(&DataChunk::ssn, SSN(2))))))); // Unchanged.
z->socket.ReceivePacket(packet5);
auto packet6 = a.cb.ConsumeSentPacket();
EXPECT_THAT(packet6, HasChunks(ElementsAre(IsDataChunk(AllOf(
Property(&DataChunk::stream_id, StreamID(3)),
Property(&DataChunk::ssn, SSN(0))))))); // Reset
z->socket.ReceivePacket(packet6);
// Handle SACK
a.socket.ReceivePacket(z->cb.ConsumeSentPacket());
MaybeHandoverSocketAndSendMessage(a, std::move(z));
}
TEST_P(DcSctpSocketParametrizedTest, OnePeerReconnects) {
SocketUnderTest a("A");
auto z = std::make_unique<SocketUnderTest>("Z");
ConnectSockets(a, *z);
z = MaybeHandoverSocket(std::move(z));
EXPECT_CALL(a.cb, OnConnectionRestarted).Times(1);
// Let's be evil here - reconnect while a fragmented packet was about to be
// sent. The receiving side should get it in full.
std::vector<uint8_t> payload(kLargeMessageSize);
a.socket.Send(DcSctpMessage(StreamID(1), PPID(53), payload), kSendOptions);
// First DATA
z->socket.ReceivePacket(a.cb.ConsumeSentPacket());
// Create a new association, z2 - and don't use z anymore.
SocketUnderTest z2("Z2");
z2.socket.Connect();
// Retransmit and handle the rest. As there will be some chunks in-flight that
// have the wrong verification tag, those will yield errors.
ExchangeMessages(a, z2);
absl::optional<DcSctpMessage> msg = z2.cb.ConsumeReceivedMessage();
ASSERT_TRUE(msg.has_value());
EXPECT_EQ(msg->stream_id(), StreamID(1));
EXPECT_THAT(msg->payload(), testing::ElementsAreArray(payload));
}
TEST_P(DcSctpSocketParametrizedTest, SendMessageWithLimitedRtx) {
SocketUnderTest a("A");
auto z = std::make_unique<SocketUnderTest>("Z");
ConnectSockets(a, *z);
z = MaybeHandoverSocket(std::move(z));
SendOptions send_options;
send_options.max_retransmissions = 0;
std::vector<uint8_t> payload(a.options.mtu - 100);
a.socket.Send(DcSctpMessage(StreamID(1), PPID(51), payload), send_options);
a.socket.Send(DcSctpMessage(StreamID(1), PPID(52), payload), send_options);
a.socket.Send(DcSctpMessage(StreamID(1), PPID(53), payload), send_options);
// First DATA
z->socket.ReceivePacket(a.cb.ConsumeSentPacket());
// Second DATA (lost)
a.cb.ConsumeSentPacket();
// Third DATA
z->socket.ReceivePacket(a.cb.ConsumeSentPacket());
// Handle SACK for first DATA
a.socket.ReceivePacket(z->cb.ConsumeSentPacket());
// Handle delayed SACK for third DATA
AdvanceTime(a, *z, a.options.delayed_ack_max_timeout.ToTimeDelta());
// Handle SACK for second DATA
a.socket.ReceivePacket(z->cb.ConsumeSentPacket());
// Now the missing data chunk will be marked as nacked, but it might still be
// in-flight and the reported gap could be due to out-of-order delivery. So
// the RetransmissionQueue will not mark it as "to be retransmitted" until
// after the t3-rtx timer has expired.
AdvanceTime(a, *z, a.options.rto_initial.ToTimeDelta());
// The chunk will be marked as retransmitted, and then as abandoned, which
// will trigger a FORWARD-TSN to be sent.
// FORWARD-TSN (third)
z->socket.ReceivePacket(a.cb.ConsumeSentPacket());
// Which will trigger a SACK
a.socket.ReceivePacket(z->cb.ConsumeSentPacket());
absl::optional<DcSctpMessage> msg1 = z->cb.ConsumeReceivedMessage();
ASSERT_TRUE(msg1.has_value());
EXPECT_EQ(msg1->ppid(), PPID(51));
absl::optional<DcSctpMessage> msg2 = z->cb.ConsumeReceivedMessage();
ASSERT_TRUE(msg2.has_value());
EXPECT_EQ(msg2->ppid(), PPID(53));
absl::optional<DcSctpMessage> msg3 = z->cb.ConsumeReceivedMessage();
EXPECT_FALSE(msg3.has_value());
MaybeHandoverSocketAndSendMessage(a, std::move(z));
}
TEST_P(DcSctpSocketParametrizedTest, SendManyFragmentedMessagesWithLimitedRtx) {
SocketUnderTest a("A");
auto z = std::make_unique<SocketUnderTest>("Z");
ConnectSockets(a, *z);
z = MaybeHandoverSocket(std::move(z));
SendOptions send_options;
send_options.unordered = IsUnordered(true);
send_options.max_retransmissions = 0;
std::vector<uint8_t> payload(a.options.mtu * 2 - 100 /* margin */);
// Sending first message
a.socket.Send(DcSctpMessage(StreamID(1), PPID(51), payload), send_options);
// Sending second message
a.socket.Send(DcSctpMessage(StreamID(1), PPID(52), payload), send_options);
// Sending third message
a.socket.Send(DcSctpMessage(StreamID(1), PPID(53), payload), send_options);
// Sending fourth message
a.socket.Send(DcSctpMessage(StreamID(1), PPID(54), payload), send_options);
// First DATA, first fragment
std::vector<uint8_t> packet = a.cb.ConsumeSentPacket();
EXPECT_THAT(packet, HasChunks(ElementsAre(
IsDataChunk(Property(&DataChunk::ppid, PPID(51))))));
z->socket.ReceivePacket(std::move(packet));
// First DATA, second fragment (lost)
packet = a.cb.ConsumeSentPacket();
EXPECT_THAT(packet, HasChunks(ElementsAre(
IsDataChunk(Property(&DataChunk::ppid, PPID(51))))));
// Second DATA, first fragment
packet = a.cb.ConsumeSentPacket();
EXPECT_THAT(packet, HasChunks(ElementsAre(
IsDataChunk(Property(&DataChunk::ppid, PPID(52))))));
z->socket.ReceivePacket(std::move(packet));
// Second DATA, second fragment (lost)
packet = a.cb.ConsumeSentPacket();
EXPECT_THAT(packet, HasChunks(ElementsAre(IsDataChunk(
AllOf(Property(&DataChunk::ppid, PPID(52)),
Property(&DataChunk::ssn, SSN(0)))))));
// Third DATA, first fragment
packet = a.cb.ConsumeSentPacket();
EXPECT_THAT(packet, HasChunks(ElementsAre(IsDataChunk(
AllOf(Property(&DataChunk::ppid, PPID(53)),
Property(&DataChunk::ssn, SSN(0)))))));
z->socket.ReceivePacket(std::move(packet));
// Third DATA, second fragment (lost)
packet = a.cb.ConsumeSentPacket();
EXPECT_THAT(packet, HasChunks(ElementsAre(IsDataChunk(
AllOf(Property(&DataChunk::ppid, PPID(53)),
Property(&DataChunk::ssn, SSN(0)))))));
// Fourth DATA, first fragment
packet = a.cb.ConsumeSentPacket();
EXPECT_THAT(packet, HasChunks(ElementsAre(IsDataChunk(
AllOf(Property(&DataChunk::ppid, PPID(54)),
Property(&DataChunk::ssn, SSN(0)))))));
z->socket.ReceivePacket(std::move(packet));
// Fourth DATA, second fragment
packet = a.cb.ConsumeSentPacket();
EXPECT_THAT(packet, HasChunks(ElementsAre(IsDataChunk(
AllOf(Property(&DataChunk::ppid, PPID(54)),
Property(&DataChunk::ssn, SSN(0)))))));
z->socket.ReceivePacket(std::move(packet));
ExchangeMessages(a, *z);
// Let the RTX timer expire, and exchange FORWARD-TSN/SACKs
AdvanceTime(a, *z, a.options.rto_initial.ToTimeDelta());
ExchangeMessages(a, *z);
absl::optional<DcSctpMessage> msg1 = z->cb.ConsumeReceivedMessage();
ASSERT_TRUE(msg1.has_value());
EXPECT_EQ(msg1->ppid(), PPID(54));
ASSERT_FALSE(z->cb.ConsumeReceivedMessage().has_value());
MaybeHandoverSocketAndSendMessage(a, std::move(z));
}
struct FakeChunkConfig : ChunkConfig {
static constexpr int kType = 0x49;
static constexpr size_t kHeaderSize = 4;
static constexpr int kVariableLengthAlignment = 0;
};
class FakeChunk : public Chunk, public TLVTrait<FakeChunkConfig> {
public:
FakeChunk() {}
FakeChunk(FakeChunk&& other) = default;
FakeChunk& operator=(FakeChunk&& other) = default;
void SerializeTo(std::vector<uint8_t>& out) const override {
AllocateTLV(out);
}
std::string ToString() const override { return "FAKE"; }
};
TEST_P(DcSctpSocketParametrizedTest, ReceivingUnknownChunkRespondsWithError) {
SocketUnderTest a("A");
auto z = std::make_unique<SocketUnderTest>("Z");
ConnectSockets(a, *z);
z = MaybeHandoverSocket(std::move(z));
// Inject a FAKE chunk
SctpPacket::Builder b(a.socket.verification_tag(), DcSctpOptions());
b.Add(FakeChunk());
a.socket.ReceivePacket(b.Build());
// ERROR is sent as a reply. Capture it.
ASSERT_HAS_VALUE_AND_ASSIGN(
SctpPacket reply_packet,
SctpPacket::Parse(a.cb.ConsumeSentPacket(), z->options));
ASSERT_THAT(reply_packet.descriptors(), SizeIs(1));
ASSERT_HAS_VALUE_AND_ASSIGN(
ErrorChunk error, ErrorChunk::Parse(reply_packet.descriptors()[0].data));
ASSERT_HAS_VALUE_AND_ASSIGN(
UnrecognizedChunkTypeCause cause,
error.error_causes().get<UnrecognizedChunkTypeCause>());
EXPECT_THAT(cause.unrecognized_chunk(), ElementsAre(0x49, 0x00, 0x00, 0x04));
MaybeHandoverSocketAndSendMessage(a, std::move(z));
}
TEST_P(DcSctpSocketParametrizedTest, ReceivingErrorChunkReportsAsCallback) {
SocketUnderTest a("A");
auto z = std::make_unique<SocketUnderTest>("Z");
ConnectSockets(a, *z);
z = MaybeHandoverSocket(std::move(z));
// Inject a ERROR chunk
SctpPacket::Builder b(a.socket.verification_tag(), DcSctpOptions());
b.Add(
ErrorChunk(Parameters::Builder()
.Add(UnrecognizedChunkTypeCause({0x49, 0x00, 0x00, 0x04}))
.Build()));
EXPECT_CALL(a.cb, OnError(ErrorKind::kPeerReported,
HasSubstr("Unrecognized Chunk Type")));
a.socket.ReceivePacket(b.Build());
MaybeHandoverSocketAndSendMessage(a, std::move(z));
}
TEST(DcSctpSocketTest, PassingHighWatermarkWillOnlyAcceptCumAckTsn) {
SocketUnderTest a("A");
constexpr size_t kReceiveWindowBufferSize = 2000;
SocketUnderTest z(
"Z", {.mtu = 3000,
.max_receiver_window_buffer_size = kReceiveWindowBufferSize});
EXPECT_CALL(z.cb, OnClosed).Times(0);
EXPECT_CALL(z.cb, OnAborted).Times(0);
a.socket.Connect();
std::vector<uint8_t> init_data = a.cb.ConsumeSentPacket();
ASSERT_HAS_VALUE_AND_ASSIGN(SctpPacket init_packet,
SctpPacket::Parse(init_data, z.options));
ASSERT_HAS_VALUE_AND_ASSIGN(
InitChunk init_chunk,
InitChunk::Parse(init_packet.descriptors()[0].data));
z.socket.ReceivePacket(init_data);
a.socket.ReceivePacket(z.cb.ConsumeSentPacket());
z.socket.ReceivePacket(a.cb.ConsumeSentPacket());
a.socket.ReceivePacket(z.cb.ConsumeSentPacket());
// Fill up Z2 to the high watermark limit.
constexpr size_t kWatermarkLimit =
kReceiveWindowBufferSize * ReassemblyQueue::kHighWatermarkLimit;
constexpr size_t kRemainingSize = kReceiveWindowBufferSize - kWatermarkLimit;
TSN tsn = init_chunk.initial_tsn();
AnyDataChunk::Options opts;
opts.is_beginning = Data::IsBeginning(true);
z.socket.ReceivePacket(
SctpPacket::Builder(z.socket.verification_tag(), z.options)
.Add(DataChunk(tsn, StreamID(1), SSN(0), PPID(53),
std::vector<uint8_t>(kWatermarkLimit + 1), opts))
.Build());
// First DATA will always trigger a SACK. It's not interesting.
EXPECT_THAT(z.cb.ConsumeSentPacket(),
HasChunks(ElementsAre(IsSack(
AllOf(Property(&SackChunk::cumulative_tsn_ack, tsn),
Property(&SackChunk::gap_ack_blocks, IsEmpty()))))));
// This DATA should be accepted - it's advancing cum ack tsn.
z.socket.ReceivePacket(
SctpPacket::Builder(z.socket.verification_tag(), z.options)
.Add(DataChunk(AddTo(tsn, 1), StreamID(1), SSN(0), PPID(53),
std::vector<uint8_t>(1),
/*options=*/{}))
.Build());
// The receiver might have moved into delayed ack mode.
AdvanceTime(a, z, z.options.rto_initial.ToTimeDelta());
EXPECT_THAT(z.cb.ConsumeSentPacket(),
HasChunks(ElementsAre(IsSack(
AllOf(Property(&SackChunk::cumulative_tsn_ack, AddTo(tsn, 1)),
Property(&SackChunk::gap_ack_blocks, IsEmpty()))))));
// This DATA will not be accepted - it's not advancing cum ack tsn.
z.socket.ReceivePacket(
SctpPacket::Builder(z.socket.verification_tag(), z.options)
.Add(DataChunk(AddTo(tsn, 3), StreamID(1), SSN(0), PPID(53),
std::vector<uint8_t>(1),
/*options=*/{}))
.Build());
// Sack will be sent in IMMEDIATE mode when this is happening.
EXPECT_THAT(z.cb.ConsumeSentPacket(),
HasChunks(ElementsAre(IsSack(
AllOf(Property(&SackChunk::cumulative_tsn_ack, AddTo(tsn, 1)),
Property(&SackChunk::gap_ack_blocks, IsEmpty()))))));
// This DATA will not be accepted either.
z.socket.ReceivePacket(
SctpPacket::Builder(z.socket.verification_tag(), z.options)
.Add(DataChunk(AddTo(tsn, 4), StreamID(1), SSN(0), PPID(53),
std::vector<uint8_t>(1),
/*options=*/{}))
.Build());
// Sack will be sent in IMMEDIATE mode when this is happening.
EXPECT_THAT(z.cb.ConsumeSentPacket(),
HasChunks(ElementsAre(IsSack(
AllOf(Property(&SackChunk::cumulative_tsn_ack, AddTo(tsn, 1)),
Property(&SackChunk::gap_ack_blocks, IsEmpty()))))));
// This DATA should be accepted, and it fills the reassembly queue.
z.socket.ReceivePacket(
SctpPacket::Builder(z.socket.verification_tag(), z.options)
.Add(DataChunk(AddTo(tsn, 2), StreamID(1), SSN(0), PPID(53),
std::vector<uint8_t>(kRemainingSize),
/*options=*/{}))
.Build());
// The receiver might have moved into delayed ack mode.
AdvanceTime(a, z, z.options.rto_initial.ToTimeDelta());
EXPECT_THAT(z.cb.ConsumeSentPacket(),
HasChunks(ElementsAre(IsSack(
AllOf(Property(&SackChunk::cumulative_tsn_ack, AddTo(tsn, 2)),
Property(&SackChunk::gap_ack_blocks, IsEmpty()))))));
EXPECT_CALL(z.cb, OnAborted(ErrorKind::kResourceExhaustion, _));
EXPECT_CALL(z.cb, OnClosed).Times(0);
// This DATA will make the connection close. It's too full now.
z.socket.ReceivePacket(
SctpPacket::Builder(z.socket.verification_tag(), z.options)
.Add(DataChunk(AddTo(tsn, 3), StreamID(1), SSN(0), PPID(53),
std::vector<uint8_t>(kSmallMessageSize),
/*options=*/{}))
.Build());
}
TEST(DcSctpSocketTest, SetMaxMessageSize) {
SocketUnderTest a("A");
a.socket.SetMaxMessageSize(42u);
EXPECT_EQ(a.socket.options().max_message_size, 42u);
}
TEST_P(DcSctpSocketParametrizedTest, SendManyMessages) {
SocketUnderTest a("A");
auto z = std::make_unique<SocketUnderTest>("Z");
ConnectSockets(a, *z);
z = MaybeHandoverSocket(std::move(z));
static constexpr int kIterations = 100;
std::vector<DcSctpMessage> messages;
std::vector<SendStatus> statuses;
for (int i = 0; i < kIterations; ++i) {
messages.push_back(DcSctpMessage(StreamID(1), PPID(53), {1, 2}));
statuses.push_back(SendStatus::kSuccess);
}
EXPECT_THAT(a.socket.SendMany(messages, {}), ElementsAreArray(statuses));
ExchangeMessages(a, *z);
for (int i = 0; i < kIterations; ++i) {
EXPECT_TRUE(z->cb.ConsumeReceivedMessage().has_value());
}
EXPECT_FALSE(z->cb.ConsumeReceivedMessage().has_value());
MaybeHandoverSocketAndSendMessage(a, std::move(z));
}
TEST_P(DcSctpSocketParametrizedTest, SendsMessagesWithLowLifetime) {
SocketUnderTest a("A");
auto z = std::make_unique<SocketUnderTest>("Z");
ConnectSockets(a, *z);
z = MaybeHandoverSocket(std::move(z));
// Mock that the time always goes forward.
Timestamp now = Timestamp::Zero();
EXPECT_CALL(a.cb, Now).WillRepeatedly([&]() {
now += TimeDelta::Millis(3);
return now;
});
EXPECT_CALL(z->cb, Now).WillRepeatedly([&]() {
now += TimeDelta::Millis(3);
return now;
});
// Queue a few small messages with low lifetime, both ordered and unordered,
// and validate that all are delivered.
static constexpr int kIterations = 100;
for (int i = 0; i < kIterations; ++i) {
SendOptions send_options;
send_options.unordered = IsUnordered((i % 2) == 0);
send_options.lifetime = DurationMs(i % 3); // 0, 1, 2 ms
a.socket.Send(DcSctpMessage(StreamID(1), PPID(53), {1, 2}), send_options);
}
ExchangeMessages(a, *z);
for (int i = 0; i < kIterations; ++i) {
EXPECT_TRUE(z->cb.ConsumeReceivedMessage().has_value());
}
EXPECT_FALSE(z->cb.ConsumeReceivedMessage().has_value());
// Validate that the sockets really make the time move forward.
EXPECT_GE(now.ms(), kIterations * 2);
MaybeHandoverSocketAndSendMessage(a, std::move(z));
}
TEST_P(DcSctpSocketParametrizedTest,
DiscardsMessagesWithLowLifetimeIfMustBuffer) {
SocketUnderTest a("A");
auto z = std::make_unique<SocketUnderTest>("Z");
ConnectSockets(a, *z);
z = MaybeHandoverSocket(std::move(z));
SendOptions lifetime_0;
lifetime_0.unordered = IsUnordered(true);
lifetime_0.lifetime = DurationMs(0);
SendOptions lifetime_1;
lifetime_1.unordered = IsUnordered(true);
lifetime_1.lifetime = DurationMs(1);
// Mock that the time always goes forward.
Timestamp now = Timestamp::Zero();
EXPECT_CALL(a.cb, Now).WillRepeatedly([&]() {
now += TimeDelta::Millis(3);
return now;
});
EXPECT_CALL(z->cb, Now).WillRepeatedly([&]() {
now += TimeDelta::Millis(3);
return now;
});
// Fill up the send buffer with a large message.
std::vector<uint8_t> payload(kLargeMessageSize);
a.socket.Send(DcSctpMessage(StreamID(1), PPID(53), payload), kSendOptions);
// And queue a few small messages with lifetime=0 or 1 ms - can't be sent.
a.socket.Send(DcSctpMessage(StreamID(1), PPID(53), {1, 2, 3}), lifetime_0);
a.socket.Send(DcSctpMessage(StreamID(1), PPID(53), {4, 5, 6}), lifetime_1);
a.socket.Send(DcSctpMessage(StreamID(1), PPID(53), {7, 8, 9}), lifetime_0);
// Handle all that was sent until congestion window got full.
for (;;) {
std::vector<uint8_t> packet_from_a = a.cb.ConsumeSentPacket();
if (packet_from_a.empty()) {
break;
}
z->socket.ReceivePacket(std::move(packet_from_a));
}
// Shouldn't be enough to send that large message.
EXPECT_FALSE(z->cb.ConsumeReceivedMessage().has_value());
// Exchange the rest of the messages, with the time ever increasing.
ExchangeMessages(a, *z);
// The large message should be delivered. It was sent reliably.
ASSERT_HAS_VALUE_AND_ASSIGN(DcSctpMessage m1, z->cb.ConsumeReceivedMessage());
EXPECT_EQ(m1.stream_id(), StreamID(1));
EXPECT_THAT(m1.payload(), SizeIs(kLargeMessageSize));
// But none of the smaller messages.
EXPECT_FALSE(z->cb.ConsumeReceivedMessage().has_value());
MaybeHandoverSocketAndSendMessage(a, std::move(z));
}
TEST_P(DcSctpSocketParametrizedTest, HasReasonableBufferedAmountValues) {
SocketUnderTest a("A");
auto z = std::make_unique<SocketUnderTest>("Z");
ConnectSockets(a, *z);
z = MaybeHandoverSocket(std::move(z));
EXPECT_EQ(a.socket.buffered_amount(StreamID(1)), 0u);
a.socket.Send(DcSctpMessage(StreamID(1), PPID(53),
std::vector<uint8_t>(kSmallMessageSize)),
kSendOptions);
// Sending a small message will directly send it as a single packet, so
// nothing is left in the queue.
EXPECT_EQ(a.socket.buffered_amount(StreamID(1)), 0u);
a.socket.Send(DcSctpMessage(StreamID(1), PPID(53),
std::vector<uint8_t>(kLargeMessageSize)),
kSendOptions);
// Sending a message will directly start sending a few packets, so the
// buffered amount is not the full message size.
EXPECT_GT(a.socket.buffered_amount(StreamID(1)), 0u);
EXPECT_LT(a.socket.buffered_amount(StreamID(1)), kLargeMessageSize);
MaybeHandoverSocketAndSendMessage(a, std::move(z));
}
TEST(DcSctpSocketTest, HasDefaultOnBufferedAmountLowValueZero) {
SocketUnderTest a("A");
EXPECT_EQ(a.socket.buffered_amount_low_threshold(StreamID(1)), 0u);
}
TEST_P(DcSctpSocketParametrizedTest,
TriggersOnBufferedAmountLowWithDefaultValueZero) {
SocketUnderTest a("A");
auto z = std::make_unique<SocketUnderTest>("Z");
EXPECT_CALL(a.cb, OnBufferedAmountLow).Times(0);
ConnectSockets(a, *z);
z = MaybeHandoverSocket(std::move(z));
EXPECT_CALL(a.cb, OnBufferedAmountLow(StreamID(1)));
a.socket.Send(DcSctpMessage(StreamID(1), PPID(53),
std::vector<uint8_t>(kSmallMessageSize)),
kSendOptions);
ExchangeMessages(a, *z);
EXPECT_CALL(a.cb, OnBufferedAmountLow).WillRepeatedly(testing::Return());
MaybeHandoverSocketAndSendMessage(a, std::move(z));
}
TEST_P(DcSctpSocketParametrizedTest,
DoesntTriggerOnBufferedAmountLowIfBelowThreshold) {
static constexpr size_t kMessageSize = 1000;
static constexpr size_t kBufferedAmountLowThreshold = kMessageSize * 10;
SocketUnderTest a("A");
auto z = std::make_unique<SocketUnderTest>("Z");
a.socket.SetBufferedAmountLowThreshold(StreamID(1),
kBufferedAmountLowThreshold);
EXPECT_CALL(a.cb, OnBufferedAmountLow).Times(0);
ConnectSockets(a, *z);
z = MaybeHandoverSocket(std::move(z));
EXPECT_CALL(a.cb, OnBufferedAmountLow(StreamID(1))).Times(0);
a.socket.Send(
DcSctpMessage(StreamID(1), PPID(53), std::vector<uint8_t>(kMessageSize)),
kSendOptions);
ExchangeMessages(a, *z);
a.socket.Send(
DcSctpMessage(StreamID(1), PPID(53), std::vector<uint8_t>(kMessageSize)),
kSendOptions);
ExchangeMessages(a, *z);
MaybeHandoverSocketAndSendMessage(a, std::move(z));
}
TEST_P(DcSctpSocketParametrizedTest, TriggersOnBufferedAmountMultipleTimes) {
static constexpr size_t kMessageSize = 1000;
static constexpr size_t kBufferedAmountLowThreshold = kMessageSize / 2;
SocketUnderTest a("A");
auto z = std::make_unique<SocketUnderTest>("Z");
a.socket.SetBufferedAmountLowThreshold(StreamID(1),
kBufferedAmountLowThreshold);
EXPECT_CALL(a.cb, OnBufferedAmountLow).Times(0);
ConnectSockets(a, *z);
z = MaybeHandoverSocket(std::move(z));
EXPECT_CALL(a.cb, OnBufferedAmountLow(StreamID(1))).Times(3);
EXPECT_CALL(a.cb, OnBufferedAmountLow(StreamID(2))).Times(2);
a.socket.Send(
DcSctpMessage(StreamID(1), PPID(53), std::vector<uint8_t>(kMessageSize)),
kSendOptions);
ExchangeMessages(a, *z);
a.socket.Send(
DcSctpMessage(StreamID(2), PPID(53), std::vector<uint8_t>(kMessageSize)),
kSendOptions);
ExchangeMessages(a, *z);
a.socket.Send(
DcSctpMessage(StreamID(1), PPID(53), std::vector<uint8_t>(kMessageSize)),
kSendOptions);
ExchangeMessages(a, *z);
a.socket.Send(
DcSctpMessage(StreamID(2), PPID(53), std::vector<uint8_t>(kMessageSize)),
kSendOptions);
ExchangeMessages(a, *z);
a.socket.Send(
DcSctpMessage(StreamID(1), PPID(53), std::vector<uint8_t>(kMessageSize)),
kSendOptions);
ExchangeMessages(a, *z);
MaybeHandoverSocketAndSendMessage(a, std::move(z));
}
TEST_P(DcSctpSocketParametrizedTest,
TriggersOnBufferedAmountLowOnlyWhenCrossingThreshold) {
static constexpr size_t kMessageSize = 1000;
static constexpr size_t kBufferedAmountLowThreshold = kMessageSize * 1.5;
SocketUnderTest a("A");
auto z = std::make_unique<SocketUnderTest>("Z");
a.socket.SetBufferedAmountLowThreshold(StreamID(1),
kBufferedAmountLowThreshold);
EXPECT_CALL(a.cb, OnBufferedAmountLow).Times(0);
ConnectSockets(a, *z);
z = MaybeHandoverSocket(std::move(z));
EXPECT_CALL(a.cb, OnBufferedAmountLow).Times(0);
// Add a few messages to fill up the congestion window. When that is full,
// messages will start to be fully buffered.
while (a.socket.buffered_amount(StreamID(1)) <= kBufferedAmountLowThreshold) {
a.socket.Send(DcSctpMessage(StreamID(1), PPID(53),
std::vector<uint8_t>(kMessageSize)),
kSendOptions);
}
size_t initial_buffered = a.socket.buffered_amount(StreamID(1));
ASSERT_GT(initial_buffered, kBufferedAmountLowThreshold);
// Start ACKing packets, which will empty the send queue, and trigger the
// callback.
EXPECT_CALL(a.cb, OnBufferedAmountLow(StreamID(1))).Times(1);
ExchangeMessages(a, *z);
MaybeHandoverSocketAndSendMessage(a, std::move(z));
}
TEST_P(DcSctpSocketParametrizedTest,
DoesntTriggerOnTotalBufferAmountLowWhenBelow) {
SocketUnderTest a("A");
auto z = std::make_unique<SocketUnderTest>("Z");
ConnectSockets(a, *z);
z = MaybeHandoverSocket(std::move(z));
EXPECT_CALL(a.cb, OnTotalBufferedAmountLow).Times(0);
a.socket.Send(DcSctpMessage(StreamID(1), PPID(53),
std::vector<uint8_t>(kLargeMessageSize)),
kSendOptions);
ExchangeMessages(a, *z);
MaybeHandoverSocketAndSendMessage(a, std::move(z));
}
TEST_P(DcSctpSocketParametrizedTest,
TriggersOnTotalBufferAmountLowWhenCrossingThreshold) {
SocketUnderTest a("A");
auto z = std::make_unique<SocketUnderTest>("Z");
ConnectSockets(a, *z);
z = MaybeHandoverSocket(std::move(z));
EXPECT_CALL(a.cb, OnTotalBufferedAmountLow).Times(0);
// Fill up the send queue completely.
for (;;) {
if (a.socket.Send(DcSctpMessage(StreamID(1), PPID(53),
std::vector<uint8_t>(kLargeMessageSize)),
kSendOptions) == SendStatus::kErrorResourceExhaustion) {
break;
}
}
EXPECT_CALL(a.cb, OnTotalBufferedAmountLow).Times(1);
ExchangeMessages(a, *z);
MaybeHandoverSocketAndSendMessage(a, std::move(z));
}
TEST(DcSctpSocketTest, InitialMetricsAreUnset) {
SocketUnderTest a("A");
EXPECT_FALSE(a.socket.GetMetrics().has_value());
}
TEST(DcSctpSocketTest, MessageInterleavingMetricsAreSet) {
std::vector<std::pair<bool, bool>> combinations = {
{false, false}, {false, true}, {true, false}, {true, true}};
for (const auto& [a_enable, z_enable] : combinations) {
DcSctpOptions a_options = {.enable_message_interleaving = a_enable};
DcSctpOptions z_options = {.enable_message_interleaving = z_enable};
SocketUnderTest a("A", a_options);
SocketUnderTest z("Z", z_options);
ConnectSockets(a, z);
EXPECT_EQ(a.socket.GetMetrics()->uses_message_interleaving,
a_enable && z_enable);
}
}
TEST(DcSctpSocketTest, RxAndTxPacketMetricsIncrease) {
SocketUnderTest a("A");
SocketUnderTest z("Z");
ConnectSockets(a, z);
const size_t initial_a_rwnd = a.options.max_receiver_window_buffer_size *
ReassemblyQueue::kHighWatermarkLimit;
EXPECT_EQ(a.socket.GetMetrics()->tx_packets_count, 2u);
EXPECT_EQ(a.socket.GetMetrics()->rx_packets_count, 2u);
EXPECT_EQ(a.socket.GetMetrics()->tx_messages_count, 0u);
EXPECT_EQ(a.socket.GetMetrics()->cwnd_bytes,
a.options.cwnd_mtus_initial * a.options.mtu);
EXPECT_EQ(a.socket.GetMetrics()->unack_data_count, 0u);
EXPECT_EQ(z.socket.GetMetrics()->rx_packets_count, 2u);
EXPECT_EQ(z.socket.GetMetrics()->rx_messages_count, 0u);
a.socket.Send(DcSctpMessage(StreamID(1), PPID(53), {1, 2}), kSendOptions);
EXPECT_EQ(a.socket.GetMetrics()->unack_data_count, 1u);
z.socket.ReceivePacket(a.cb.ConsumeSentPacket()); // DATA
a.socket.ReceivePacket(z.cb.ConsumeSentPacket()); // SACK
EXPECT_EQ(a.socket.GetMetrics()->peer_rwnd_bytes, initial_a_rwnd);
EXPECT_EQ(a.socket.GetMetrics()->unack_data_count, 0u);
EXPECT_TRUE(z.cb.ConsumeReceivedMessage().has_value());
EXPECT_EQ(a.socket.GetMetrics()->tx_packets_count, 3u);
EXPECT_EQ(a.socket.GetMetrics()->rx_packets_count, 3u);
EXPECT_EQ(a.socket.GetMetrics()->tx_messages_count, 1u);
EXPECT_EQ(z.socket.GetMetrics()->rx_packets_count, 3u);
EXPECT_EQ(z.socket.GetMetrics()->rx_messages_count, 1u);
// Send one more (large - fragmented), and receive the delayed SACK.
a.socket.Send(DcSctpMessage(StreamID(1), PPID(53),
std::vector<uint8_t>(a.options.mtu * 2 + 1)),
kSendOptions);
EXPECT_EQ(a.socket.GetMetrics()->unack_data_count, 3u);
z.socket.ReceivePacket(a.cb.ConsumeSentPacket()); // DATA
z.socket.ReceivePacket(a.cb.ConsumeSentPacket()); // DATA
a.socket.ReceivePacket(z.cb.ConsumeSentPacket()); // SACK
EXPECT_EQ(a.socket.GetMetrics()->unack_data_count, 1u);
EXPECT_GT(a.socket.GetMetrics()->peer_rwnd_bytes, 0u);
EXPECT_LT(a.socket.GetMetrics()->peer_rwnd_bytes, initial_a_rwnd);
z.socket.ReceivePacket(a.cb.ConsumeSentPacket()); // DATA
EXPECT_TRUE(z.cb.ConsumeReceivedMessage().has_value());
EXPECT_EQ(a.socket.GetMetrics()->tx_packets_count, 6u);
EXPECT_EQ(a.socket.GetMetrics()->rx_packets_count, 4u);
EXPECT_EQ(a.socket.GetMetrics()->tx_messages_count, 2u);
EXPECT_EQ(z.socket.GetMetrics()->rx_packets_count, 6u);
EXPECT_EQ(z.socket.GetMetrics()->rx_messages_count, 2u);
// Delayed sack
AdvanceTime(a, z, a.options.delayed_ack_max_timeout.ToTimeDelta());
a.socket.ReceivePacket(z.cb.ConsumeSentPacket()); // SACK
EXPECT_EQ(a.socket.GetMetrics()->unack_data_count, 0u);
EXPECT_EQ(a.socket.GetMetrics()->rx_packets_count, 5u);
EXPECT_EQ(a.socket.GetMetrics()->peer_rwnd_bytes, initial_a_rwnd);
}
TEST(DcSctpSocketTest, RetransmissionMetricsAreSetForFastRetransmit) {
SocketUnderTest a("A");
SocketUnderTest z("Z");
ConnectSockets(a, z);
// Enough to trigger fast retransmit of the missing second packet.
std::vector<uint8_t> payload(DcSctpOptions::kMaxSafeMTUSize * 5);
a.socket.Send(DcSctpMessage(StreamID(1), PPID(53), payload), kSendOptions);
// Receive first packet, drop second, receive and retransmit the remaining.
z.socket.ReceivePacket(a.cb.ConsumeSentPacket());
a.cb.ConsumeSentPacket();
ExchangeMessages(a, z);
EXPECT_EQ(a.socket.GetMetrics()->rtx_packets_count, 1u);
size_t expected_data_size =
RoundDownTo4(DcSctpOptions::kMaxSafeMTUSize - SctpPacket::kHeaderSize);
EXPECT_EQ(a.socket.GetMetrics()->rtx_bytes_count, expected_data_size);
}
TEST(DcSctpSocketTest, RetransmissionMetricsAreSetForNormalRetransmit) {
SocketUnderTest a("A");
SocketUnderTest z("Z");
ConnectSockets(a, z);
std::vector<uint8_t> payload(kSmallMessageSize);
a.socket.Send(DcSctpMessage(StreamID(1), PPID(53), payload), kSendOptions);
a.cb.ConsumeSentPacket();
AdvanceTime(a, z, a.options.rto_initial.ToTimeDelta());
ExchangeMessages(a, z);
EXPECT_EQ(a.socket.GetMetrics()->rtx_packets_count, 1u);
size_t expected_data_size =
RoundUpTo4(kSmallMessageSize + DataChunk::kHeaderSize);
EXPECT_EQ(a.socket.GetMetrics()->rtx_bytes_count, expected_data_size);
}
TEST_P(DcSctpSocketParametrizedTest, UnackDataAlsoIncludesSendQueue) {
SocketUnderTest a("A");
auto z = std::make_unique<SocketUnderTest>("Z");
ConnectSockets(a, *z);
z = MaybeHandoverSocket(std::move(z));
a.socket.Send(DcSctpMessage(StreamID(1), PPID(53),
std::vector<uint8_t>(kLargeMessageSize)),
kSendOptions);
size_t payload_bytes =
a.options.mtu - SctpPacket::kHeaderSize - DataChunk::kHeaderSize;
size_t expected_sent_packets = a.options.cwnd_mtus_initial;
size_t expected_queued_bytes =
kLargeMessageSize - expected_sent_packets * payload_bytes;
size_t expected_queued_packets = expected_queued_bytes / payload_bytes;
// Due to alignment, padding etc, it's hard to calculate the exact number, but
// it should be in this range.
EXPECT_GE(a.socket.GetMetrics()->unack_data_count,
expected_sent_packets + expected_queued_packets);
EXPECT_LE(a.socket.GetMetrics()->unack_data_count,
expected_sent_packets + expected_queued_packets + 2);
MaybeHandoverSocketAndSendMessage(a, std::move(z));
}
TEST_P(DcSctpSocketParametrizedTest, DoesntSendMoreThanMaxBurstPackets) {
SocketUnderTest a("A");
auto z = std::make_unique<SocketUnderTest>("Z");
ConnectSockets(a, *z);
z = MaybeHandoverSocket(std::move(z));
a.socket.Send(DcSctpMessage(StreamID(1), PPID(53),
std::vector<uint8_t>(kLargeMessageSize)),
kSendOptions);
for (int i = 0; i < kMaxBurstPackets; ++i) {
std::vector<uint8_t> packet = a.cb.ConsumeSentPacket();
EXPECT_THAT(packet, Not(IsEmpty()));
z->socket.ReceivePacket(std::move(packet)); // DATA
}
EXPECT_THAT(a.cb.ConsumeSentPacket(), IsEmpty());
ExchangeMessages(a, *z);
MaybeHandoverSocketAndSendMessage(a, std::move(z));
}
TEST_P(DcSctpSocketParametrizedTest, SendsOnlyLargePackets) {
SocketUnderTest a("A");
auto z = std::make_unique<SocketUnderTest>("Z");
ConnectSockets(a, *z);
z = MaybeHandoverSocket(std::move(z));
// A really large message, to ensure that the congestion window is often full.
constexpr size_t kMessageSize = 100000;
a.socket.Send(
DcSctpMessage(StreamID(1), PPID(53), std::vector<uint8_t>(kMessageSize)),
kSendOptions);
bool delivered_packet = false;
std::vector<size_t> data_packet_sizes;
do {
delivered_packet = false;
std::vector<uint8_t> packet_from_a = a.cb.ConsumeSentPacket();
if (!packet_from_a.empty()) {
data_packet_sizes.push_back(packet_from_a.size());
delivered_packet = true;
z->socket.ReceivePacket(std::move(packet_from_a));
}
std::vector<uint8_t> packet_from_z = z->cb.ConsumeSentPacket();
if (!packet_from_z.empty()) {
delivered_packet = true;
a.socket.ReceivePacket(std::move(packet_from_z));
}
} while (delivered_packet);
size_t packet_payload_bytes =
a.options.mtu - SctpPacket::kHeaderSize - DataChunk::kHeaderSize;
// +1 accounts for padding, and rounding up.
size_t expected_packets =
(kMessageSize + packet_payload_bytes - 1) / packet_payload_bytes + 1;
EXPECT_THAT(data_packet_sizes, SizeIs(expected_packets));
// Remove the last size - it will be the remainder. But all other sizes should
// be large.
data_packet_sizes.pop_back();
for (size_t size : data_packet_sizes) {
// The 4 is for padding/alignment.
EXPECT_GE(size, a.options.mtu - 4);
}
MaybeHandoverSocketAndSendMessage(a, std::move(z));
}
TEST(DcSctpSocketTest, SendMessagesAfterHandover) {
SocketUnderTest a("A");
auto z = std::make_unique<SocketUnderTest>("Z");
ConnectSockets(a, *z);
// Send message before handover to move socket to a not initial state
a.socket.Send(DcSctpMessage(StreamID(1), PPID(53), {1, 2}), kSendOptions);
z->socket.ReceivePacket(a.cb.ConsumeSentPacket());
z->cb.ConsumeReceivedMessage();
z = HandoverSocket(std::move(z));
absl::optional<DcSctpMessage> msg;
RTC_LOG(LS_INFO) << "Sending A #1";
a.socket.Send(DcSctpMessage(StreamID(1), PPID(53), {3, 4}), kSendOptions);
z->socket.ReceivePacket(a.cb.ConsumeSentPacket());
msg = z->cb.ConsumeReceivedMessage();
ASSERT_TRUE(msg.has_value());
EXPECT_EQ(msg->stream_id(), StreamID(1));
EXPECT_THAT(msg->payload(), testing::ElementsAre(3, 4));
RTC_LOG(LS_INFO) << "Sending A #2";
a.socket.Send(DcSctpMessage(StreamID(2), PPID(53), {5, 6}), kSendOptions);
z->socket.ReceivePacket(a.cb.ConsumeSentPacket());
msg = z->cb.ConsumeReceivedMessage();
ASSERT_TRUE(msg.has_value());
EXPECT_EQ(msg->stream_id(), StreamID(2));
EXPECT_THAT(msg->payload(), testing::ElementsAre(5, 6));
RTC_LOG(LS_INFO) << "Sending Z #1";
z->socket.Send(DcSctpMessage(StreamID(1), PPID(53), {1, 2, 3}), kSendOptions);
a.socket.ReceivePacket(z->cb.ConsumeSentPacket()); // ack
a.socket.ReceivePacket(z->cb.ConsumeSentPacket()); // data
msg = a.cb.ConsumeReceivedMessage();
ASSERT_TRUE(msg.has_value());
EXPECT_EQ(msg->stream_id(), StreamID(1));
EXPECT_THAT(msg->payload(), testing::ElementsAre(1, 2, 3));
}
TEST(DcSctpSocketTest, CanDetectDcsctpImplementation) {
SocketUnderTest a("A");
SocketUnderTest z("Z");
ConnectSockets(a, z);
EXPECT_EQ(a.socket.peer_implementation(), SctpImplementation::kDcsctp);
// As A initiated the connection establishment, Z will not receive enough
// information to know about A's implementation
EXPECT_EQ(z.socket.peer_implementation(), SctpImplementation::kUnknown);
}
TEST(DcSctpSocketTest, BothCanDetectDcsctpImplementation) {
SocketUnderTest a("A");
SocketUnderTest z("Z");
EXPECT_CALL(a.cb, OnConnected).Times(1);
EXPECT_CALL(z.cb, OnConnected).Times(1);
a.socket.Connect();
z.socket.Connect();
ExchangeMessages(a, z);
EXPECT_EQ(a.socket.peer_implementation(), SctpImplementation::kDcsctp);
EXPECT_EQ(z.socket.peer_implementation(), SctpImplementation::kDcsctp);
}
TEST_P(DcSctpSocketParametrizedTest, CanLoseFirstOrderedMessage) {
SocketUnderTest a("A");
auto z = std::make_unique<SocketUnderTest>("Z");
ConnectSockets(a, *z);
z = MaybeHandoverSocket(std::move(z));
SendOptions send_options;
send_options.unordered = IsUnordered(false);
send_options.max_retransmissions = 0;
std::vector<uint8_t> payload(a.options.mtu - 100);
// Send a first message (SID=1, SSN=0)
a.socket.Send(DcSctpMessage(StreamID(1), PPID(51), payload), send_options);
// First DATA is lost, and retransmission timer will delete it.
a.cb.ConsumeSentPacket();
AdvanceTime(a, *z, a.options.rto_initial.ToTimeDelta());
ExchangeMessages(a, *z);
// Send a second message (SID=0, SSN=1).
a.socket.Send(DcSctpMessage(StreamID(1), PPID(52), payload), send_options);
ExchangeMessages(a, *z);
// The Z socket should receive the second message, but not the first.
absl::optional<DcSctpMessage> msg = z->cb.ConsumeReceivedMessage();
ASSERT_TRUE(msg.has_value());
EXPECT_EQ(msg->ppid(), PPID(52));
EXPECT_FALSE(z->cb.ConsumeReceivedMessage().has_value());
MaybeHandoverSocketAndSendMessage(a, std::move(z));
}
TEST(DcSctpSocketTest, ReceiveBothUnorderedAndOrderedWithSameTSN) {
/* This issue was found by fuzzing. */
SocketUnderTest a("A");
SocketUnderTest z("Z");
a.socket.Connect();
std::vector<uint8_t> init_data = a.cb.ConsumeSentPacket();
ASSERT_HAS_VALUE_AND_ASSIGN(SctpPacket init_packet,
SctpPacket::Parse(init_data, z.options));
ASSERT_HAS_VALUE_AND_ASSIGN(
InitChunk init_chunk,
InitChunk::Parse(init_packet.descriptors()[0].data));
z.socket.ReceivePacket(init_data);
a.socket.ReceivePacket(z.cb.ConsumeSentPacket());
z.socket.ReceivePacket(a.cb.ConsumeSentPacket());
a.socket.ReceivePacket(z.cb.ConsumeSentPacket());
// Receive a short unordered message with tsn=INITIAL_TSN+1
TSN tsn = init_chunk.initial_tsn();
AnyDataChunk::Options opts;
opts.is_beginning = Data::IsBeginning(true);
opts.is_end = Data::IsEnd(true);
opts.is_unordered = IsUnordered(true);
z.socket.ReceivePacket(
SctpPacket::Builder(z.socket.verification_tag(), z.options)
.Add(DataChunk(TSN(*tsn + 1), StreamID(1), SSN(0), PPID(53),
std::vector<uint8_t>(10), opts))
.Build());
// Now receive a longer _ordered_ message with [INITIAL_TSN, INITIAL_TSN+1].
// This isn't allowed as it reuses TSN=53 with different properties, but it
// shouldn't cause any issues.
opts.is_unordered = IsUnordered(false);
opts.is_end = Data::IsEnd(false);
z.socket.ReceivePacket(
SctpPacket::Builder(z.socket.verification_tag(), z.options)
.Add(DataChunk(tsn, StreamID(1), SSN(0), PPID(53),
std::vector<uint8_t>(10), opts))
.Build());
opts.is_beginning = Data::IsBeginning(false);
opts.is_end = Data::IsEnd(true);
z.socket.ReceivePacket(
SctpPacket::Builder(z.socket.verification_tag(), z.options)
.Add(DataChunk(TSN(*tsn + 1), StreamID(1), SSN(0), PPID(53),
std::vector<uint8_t>(10), opts))
.Build());
}
TEST(DcSctpSocketTest, CloseTwoStreamsAtTheSameTime) {
// Reported as https://crbug.com/1312009.
SocketUnderTest a("A");
SocketUnderTest z("Z");
EXPECT_CALL(z.cb, OnIncomingStreamsReset(ElementsAre(StreamID(1)))).Times(1);
EXPECT_CALL(z.cb, OnIncomingStreamsReset(ElementsAre(StreamID(2)))).Times(1);
EXPECT_CALL(a.cb, OnStreamsResetPerformed(ElementsAre(StreamID(1)))).Times(1);
EXPECT_CALL(a.cb, OnStreamsResetPerformed(ElementsAre(StreamID(2)))).Times(1);
ConnectSockets(a, z);
a.socket.Send(DcSctpMessage(StreamID(1), PPID(53), {1, 2}), kSendOptions);
a.socket.Send(DcSctpMessage(StreamID(2), PPID(53), {1, 2}), kSendOptions);
ExchangeMessages(a, z);
a.socket.ResetStreams(std::vector<StreamID>({StreamID(1)}));
a.socket.ResetStreams(std::vector<StreamID>({StreamID(2)}));
ExchangeMessages(a, z);
}
TEST(DcSctpSocketTest, CloseThreeStreamsAtTheSameTime) {
// Similar to CloseTwoStreamsAtTheSameTime, but ensuring that the two
// remaining streams are reset at the same time in the second request.
SocketUnderTest a("A");
SocketUnderTest z("Z");
EXPECT_CALL(z.cb, OnIncomingStreamsReset(ElementsAre(StreamID(1)))).Times(1);
EXPECT_CALL(z.cb, OnIncomingStreamsReset(
UnorderedElementsAre(StreamID(2), StreamID(3))))
.Times(1);
EXPECT_CALL(a.cb, OnStreamsResetPerformed(ElementsAre(StreamID(1)))).Times(1);
EXPECT_CALL(a.cb, OnStreamsResetPerformed(
UnorderedElementsAre(StreamID(2), StreamID(3))))
.Times(1);
ConnectSockets(a, z);
a.socket.Send(DcSctpMessage(StreamID(1), PPID(53), {1, 2}), kSendOptions);
a.socket.Send(DcSctpMessage(StreamID(2), PPID(53), {1, 2}), kSendOptions);
a.socket.Send(DcSctpMessage(StreamID(3), PPID(53), {1, 2}), kSendOptions);
ExchangeMessages(a, z);
a.socket.ResetStreams(std::vector<StreamID>({StreamID(1)}));
a.socket.ResetStreams(std::vector<StreamID>({StreamID(2)}));
a.socket.ResetStreams(std::vector<StreamID>({StreamID(3)}));
ExchangeMessages(a, z);
}
TEST(DcSctpSocketTest, CloseStreamsWithPendingRequest) {
// Checks that stream reset requests are properly paused when they can't be
// immediately reset - i.e. when there is already an ongoing stream reset
// request (and there can only be a single one in-flight).
SocketUnderTest a("A");
SocketUnderTest z("Z");
EXPECT_CALL(z.cb, OnIncomingStreamsReset(ElementsAre(StreamID(1)))).Times(1);
EXPECT_CALL(z.cb, OnIncomingStreamsReset(
UnorderedElementsAre(StreamID(2), StreamID(3))))
.Times(1);
EXPECT_CALL(a.cb, OnStreamsResetPerformed(ElementsAre(StreamID(1)))).Times(1);
EXPECT_CALL(a.cb, OnStreamsResetPerformed(
UnorderedElementsAre(StreamID(2), StreamID(3))))
.Times(1);
ConnectSockets(a, z);
SendOptions send_options = {.unordered = IsUnordered(false)};
// Send a few ordered messages
a.socket.Send(DcSctpMessage(StreamID(1), PPID(53), {1, 2}), send_options);
a.socket.Send(DcSctpMessage(StreamID(2), PPID(53), {1, 2}), send_options);
a.socket.Send(DcSctpMessage(StreamID(3), PPID(53), {1, 2}), send_options);
ExchangeMessages(a, z);
// Receive these messages
absl::optional<DcSctpMessage> msg1 = z.cb.ConsumeReceivedMessage();
ASSERT_TRUE(msg1.has_value());
EXPECT_EQ(msg1->stream_id(), StreamID(1));
absl::optional<DcSctpMessage> msg2 = z.cb.ConsumeReceivedMessage();
ASSERT_TRUE(msg2.has_value());
EXPECT_EQ(msg2->stream_id(), StreamID(2));
absl::optional<DcSctpMessage> msg3 = z.cb.ConsumeReceivedMessage();
ASSERT_TRUE(msg3.has_value());
EXPECT_EQ(msg3->stream_id(), StreamID(3));
// Reset the streams - not all at once.
a.socket.ResetStreams(std::vector<StreamID>({StreamID(1)}));
std::vector<uint8_t> packet = a.cb.ConsumeSentPacket();
EXPECT_THAT(packet, HasChunks(ElementsAre(IsReConfig(HasParameters(
ElementsAre(IsOutgoingResetRequest(Property(
&OutgoingSSNResetRequestParameter::stream_ids,
ElementsAre(StreamID(1))))))))));
z.socket.ReceivePacket(std::move(packet));
// Sending more reset requests while this one is ongoing.
a.socket.ResetStreams(std::vector<StreamID>({StreamID(2)}));
a.socket.ResetStreams(std::vector<StreamID>({StreamID(3)}));
ExchangeMessages(a, z);
// Send a few more ordered messages
a.socket.Send(DcSctpMessage(StreamID(1), PPID(53), {1, 2}), send_options);
a.socket.Send(DcSctpMessage(StreamID(2), PPID(53), {1, 2}), send_options);
a.socket.Send(DcSctpMessage(StreamID(3), PPID(53), {1, 2}), send_options);
ExchangeMessages(a, z);
// Receive these messages
absl::optional<DcSctpMessage> msg4 = z.cb.ConsumeReceivedMessage();
ASSERT_TRUE(msg4.has_value());
EXPECT_EQ(msg4->stream_id(), StreamID(1));
absl::optional<DcSctpMessage> msg5 = z.cb.ConsumeReceivedMessage();
ASSERT_TRUE(msg5.has_value());
EXPECT_EQ(msg5->stream_id(), StreamID(2));
absl::optional<DcSctpMessage> msg6 = z.cb.ConsumeReceivedMessage();
ASSERT_TRUE(msg6.has_value());
EXPECT_EQ(msg6->stream_id(), StreamID(3));
}
TEST(DcSctpSocketTest, StreamsHaveInitialPriority) {
DcSctpOptions options = {.default_stream_priority = StreamPriority(42)};
SocketUnderTest a("A", options);
EXPECT_EQ(a.socket.GetStreamPriority(StreamID(1)),
options.default_stream_priority);
a.socket.Send(DcSctpMessage(StreamID(2), PPID(53), {1, 2}), kSendOptions);
EXPECT_EQ(a.socket.GetStreamPriority(StreamID(2)),
options.default_stream_priority);
}
TEST(DcSctpSocketTest, CanChangeStreamPriority) {
DcSctpOptions options = {.default_stream_priority = StreamPriority(42)};
SocketUnderTest a("A", options);
a.socket.SetStreamPriority(StreamID(1), StreamPriority(43));
EXPECT_EQ(a.socket.GetStreamPriority(StreamID(1)), StreamPriority(43));
a.socket.Send(DcSctpMessage(StreamID(2), PPID(53), {1, 2}), kSendOptions);
a.socket.SetStreamPriority(StreamID(2), StreamPriority(43));
EXPECT_EQ(a.socket.GetStreamPriority(StreamID(2)), StreamPriority(43));
}
TEST_P(DcSctpSocketParametrizedTest, WillHandoverPriority) {
DcSctpOptions options = {.default_stream_priority = StreamPriority(42)};
auto a = std::make_unique<SocketUnderTest>("A", options);
SocketUnderTest z("Z");
ConnectSockets(*a, z);
a->socket.SetStreamPriority(StreamID(1), StreamPriority(43));
a->socket.Send(DcSctpMessage(StreamID(2), PPID(53), {1, 2}), kSendOptions);
a->socket.SetStreamPriority(StreamID(2), StreamPriority(43));
ExchangeMessages(*a, z);
a = MaybeHandoverSocket(std::move(a));
EXPECT_EQ(a->socket.GetStreamPriority(StreamID(1)), StreamPriority(43));
EXPECT_EQ(a->socket.GetStreamPriority(StreamID(2)), StreamPriority(43));
}
TEST(DcSctpSocketTest, ReconnectSocketWithPendingStreamReset) {
// This is an issue found by fuzzing, and doesn't really make sense in WebRTC
// data channels as a SCTP connection is never ever closed and then
// reconnected. SCTP connections are closed when the peer connection is
// deleted, and then it doesn't do more with SCTP.
SocketUnderTest a("A");
SocketUnderTest z("Z");
ConnectSockets(a, z);
a.socket.ResetStreams(std::vector<StreamID>({StreamID(1)}));
EXPECT_CALL(z.cb, OnAborted).Times(1);
a.socket.Close();
EXPECT_EQ(a.socket.state(), SocketState::kClosed);
EXPECT_CALL(a.cb, OnConnected).Times(1);
EXPECT_CALL(z.cb, OnConnected).Times(1);
a.socket.Connect();
ExchangeMessages(a, z);
a.socket.ResetStreams(std::vector<StreamID>({StreamID(2)}));
}
TEST(DcSctpSocketTest, SmallSentMessagesWithPrioWillArriveInSpecificOrder) {
DcSctpOptions options = {.enable_message_interleaving = true};
SocketUnderTest a("A", options);
SocketUnderTest z("A", options);
a.socket.SetStreamPriority(StreamID(1), StreamPriority(700));
a.socket.SetStreamPriority(StreamID(2), StreamPriority(200));
a.socket.SetStreamPriority(StreamID(3), StreamPriority(100));
// Enqueue messages before connecting the socket, to ensure they aren't send
// as soon as Send() is called.
a.socket.Send(DcSctpMessage(StreamID(3), PPID(301),
std::vector<uint8_t>(kSmallMessageSize)),
kSendOptions);
a.socket.Send(DcSctpMessage(StreamID(1), PPID(101),
std::vector<uint8_t>(kSmallMessageSize)),
kSendOptions);
a.socket.Send(DcSctpMessage(StreamID(2), PPID(201),
std::vector<uint8_t>(kSmallMessageSize)),
kSendOptions);
a.socket.Send(DcSctpMessage(StreamID(1), PPID(102),
std::vector<uint8_t>(kSmallMessageSize)),
kSendOptions);
a.socket.Send(DcSctpMessage(StreamID(1), PPID(103),
std::vector<uint8_t>(kSmallMessageSize)),
kSendOptions);
ConnectSockets(a, z);
ExchangeMessages(a, z);
std::vector<uint32_t> received_ppids;
for (;;) {
absl::optional<DcSctpMessage> msg = z.cb.ConsumeReceivedMessage();
if (!msg.has_value()) {
break;
}
received_ppids.push_back(*msg->ppid());
}
EXPECT_THAT(received_ppids, ElementsAre(101, 102, 103, 201, 301));
}
TEST(DcSctpSocketTest, LargeSentMessagesWithPrioWillArriveInSpecificOrder) {
DcSctpOptions options = {.enable_message_interleaving = true};
SocketUnderTest a("A", options);
SocketUnderTest z("A", options);
a.socket.SetStreamPriority(StreamID(1), StreamPriority(700));
a.socket.SetStreamPriority(StreamID(2), StreamPriority(200));
a.socket.SetStreamPriority(StreamID(3), StreamPriority(100));
// Enqueue messages before connecting the socket, to ensure they aren't send
// as soon as Send() is called.
a.socket.Send(DcSctpMessage(StreamID(3), PPID(301),
std::vector<uint8_t>(kLargeMessageSize)),
kSendOptions);
a.socket.Send(DcSctpMessage(StreamID(1), PPID(101),
std::vector<uint8_t>(kLargeMessageSize)),
kSendOptions);
a.socket.Send(DcSctpMessage(StreamID(2), PPID(201),
std::vector<uint8_t>(kLargeMessageSize)),
kSendOptions);
a.socket.Send(DcSctpMessage(StreamID(1), PPID(102),
std::vector<uint8_t>(kLargeMessageSize)),
kSendOptions);
ConnectSockets(a, z);
ExchangeMessages(a, z);
EXPECT_THAT(GetReceivedMessagePpids(z), ElementsAre(101, 102, 201, 301));
}
TEST(DcSctpSocketTest, MessageWithHigherPrioWillInterruptLowerPrioMessage) {
DcSctpOptions options = {.enable_message_interleaving = true};
SocketUnderTest a("A", options);
SocketUnderTest z("Z", options);
ConnectSockets(a, z);
a.socket.SetStreamPriority(StreamID(2), StreamPriority(128));
a.socket.Send(DcSctpMessage(StreamID(2), PPID(201),
std::vector<uint8_t>(kLargeMessageSize)),
kSendOptions);
// Due to a non-zero initial congestion window, the message will already start
// to send, but will not succeed to be sent completely before filling the
// congestion window or stopping due to reaching how many packets that can be
// sent at once (max burst). The important thing is that the entire message
// doesn't get sent in full.
// Now enqueue two messages; one small and one large higher priority message.
a.socket.SetStreamPriority(StreamID(1), StreamPriority(512));
a.socket.Send(DcSctpMessage(StreamID(1), PPID(101),
std::vector<uint8_t>(kSmallMessageSize)),
kSendOptions);
a.socket.Send(DcSctpMessage(StreamID(1), PPID(102),
std::vector<uint8_t>(kLargeMessageSize)),
kSendOptions);
ExchangeMessages(a, z);
EXPECT_THAT(GetReceivedMessagePpids(z), ElementsAre(101, 102, 201));
}
TEST(DcSctpSocketTest, LifecycleEventsAreGeneratedForAckedMessages) {
SocketUnderTest a("A");
SocketUnderTest z("Z");
ConnectSockets(a, z);
a.socket.Send(DcSctpMessage(StreamID(2), PPID(101),
std::vector<uint8_t>(kLargeMessageSize)),
{.lifecycle_id = LifecycleId(41)});
a.socket.Send(DcSctpMessage(StreamID(2), PPID(102),
std::vector<uint8_t>(kLargeMessageSize)),
kSendOptions);
a.socket.Send(DcSctpMessage(StreamID(2), PPID(103),
std::vector<uint8_t>(kLargeMessageSize)),
{.lifecycle_id = LifecycleId(42)});
EXPECT_CALL(a.cb, OnLifecycleMessageDelivered(LifecycleId(41)));
EXPECT_CALL(a.cb, OnLifecycleEnd(LifecycleId(41)));
EXPECT_CALL(a.cb, OnLifecycleMessageDelivered(LifecycleId(42)));
EXPECT_CALL(a.cb, OnLifecycleEnd(LifecycleId(42)));
ExchangeMessages(a, z);
// In case of delayed ack.
AdvanceTime(a, z, a.options.delayed_ack_max_timeout.ToTimeDelta());
ExchangeMessages(a, z);
EXPECT_THAT(GetReceivedMessagePpids(z), ElementsAre(101, 102, 103));
}
TEST(DcSctpSocketTest, LifecycleEventsForFailMaxRetransmissions) {
SocketUnderTest a("A");
SocketUnderTest z("Z");
ConnectSockets(a, z);
std::vector<uint8_t> payload(a.options.mtu - 100);
a.socket.Send(DcSctpMessage(StreamID(1), PPID(51), payload),
{
.max_retransmissions = 0,
.lifecycle_id = LifecycleId(1),
});
a.socket.Send(DcSctpMessage(StreamID(1), PPID(52), payload),
{
.max_retransmissions = 0,
.lifecycle_id = LifecycleId(2),
});
a.socket.Send(DcSctpMessage(StreamID(1), PPID(53), payload),
{
.max_retransmissions = 0,
.lifecycle_id = LifecycleId(3),
});
// First DATA
z.socket.ReceivePacket(a.cb.ConsumeSentPacket());
// Second DATA (lost)
a.cb.ConsumeSentPacket();
EXPECT_CALL(a.cb, OnLifecycleMessageDelivered(LifecycleId(1)));
EXPECT_CALL(a.cb, OnLifecycleEnd(LifecycleId(1)));
EXPECT_CALL(a.cb, OnLifecycleMessageExpired(LifecycleId(2),
/*maybe_delivered=*/true));
EXPECT_CALL(a.cb, OnLifecycleEnd(LifecycleId(2)));
EXPECT_CALL(a.cb, OnLifecycleMessageDelivered(LifecycleId(3)));
EXPECT_CALL(a.cb, OnLifecycleEnd(LifecycleId(3)));
ExchangeMessages(a, z);
// Handle delayed SACK.
AdvanceTime(a, z, a.options.delayed_ack_max_timeout.ToTimeDelta());
ExchangeMessages(a, z);
// The chunk is now NACKed. Let the RTO expire, to discard the message.
AdvanceTime(a, z, a.options.rto_initial.ToTimeDelta());
ExchangeMessages(a, z);
// Handle delayed SACK.
AdvanceTime(a, z, a.options.delayed_ack_max_timeout.ToTimeDelta());
ExchangeMessages(a, z);
EXPECT_THAT(GetReceivedMessagePpids(z), ElementsAre(51, 53));
}
TEST(DcSctpSocketTest, LifecycleEventsForExpiredMessageWithRetransmitLimit) {
SocketUnderTest a("A");
SocketUnderTest z("Z");
ConnectSockets(a, z);
// Will not be able to send it in full within the congestion window, but will
// need to wait for SACKs to be received for more fragments to be sent.
std::vector<uint8_t> payload(kLargeMessageSize);
a.socket.Send(DcSctpMessage(StreamID(1), PPID(51), payload),
{
.max_retransmissions = 0,
.lifecycle_id = LifecycleId(1),
});
// First DATA
z.socket.ReceivePacket(a.cb.ConsumeSentPacket());
// Second DATA (lost)
a.cb.ConsumeSentPacket();
EXPECT_CALL(a.cb, OnLifecycleMessageExpired(LifecycleId(1),
/*maybe_delivered=*/false));
EXPECT_CALL(a.cb, OnLifecycleEnd(LifecycleId(1)));
ExchangeMessages(a, z);
EXPECT_THAT(GetReceivedMessagePpids(z), IsEmpty());
}
TEST(DcSctpSocketTest, LifecycleEventsForExpiredMessageWithLifetimeLimit) {
SocketUnderTest a("A");
SocketUnderTest z("Z");
// Send it before the socket is connected, to prevent it from being sent too
// quickly. The idea is that it should be expired before even attempting to
// send it in full.
std::vector<uint8_t> payload(kSmallMessageSize);
a.socket.Send(DcSctpMessage(StreamID(1), PPID(51), payload),
{
.lifetime = DurationMs(100),
.lifecycle_id = LifecycleId(1),
});
AdvanceTime(a, z, TimeDelta::Millis(200));
EXPECT_CALL(a.cb, OnLifecycleMessageExpired(LifecycleId(1),
/*maybe_delivered=*/false));
EXPECT_CALL(a.cb, OnLifecycleEnd(LifecycleId(1)));
ConnectSockets(a, z);
ExchangeMessages(a, z);
EXPECT_THAT(GetReceivedMessagePpids(z), IsEmpty());
}
TEST_P(DcSctpSocketParametrizedTest, ExposesTheNumberOfNegotiatedStreams) {
DcSctpOptions options_a = {
.announced_maximum_incoming_streams = 12,
.announced_maximum_outgoing_streams = 45,
};
SocketUnderTest a("A", options_a);
DcSctpOptions options_z = {
.announced_maximum_incoming_streams = 23,
.announced_maximum_outgoing_streams = 34,
};
auto z = std::make_unique<SocketUnderTest>("Z", options_z);
ConnectSockets(a, *z);
z = MaybeHandoverSocket(std::move(z));
ASSERT_HAS_VALUE_AND_ASSIGN(Metrics metrics_a, a.socket.GetMetrics());
EXPECT_EQ(metrics_a.negotiated_maximum_incoming_streams, 12);
EXPECT_EQ(metrics_a.negotiated_maximum_outgoing_streams, 23);
ASSERT_HAS_VALUE_AND_ASSIGN(Metrics metrics_z, z->socket.GetMetrics());
EXPECT_EQ(metrics_z.negotiated_maximum_incoming_streams, 23);
EXPECT_EQ(metrics_z.negotiated_maximum_outgoing_streams, 12);
}
TEST(DcSctpSocketTest, ResetStreamsDeferred) {
// Guaranteed to be fragmented into two fragments.
constexpr size_t kTwoFragmentsSize = DcSctpOptions::kMaxSafeMTUSize + 100;
SocketUnderTest a("A");
SocketUnderTest z("Z");
ConnectSockets(a, z);
a.socket.Send(DcSctpMessage(StreamID(1), PPID(53),
std::vector<uint8_t>(kTwoFragmentsSize)),
{});
a.socket.Send(DcSctpMessage(StreamID(1), PPID(54),
std::vector<uint8_t>(kSmallMessageSize)),
{});
a.socket.ResetStreams(std::vector<StreamID>({StreamID(1)}));
auto data1 = a.cb.ConsumeSentPacket();
auto data2 = a.cb.ConsumeSentPacket();
auto data3 = a.cb.ConsumeSentPacket();
auto reconfig = a.cb.ConsumeSentPacket();
EXPECT_THAT(
data1,
HasChunks(ElementsAre(IsDataChunk(Property(&DataChunk::ssn, SSN(0))))));
EXPECT_THAT(
data2,
HasChunks(ElementsAre(IsDataChunk(Property(&DataChunk::ssn, SSN(0))))));
EXPECT_THAT(
data3,
HasChunks(ElementsAre(IsDataChunk(Property(&DataChunk::ssn, SSN(1))))));
EXPECT_THAT(reconfig, HasChunks(ElementsAre(IsReConfig(HasParameters(
ElementsAre(IsOutgoingResetRequest(Property(
&OutgoingSSNResetRequestParameter::stream_ids,
ElementsAre(StreamID(1))))))))));
// Receive them slightly out of order to make stream resetting deferred.
z.socket.ReceivePacket(reconfig);
z.socket.ReceivePacket(data1);
z.socket.ReceivePacket(data2);
z.socket.ReceivePacket(data3);
absl::optional<DcSctpMessage> msg1 = z.cb.ConsumeReceivedMessage();
ASSERT_TRUE(msg1.has_value());
EXPECT_EQ(msg1->stream_id(), StreamID(1));
EXPECT_EQ(msg1->ppid(), PPID(53));
EXPECT_EQ(msg1->payload().size(), kTwoFragmentsSize);
absl::optional<DcSctpMessage> msg2 = z.cb.ConsumeReceivedMessage();
ASSERT_TRUE(msg2.has_value());
EXPECT_EQ(msg2->stream_id(), StreamID(1));
EXPECT_EQ(msg2->ppid(), PPID(54));
EXPECT_EQ(msg2->payload().size(), kSmallMessageSize);
EXPECT_CALL(a.cb, OnStreamsResetPerformed(ElementsAre(StreamID(1))));
ExchangeMessages(a, z);
// Z sent "in progress", which will make A buffer packets until it's sure
// that the reconfiguration has been applied. A will retry - wait for that.
AdvanceTime(a, z, a.options.rto_initial.ToTimeDelta());
auto reconfig2 = a.cb.ConsumeSentPacket();
EXPECT_THAT(reconfig2, HasChunks(ElementsAre(IsReConfig(HasParameters(
ElementsAre(IsOutgoingResetRequest(Property(
&OutgoingSSNResetRequestParameter::stream_ids,
ElementsAre(StreamID(1))))))))));
EXPECT_CALL(z.cb, OnIncomingStreamsReset(ElementsAre(StreamID(1))));
z.socket.ReceivePacket(reconfig2);
auto reconfig3 = z.cb.ConsumeSentPacket();
EXPECT_THAT(reconfig3, HasChunks(ElementsAre(IsReConfig(HasParameters(
ElementsAre(IsReconfigurationResponse(Property(
&ReconfigurationResponseParameter::result,
ReconfigurationResponseParameter::Result::
kSuccessPerformed))))))));
a.socket.ReceivePacket(reconfig3);
EXPECT_THAT(
data1,
HasChunks(ElementsAre(IsDataChunk(Property(&DataChunk::ssn, SSN(0))))));
EXPECT_THAT(
data2,
HasChunks(ElementsAre(IsDataChunk(Property(&DataChunk::ssn, SSN(0))))));
EXPECT_THAT(
data3,
HasChunks(ElementsAre(IsDataChunk(Property(&DataChunk::ssn, SSN(1))))));
EXPECT_THAT(reconfig, HasChunks(ElementsAre(IsReConfig(HasParameters(
ElementsAre(IsOutgoingResetRequest(Property(
&OutgoingSSNResetRequestParameter::stream_ids,
ElementsAre(StreamID(1))))))))));
// Send a new message after the stream has been reset.
a.socket.Send(DcSctpMessage(StreamID(1), PPID(55),
std::vector<uint8_t>(kSmallMessageSize)),
{});
ExchangeMessages(a, z);
absl::optional<DcSctpMessage> msg3 = z.cb.ConsumeReceivedMessage();
ASSERT_TRUE(msg3.has_value());
EXPECT_EQ(msg3->stream_id(), StreamID(1));
EXPECT_EQ(msg3->ppid(), PPID(55));
EXPECT_EQ(msg3->payload().size(), kSmallMessageSize);
}
TEST(DcSctpSocketTest, ResetStreamsWithPausedSenderResumesWhenPerformed) {
SocketUnderTest a("A");
SocketUnderTest z("Z");
ConnectSockets(a, z);
a.socket.Send(DcSctpMessage(StreamID(1), PPID(51),
std::vector<uint8_t>(kSmallMessageSize)),
{});
a.socket.ResetStreams(std::vector<StreamID>({StreamID(1)}));
// Will be queued, as the stream has an outstanding reset operation.
a.socket.Send(DcSctpMessage(StreamID(1), PPID(52),
std::vector<uint8_t>(kSmallMessageSize)),
{});
EXPECT_CALL(a.cb, OnStreamsResetPerformed(ElementsAre(StreamID(1))));
EXPECT_CALL(z.cb, OnIncomingStreamsReset(ElementsAre(StreamID(1))));
ExchangeMessages(a, z);
absl::optional<DcSctpMessage> msg1 = z.cb.ConsumeReceivedMessage();
ASSERT_TRUE(msg1.has_value());
EXPECT_EQ(msg1->stream_id(), StreamID(1));
EXPECT_EQ(msg1->ppid(), PPID(51));
EXPECT_EQ(msg1->payload().size(), kSmallMessageSize);
absl::optional<DcSctpMessage> msg2 = z.cb.ConsumeReceivedMessage();
ASSERT_TRUE(msg2.has_value());
EXPECT_EQ(msg2->stream_id(), StreamID(1));
EXPECT_EQ(msg2->ppid(), PPID(52));
EXPECT_EQ(msg2->payload().size(), kSmallMessageSize);
}
TEST_P(DcSctpSocketParametrizedTest, ZeroChecksumMetricsAreSet) {
std::vector<std::pair<bool, bool>> combinations = {
{false, false}, {false, true}, {true, false}, {true, true}};
for (const auto& [a_enable, z_enable] : combinations) {
DcSctpOptions a_options = {
.zero_checksum_alternate_error_detection_method =
a_enable
? ZeroChecksumAlternateErrorDetectionMethod::LowerLayerDtls()
: ZeroChecksumAlternateErrorDetectionMethod::None()};
DcSctpOptions z_options = {
.zero_checksum_alternate_error_detection_method =
z_enable
? ZeroChecksumAlternateErrorDetectionMethod::LowerLayerDtls()
: ZeroChecksumAlternateErrorDetectionMethod::None()};
SocketUnderTest a("A", a_options);
auto z = std::make_unique<SocketUnderTest>("Z", z_options);
ConnectSockets(a, *z);
z = MaybeHandoverSocket(std::move(z));
EXPECT_EQ(a.socket.GetMetrics()->uses_zero_checksum, a_enable && z_enable);
EXPECT_EQ(z->socket.GetMetrics()->uses_zero_checksum, a_enable && z_enable);
}
}
TEST(DcSctpSocketTest, AlwaysSendsInitWithNonZeroChecksum) {
DcSctpOptions options = {
.zero_checksum_alternate_error_detection_method =
ZeroChecksumAlternateErrorDetectionMethod::LowerLayerDtls()};
SocketUnderTest a("A", options);
a.socket.Connect();
std::vector<uint8_t> data = a.cb.ConsumeSentPacket();
ASSERT_HAS_VALUE_AND_ASSIGN(SctpPacket packet,
SctpPacket::Parse(data, options));
EXPECT_THAT(packet.descriptors(),
ElementsAre(testing::Field(&SctpPacket::ChunkDescriptor::type,
InitChunk::kType)));
EXPECT_THAT(packet.common_header().checksum, Not(Eq(0u)));
}
TEST(DcSctpSocketTest, MaySendInitAckWithZeroChecksum) {
DcSctpOptions options = {
.zero_checksum_alternate_error_detection_method =
ZeroChecksumAlternateErrorDetectionMethod::LowerLayerDtls()};
SocketUnderTest a("A", options);
SocketUnderTest z("Z", options);
a.socket.Connect();
z.socket.ReceivePacket(a.cb.ConsumeSentPacket()); // INIT
std::vector<uint8_t> data = z.cb.ConsumeSentPacket();
ASSERT_HAS_VALUE_AND_ASSIGN(SctpPacket packet,
SctpPacket::Parse(data, options));
EXPECT_THAT(packet.descriptors(),
ElementsAre(testing::Field(&SctpPacket::ChunkDescriptor::type,
InitAckChunk::kType)));
EXPECT_THAT(packet.common_header().checksum, 0u);
}
TEST(DcSctpSocketTest, AlwaysSendsCookieEchoWithNonZeroChecksum) {
DcSctpOptions options = {
.zero_checksum_alternate_error_detection_method =
ZeroChecksumAlternateErrorDetectionMethod::LowerLayerDtls()};
SocketUnderTest a("A", options);
SocketUnderTest z("Z", options);
a.socket.Connect();
z.socket.ReceivePacket(a.cb.ConsumeSentPacket()); // INIT
a.socket.ReceivePacket(z.cb.ConsumeSentPacket()); // INIT-ACK
std::vector<uint8_t> data = a.cb.ConsumeSentPacket();
ASSERT_HAS_VALUE_AND_ASSIGN(SctpPacket packet,
SctpPacket::Parse(data, options));
EXPECT_THAT(packet.descriptors(),
ElementsAre(testing::Field(&SctpPacket::ChunkDescriptor::type,
CookieEchoChunk::kType)));
EXPECT_THAT(packet.common_header().checksum, Not(Eq(0u)));
}
TEST(DcSctpSocketTest, SendsCookieAckWithZeroChecksum) {
DcSctpOptions options = {
.zero_checksum_alternate_error_detection_method =
ZeroChecksumAlternateErrorDetectionMethod::LowerLayerDtls()};
SocketUnderTest a("A", options);
SocketUnderTest z("Z", options);
a.socket.Connect();
z.socket.ReceivePacket(a.cb.ConsumeSentPacket()); // INIT
a.socket.ReceivePacket(z.cb.ConsumeSentPacket()); // INIT-ACK
z.socket.ReceivePacket(a.cb.ConsumeSentPacket()); // COOKIE-ECHO
std::vector<uint8_t> data = z.cb.ConsumeSentPacket();
ASSERT_HAS_VALUE_AND_ASSIGN(SctpPacket packet,
SctpPacket::Parse(data, options));
EXPECT_THAT(packet.descriptors(),
ElementsAre(testing::Field(&SctpPacket::ChunkDescriptor::type,
CookieAckChunk::kType)));
EXPECT_THAT(packet.common_header().checksum, 0u);
}
TEST_P(DcSctpSocketParametrizedTest, SendsDataWithZeroChecksum) {
DcSctpOptions options = {
.zero_checksum_alternate_error_detection_method =
ZeroChecksumAlternateErrorDetectionMethod::LowerLayerDtls()};
SocketUnderTest a("A", options);
auto z = std::make_unique<SocketUnderTest>("Z", options);
ConnectSockets(a, *z);
z = MaybeHandoverSocket(std::move(z));
std::vector<uint8_t> payload(a.options.mtu - 100);
a.socket.Send(DcSctpMessage(StreamID(1), PPID(53), payload), {});
std::vector<uint8_t> data = a.cb.ConsumeSentPacket();
z->socket.ReceivePacket(data);
ASSERT_HAS_VALUE_AND_ASSIGN(SctpPacket packet,
SctpPacket::Parse(data, options));
EXPECT_THAT(packet.descriptors(),
ElementsAre(testing::Field(&SctpPacket::ChunkDescriptor::type,
DataChunk::kType)));
EXPECT_THAT(packet.common_header().checksum, 0u);
MaybeHandoverSocketAndSendMessage(a, std::move(z));
}
TEST_P(DcSctpSocketParametrizedTest, AllPacketsAfterConnectHaveZeroChecksum) {
DcSctpOptions options = {
.zero_checksum_alternate_error_detection_method =
ZeroChecksumAlternateErrorDetectionMethod::LowerLayerDtls()};
SocketUnderTest a("A", options);
auto z = std::make_unique<SocketUnderTest>("Z", options);
ConnectSockets(a, *z);
z = MaybeHandoverSocket(std::move(z));
// Send large messages in both directions, and verify that they arrive and
// that every packet has zero checksum.
std::vector<uint8_t> payload(kLargeMessageSize);
a.socket.Send(DcSctpMessage(StreamID(1), PPID(53), payload), kSendOptions);
z->socket.Send(DcSctpMessage(StreamID(1), PPID(53), payload), kSendOptions);
for (;;) {
if (auto data = a.cb.ConsumeSentPacket(); !data.empty()) {
ASSERT_HAS_VALUE_AND_ASSIGN(SctpPacket packet,
SctpPacket::Parse(data, options));
EXPECT_THAT(packet.common_header().checksum, 0u);
z->socket.ReceivePacket(std::move(data));
} else if (auto data = z->cb.ConsumeSentPacket(); !data.empty()) {
ASSERT_HAS_VALUE_AND_ASSIGN(SctpPacket packet,
SctpPacket::Parse(data, options));
EXPECT_THAT(packet.common_header().checksum, 0u);
a.socket.ReceivePacket(std::move(data));
} else {
break;
}
}
absl::optional<DcSctpMessage> msg1 = z->cb.ConsumeReceivedMessage();
ASSERT_TRUE(msg1.has_value());
EXPECT_THAT(msg1->payload(), SizeIs(kLargeMessageSize));
absl::optional<DcSctpMessage> msg2 = a.cb.ConsumeReceivedMessage();
ASSERT_TRUE(msg2.has_value());
EXPECT_THAT(msg2->payload(), SizeIs(kLargeMessageSize));
MaybeHandoverSocketAndSendMessage(a, std::move(z));
}
TEST(DcSctpSocketTest, HandlesForwardTsnOutOfOrderWithStreamResetting) {
// This test ensures that receiving FORWARD-TSN and RECONFIG out of order is
// handled correctly.
SocketUnderTest a("A", {.heartbeat_interval = DurationMs(0)});
SocketUnderTest z("Z", {.heartbeat_interval = DurationMs(0)});
ConnectSockets(a, z);
std::vector<uint8_t> payload(kSmallMessageSize);
a.socket.Send(DcSctpMessage(StreamID(1), PPID(51), payload),
{
.max_retransmissions = 0,
});
// Packet is lost.
EXPECT_THAT(a.cb.ConsumeSentPacket(),
HasChunks(ElementsAre(
IsDataChunk(AllOf(Property(&DataChunk::ssn, SSN(0)),
Property(&DataChunk::ppid, PPID(51)))))));
AdvanceTime(a, z, a.options.rto_initial.ToTimeDelta());
auto fwd_tsn_packet = a.cb.ConsumeSentPacket();
EXPECT_THAT(fwd_tsn_packet,
HasChunks(ElementsAre(IsChunkType(ForwardTsnChunk::kType))));
// Reset stream 1
a.socket.ResetStreams(std::vector<StreamID>({StreamID(1)}));
auto reconfig_packet = a.cb.ConsumeSentPacket();
EXPECT_THAT(reconfig_packet,
HasChunks(ElementsAre(IsChunkType(ReConfigChunk::kType))));
// These two packets are received in the wrong order.
z.socket.ReceivePacket(reconfig_packet);
z.socket.ReceivePacket(fwd_tsn_packet);
ExchangeMessagesAndAdvanceTime(a, z);
a.socket.Send(DcSctpMessage(StreamID(1), PPID(52), payload), {});
a.socket.Send(DcSctpMessage(StreamID(1), PPID(53), payload), {});
auto data_packet_2 = a.cb.ConsumeSentPacket();
auto data_packet_3 = a.cb.ConsumeSentPacket();
EXPECT_THAT(data_packet_2, HasChunks(ElementsAre(IsDataChunk(AllOf(
Property(&DataChunk::ssn, SSN(0)),
Property(&DataChunk::ppid, PPID(52)))))));
EXPECT_THAT(data_packet_3, HasChunks(ElementsAre(IsDataChunk(AllOf(
Property(&DataChunk::ssn, SSN(1)),
Property(&DataChunk::ppid, PPID(53)))))));
z.socket.ReceivePacket(data_packet_2);
z.socket.ReceivePacket(data_packet_3);
ASSERT_THAT(z.cb.ConsumeReceivedMessage(),
testing::Optional(Property(&DcSctpMessage::ppid, PPID(52))));
ASSERT_THAT(z.cb.ConsumeReceivedMessage(),
testing::Optional(Property(&DcSctpMessage::ppid, PPID(53))));
}
TEST(DcSctpSocketTest, ResentInitHasSameParameters) {
// If an INIT chunk has to be resent (due to INIT_ACK not received in time),
// the resent INIT must have the same properties as the original one.
SocketUnderTest a("A");
SocketUnderTest z("Z");
a.socket.Connect();
auto packet_1 = a.cb.ConsumeSentPacket();
// Times out, INIT is re-sent.
AdvanceTime(a, z, a.options.t1_init_timeout.ToTimeDelta());
auto packet_2 = a.cb.ConsumeSentPacket();
ASSERT_HAS_VALUE_AND_ASSIGN(SctpPacket init_packet_1,
SctpPacket::Parse(packet_1, z.options));
ASSERT_HAS_VALUE_AND_ASSIGN(
InitChunk init_chunk_1,
InitChunk::Parse(init_packet_1.descriptors()[0].data));
ASSERT_HAS_VALUE_AND_ASSIGN(SctpPacket init_packet_2,
SctpPacket::Parse(packet_2, z.options));
ASSERT_HAS_VALUE_AND_ASSIGN(
InitChunk init_chunk_2,
InitChunk::Parse(init_packet_2.descriptors()[0].data));
EXPECT_EQ(init_chunk_1.initial_tsn(), init_chunk_2.initial_tsn());
EXPECT_EQ(init_chunk_1.initiate_tag(), init_chunk_2.initiate_tag());
}
TEST(DcSctpSocketTest, ResentInitAckHasDifferentParameters) {
// For every INIT, an INIT_ACK is produced. Verify that the socket doesn't
// maintain any state by ensuring that two created INIT_ACKs for the same
// received INIT are different.
SocketUnderTest a("A");
SocketUnderTest z("Z");
a.socket.Connect();
auto packet_1 = a.cb.ConsumeSentPacket();
EXPECT_THAT(packet_1, HasChunks(ElementsAre(IsChunkType(InitChunk::kType))));
z.socket.ReceivePacket(packet_1);
auto packet_2 = z.cb.ConsumeSentPacket();
z.socket.ReceivePacket(packet_1);
auto packet_3 = z.cb.ConsumeSentPacket();
EXPECT_THAT(packet_2,
HasChunks(ElementsAre(IsChunkType(InitAckChunk::kType))));
EXPECT_THAT(packet_3,
HasChunks(ElementsAre(IsChunkType(InitAckChunk::kType))));
ASSERT_HAS_VALUE_AND_ASSIGN(SctpPacket init_ack_packet_1,
SctpPacket::Parse(packet_2, z.options));
ASSERT_HAS_VALUE_AND_ASSIGN(
InitAckChunk init_ack_chunk_1,
InitAckChunk::Parse(init_ack_packet_1.descriptors()[0].data));
ASSERT_HAS_VALUE_AND_ASSIGN(SctpPacket init_ack_packet_2,
SctpPacket::Parse(packet_3, z.options));
ASSERT_HAS_VALUE_AND_ASSIGN(
InitAckChunk init_ack_chunk_2,
InitAckChunk::Parse(init_ack_packet_2.descriptors()[0].data));
EXPECT_NE(init_ack_chunk_1.initiate_tag(), init_ack_chunk_2.initiate_tag());
EXPECT_NE(init_ack_chunk_1.initial_tsn(), init_ack_chunk_2.initial_tsn());
}
TEST(DcSctpSocketResendInitTest, ConnectionCanContinueFromFirstInitAck) {
// If an INIT chunk has to be resent (due to INIT_ACK not received in time),
// another INIT will be sent, and if both INITs were actually received, both
// will be responded to by an INIT_ACK. While these two INIT_ACKs may have
// different parameters, the connection must be able to finish with the cookie
// (as replied to using COOKIE_ECHO) from either INIT_ACK.
SocketUnderTest a("A");
SocketUnderTest z("Z");
a.socket.Send(DcSctpMessage(StreamID(1), PPID(53),
std::vector<uint8_t>(kLargeMessageSize)),
kSendOptions);
a.socket.Connect();
auto init_1 = a.cb.ConsumeSentPacket();
// Times out, INIT is re-sent.
AdvanceTime(a, z, a.options.t1_init_timeout.ToTimeDelta());
auto init_2 = a.cb.ConsumeSentPacket();
EXPECT_THAT(init_1, HasChunks(ElementsAre(IsChunkType(InitChunk::kType))));
EXPECT_THAT(init_2, HasChunks(ElementsAre(IsChunkType(InitChunk::kType))));
z.socket.ReceivePacket(init_1);
z.socket.ReceivePacket(init_2);
auto init_ack_1 = z.cb.ConsumeSentPacket();
auto init_ack_2 = z.cb.ConsumeSentPacket();
EXPECT_THAT(init_ack_1,
HasChunks(ElementsAre(IsChunkType(InitAckChunk::kType))));
EXPECT_THAT(init_ack_2,
HasChunks(ElementsAre(IsChunkType(InitAckChunk::kType))));
a.socket.ReceivePacket(init_ack_1);
// Then let the rest continue.
ExchangeMessages(a, z);
absl::optional<DcSctpMessage> msg = z.cb.ConsumeReceivedMessage();
ASSERT_TRUE(msg.has_value());
EXPECT_EQ(msg->stream_id(), StreamID(1));
EXPECT_THAT(msg->payload(), SizeIs(kLargeMessageSize));
}
TEST(DcSctpSocketResendInitTest, ConnectionCanContinueFromSecondInitAck) {
// Just as above, but discarding the first INIT_ACK.
SocketUnderTest a("A");
SocketUnderTest z("Z");
a.socket.Send(DcSctpMessage(StreamID(1), PPID(53),
std::vector<uint8_t>(kLargeMessageSize)),
kSendOptions);
a.socket.Connect();
auto init_1 = a.cb.ConsumeSentPacket();
// Times out, INIT is re-sent.
AdvanceTime(a, z, a.options.t1_init_timeout.ToTimeDelta());
auto init_2 = a.cb.ConsumeSentPacket();
EXPECT_THAT(init_1, HasChunks(ElementsAre(IsChunkType(InitChunk::kType))));
EXPECT_THAT(init_2, HasChunks(ElementsAre(IsChunkType(InitChunk::kType))));
z.socket.ReceivePacket(init_1);
z.socket.ReceivePacket(init_2);
auto init_ack_1 = z.cb.ConsumeSentPacket();
auto init_ack_2 = z.cb.ConsumeSentPacket();
EXPECT_THAT(init_ack_1,
HasChunks(ElementsAre(IsChunkType(InitAckChunk::kType))));
EXPECT_THAT(init_ack_2,
HasChunks(ElementsAre(IsChunkType(InitAckChunk::kType))));
a.socket.ReceivePacket(init_ack_2);
// Then let the rest continue.
ExchangeMessages(a, z);
absl::optional<DcSctpMessage> msg = z.cb.ConsumeReceivedMessage();
ASSERT_TRUE(msg.has_value());
EXPECT_EQ(msg->stream_id(), StreamID(1));
EXPECT_THAT(msg->payload(), SizeIs(kLargeMessageSize));
}
} // namespace
} // namespace dcsctp