webrtc/modules/audio_processing/audio_buffer.cc
Per Åhgren 928146f546 Removing all external access to the integer sample data in AudioBuffer
This CL removes all external access to the integer sample data in the
AudioBuffer class. It also removes the API in AudioBuffer that provides this.

The purpose of this is to pave the way for removing the sample
duplicating and implicit conversions between integer and floating point
sample formats which is done inside the AudioBuffer.

Bug: webrtc:10882
Change-Id: I1438b691bcef98278aef8e3c63624c367c2d12e9
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/149162
Reviewed-by: Gustaf Ullberg <gustaf@webrtc.org>
Reviewed-by: Henrik Lundin <henrik.lundin@webrtc.org>
Commit-Queue: Per Åhgren <peah@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#28912}
2019-08-20 08:36:47 +00:00

318 lines
11 KiB
C++

/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/audio_buffer.h"
#include <string.h>
#include <cstdint>
#include "common_audio/channel_buffer.h"
#include "common_audio/include/audio_util.h"
#include "common_audio/resampler/push_sinc_resampler.h"
#include "modules/audio_processing/splitting_filter.h"
#include "rtc_base/checks.h"
namespace webrtc {
namespace {
const size_t kSamplesPer16kHzChannel = 160;
const size_t kSamplesPer32kHzChannel = 320;
const size_t kSamplesPer48kHzChannel = 480;
size_t NumBandsFromSamplesPerChannel(size_t num_frames) {
size_t num_bands = 1;
if (num_frames == kSamplesPer32kHzChannel ||
num_frames == kSamplesPer48kHzChannel) {
num_bands = rtc::CheckedDivExact(num_frames, kSamplesPer16kHzChannel);
}
return num_bands;
}
} // namespace
AudioBuffer::AudioBuffer(size_t input_num_frames,
size_t num_input_channels,
size_t process_num_frames,
size_t num_process_channels,
size_t output_num_frames)
: input_num_frames_(input_num_frames),
num_input_channels_(num_input_channels),
proc_num_frames_(process_num_frames),
num_proc_channels_(num_process_channels),
output_num_frames_(output_num_frames),
num_channels_(num_process_channels),
num_bands_(NumBandsFromSamplesPerChannel(proc_num_frames_)),
num_split_frames_(rtc::CheckedDivExact(proc_num_frames_, num_bands_)),
data_(new IFChannelBuffer(proc_num_frames_, num_proc_channels_)),
output_buffer_(new IFChannelBuffer(output_num_frames_, num_channels_)) {
RTC_DCHECK_GT(input_num_frames_, 0);
RTC_DCHECK_GT(proc_num_frames_, 0);
RTC_DCHECK_GT(output_num_frames_, 0);
RTC_DCHECK_GT(num_input_channels_, 0);
RTC_DCHECK_GT(num_proc_channels_, 0);
RTC_DCHECK_LE(num_proc_channels_, num_input_channels_);
if (input_num_frames_ != proc_num_frames_ ||
output_num_frames_ != proc_num_frames_) {
// Create an intermediate buffer for resampling.
process_buffer_.reset(
new ChannelBuffer<float>(proc_num_frames_, num_proc_channels_));
if (input_num_frames_ != proc_num_frames_) {
for (size_t i = 0; i < num_proc_channels_; ++i) {
input_resamplers_.push_back(std::unique_ptr<PushSincResampler>(
new PushSincResampler(input_num_frames_, proc_num_frames_)));
}
}
if (output_num_frames_ != proc_num_frames_) {
for (size_t i = 0; i < num_proc_channels_; ++i) {
output_resamplers_.push_back(std::unique_ptr<PushSincResampler>(
new PushSincResampler(proc_num_frames_, output_num_frames_)));
}
}
}
if (num_bands_ > 1) {
split_data_.reset(
new IFChannelBuffer(proc_num_frames_, num_proc_channels_, num_bands_));
splitting_filter_.reset(
new SplittingFilter(num_proc_channels_, num_bands_, proc_num_frames_));
}
}
AudioBuffer::~AudioBuffer() {}
void AudioBuffer::CopyFrom(const float* const* data,
const StreamConfig& stream_config) {
RTC_DCHECK_EQ(stream_config.num_frames(), input_num_frames_);
RTC_DCHECK_EQ(stream_config.num_channels(), num_input_channels_);
InitForNewData();
// Initialized lazily because there's a different condition in
// DeinterleaveFrom.
const bool need_to_downmix =
num_input_channels_ > 1 && num_proc_channels_ == 1;
if (need_to_downmix && !input_buffer_) {
input_buffer_.reset(
new IFChannelBuffer(input_num_frames_, num_proc_channels_));
}
// Downmix.
const float* const* data_ptr = data;
if (need_to_downmix) {
DownmixToMono<float, float>(data, input_num_frames_, num_input_channels_,
input_buffer_->fbuf()->channels()[0]);
data_ptr = input_buffer_->fbuf_const()->channels();
}
// Resample.
if (input_num_frames_ != proc_num_frames_) {
for (size_t i = 0; i < num_proc_channels_; ++i) {
input_resamplers_[i]->Resample(data_ptr[i], input_num_frames_,
process_buffer_->channels()[i],
proc_num_frames_);
}
data_ptr = process_buffer_->channels();
}
// Convert to the S16 range.
for (size_t i = 0; i < num_proc_channels_; ++i) {
FloatToFloatS16(data_ptr[i], proc_num_frames_,
data_->fbuf()->channels()[i]);
}
}
void AudioBuffer::CopyTo(const StreamConfig& stream_config,
float* const* data) {
RTC_DCHECK_EQ(stream_config.num_frames(), output_num_frames_);
RTC_DCHECK(stream_config.num_channels() == num_channels_ ||
num_channels_ == 1);
// Convert to the float range.
float* const* data_ptr = data;
if (output_num_frames_ != proc_num_frames_) {
// Convert to an intermediate buffer for subsequent resampling.
data_ptr = process_buffer_->channels();
}
for (size_t i = 0; i < num_channels_; ++i) {
FloatS16ToFloat(data_->fbuf()->channels()[i], proc_num_frames_,
data_ptr[i]);
}
// Resample.
if (output_num_frames_ != proc_num_frames_) {
for (size_t i = 0; i < num_channels_; ++i) {
output_resamplers_[i]->Resample(data_ptr[i], proc_num_frames_, data[i],
output_num_frames_);
}
}
// Upmix.
for (size_t i = num_channels_; i < stream_config.num_channels(); ++i) {
memcpy(data[i], data[0], output_num_frames_ * sizeof(**data));
}
}
void AudioBuffer::InitForNewData() {
num_channels_ = num_proc_channels_;
data_->set_num_channels(num_proc_channels_);
if (split_data_.get()) {
split_data_->set_num_channels(num_proc_channels_);
}
}
const float* const* AudioBuffer::split_channels_const_f(Band band) const {
if (split_data_.get()) {
return split_data_->fbuf_const()->channels(band);
} else {
return band == kBand0To8kHz ? data_->fbuf_const()->channels() : nullptr;
}
}
const float* const* AudioBuffer::channels_const_f() const {
return data_->fbuf_const()->channels();
}
float* const* AudioBuffer::channels_f() {
return data_->fbuf()->channels();
}
const float* const* AudioBuffer::split_bands_const_f(size_t channel) const {
return split_data_.get() ? split_data_->fbuf_const()->bands(channel)
: data_->fbuf_const()->bands(channel);
}
float* const* AudioBuffer::split_bands_f(size_t channel) {
return split_data_.get() ? split_data_->fbuf()->bands(channel)
: data_->fbuf()->bands(channel);
}
size_t AudioBuffer::num_channels() const {
return num_channels_;
}
void AudioBuffer::set_num_channels(size_t num_channels) {
num_channels_ = num_channels;
data_->set_num_channels(num_channels);
if (split_data_.get()) {
split_data_->set_num_channels(num_channels);
}
}
size_t AudioBuffer::num_frames() const {
return proc_num_frames_;
}
size_t AudioBuffer::num_frames_per_band() const {
return num_split_frames_;
}
size_t AudioBuffer::num_bands() const {
return num_bands_;
}
// The resampler is only for supporting 48kHz to 16kHz in the reverse stream.
void AudioBuffer::DeinterleaveFrom(const AudioFrame* frame) {
RTC_DCHECK_EQ(frame->num_channels_, num_input_channels_);
RTC_DCHECK_EQ(frame->samples_per_channel_, input_num_frames_);
InitForNewData();
// Initialized lazily because there's a different condition in CopyFrom.
if ((input_num_frames_ != proc_num_frames_) && !input_buffer_) {
input_buffer_.reset(
new IFChannelBuffer(input_num_frames_, num_proc_channels_));
}
int16_t* const* deinterleaved;
if (input_num_frames_ == proc_num_frames_) {
deinterleaved = data_->ibuf()->channels();
} else {
deinterleaved = input_buffer_->ibuf()->channels();
}
// TODO(yujo): handle muted frames more efficiently.
if (num_proc_channels_ == 1) {
// Downmix and deinterleave simultaneously.
DownmixInterleavedToMono(frame->data(), input_num_frames_,
num_input_channels_, deinterleaved[0]);
} else {
RTC_DCHECK_EQ(num_proc_channels_, num_input_channels_);
Deinterleave(frame->data(), input_num_frames_, num_proc_channels_,
deinterleaved);
}
// Resample.
if (input_num_frames_ != proc_num_frames_) {
for (size_t i = 0; i < num_proc_channels_; ++i) {
input_resamplers_[i]->Resample(
input_buffer_->fbuf_const()->channels()[i], input_num_frames_,
data_->fbuf()->channels()[i], proc_num_frames_);
}
}
}
void AudioBuffer::InterleaveTo(AudioFrame* frame) const {
RTC_DCHECK(frame->num_channels_ == num_channels_ || num_channels_ == 1);
RTC_DCHECK_EQ(frame->samples_per_channel_, output_num_frames_);
// Resample if necessary.
IFChannelBuffer* data_ptr = data_.get();
if (proc_num_frames_ != output_num_frames_) {
for (size_t i = 0; i < num_channels_; ++i) {
output_resamplers_[i]->Resample(
data_->fbuf()->channels()[i], proc_num_frames_,
output_buffer_->fbuf()->channels()[i], output_num_frames_);
}
data_ptr = output_buffer_.get();
}
// TODO(yujo): handle muted frames more efficiently.
if (frame->num_channels_ == num_channels_) {
Interleave(data_ptr->ibuf()->channels(), output_num_frames_, num_channels_,
frame->mutable_data());
} else {
UpmixMonoToInterleaved(data_ptr->ibuf()->channels()[0], output_num_frames_,
frame->num_channels_, frame->mutable_data());
}
}
void AudioBuffer::SplitIntoFrequencyBands() {
splitting_filter_->Analysis(data_.get(), split_data_.get());
}
void AudioBuffer::MergeFrequencyBands() {
splitting_filter_->Synthesis(split_data_.get(), data_.get());
}
void AudioBuffer::CopySplitChannelDataTo(size_t channel,
int16_t* const* split_band_data) {
for (size_t k = 0; k < num_bands(); ++k) {
const float* band_data = split_bands_f(channel)[k];
RTC_DCHECK(split_band_data[k]);
RTC_DCHECK(band_data);
for (size_t i = 0; i < num_frames_per_band(); ++i) {
split_band_data[k][i] = FloatS16ToS16(band_data[i]);
}
}
}
void AudioBuffer::CopySplitChannelDataFrom(
size_t channel,
const int16_t* const* split_band_data) {
for (size_t k = 0; k < num_bands(); ++k) {
float* band_data = split_bands_f(channel)[k];
RTC_DCHECK(split_band_data[k]);
RTC_DCHECK(band_data);
for (size_t i = 0; i < num_frames_per_band(); ++i) {
band_data[i] = split_band_data[k][i];
}
}
}
} // namespace webrtc