mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-16 15:20:42 +01:00

WebRTC is now using C++14 so there is no need to use the Abseil version of std::make_unique. This CL has been created with the following steps: git grep -l absl::make_unique | sort | uniq > /tmp/make_unique.txt git grep -l absl::WrapUnique | sort | uniq > /tmp/wrap_unique.txt git grep -l "#include <memory>" | sort | uniq > /tmp/memory.txt diff --new-line-format="" --unchanged-line-format="" \ /tmp/make_unique.txt /tmp/wrap_unique.txt | sort | \ uniq > /tmp/only_make_unique.txt diff --new-line-format="" --unchanged-line-format="" \ /tmp/only_make_unique.txt /tmp/memory.txt | \ xargs grep -l "absl/memory" > /tmp/add-memory.txt git grep -l "\babsl::make_unique\b" | \ xargs sed -i "s/\babsl::make_unique\b/std::make_unique/g" git checkout PRESUBMIT.py abseil-in-webrtc.md cat /tmp/add-memory.txt | \ xargs sed -i \ 's/#include "absl\/memory\/memory.h"/#include <memory>/g' git cl format # Manual fix order of the new inserted #include <memory> cat /tmp/only_make_unique | xargs grep -l "#include <memory>" | \ xargs sed -i '/#include "absl\/memory\/memory.h"/d' git ls-files | grep BUILD.gn | \ xargs sed -i '/\/\/third_party\/abseil-cpp\/absl\/memory/d' python tools_webrtc/gn_check_autofix.py \ -m tryserver.webrtc -b linux_rel # Repead the gn_check_autofix step for other platforms git ls-files | grep BUILD.gn | \ xargs sed -i 's/absl\/memory:memory/absl\/memory/g' git cl format Bug: webrtc:10945 Change-Id: I3fe28ea80f4dd3ba3cf28effd151d5e1f19aff89 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/153221 Commit-Queue: Mirko Bonadei <mbonadei@webrtc.org> Reviewed-by: Alessio Bazzica <alessiob@webrtc.org> Reviewed-by: Karl Wiberg <kwiberg@webrtc.org> Cr-Commit-Position: refs/heads/master@{#29209}
1269 lines
48 KiB
C++
1269 lines
48 KiB
C++
/*
|
|
* Copyright (c) 2019 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/pacing/pacing_controller.h"
|
|
|
|
#include <algorithm>
|
|
#include <list>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include "api/units/data_rate.h"
|
|
#include "modules/pacing/packet_router.h"
|
|
#include "system_wrappers/include/clock.h"
|
|
#include "test/field_trial.h"
|
|
#include "test/gmock.h"
|
|
#include "test/gtest.h"
|
|
|
|
using ::testing::_;
|
|
using ::testing::Field;
|
|
using ::testing::Pointee;
|
|
using ::testing::Property;
|
|
using ::testing::Return;
|
|
|
|
namespace webrtc {
|
|
namespace test {
|
|
namespace {
|
|
constexpr DataRate kFirstClusterRate = DataRate::KilobitsPerSec<900>();
|
|
constexpr DataRate kSecondClusterRate = DataRate::KilobitsPerSec<1800>();
|
|
|
|
// The error stems from truncating the time interval of probe packets to integer
|
|
// values. This results in probing slightly higher than the target bitrate.
|
|
// For 1.8 Mbps, this comes to be about 120 kbps with 1200 probe packets.
|
|
constexpr DataRate kProbingErrorMargin = DataRate::KilobitsPerSec<150>();
|
|
|
|
const float kPaceMultiplier = 2.5f;
|
|
|
|
constexpr uint32_t kAudioSsrc = 12345;
|
|
constexpr uint32_t kVideoSsrc = 234565;
|
|
constexpr uint32_t kVideoRtxSsrc = 34567;
|
|
constexpr uint32_t kFlexFecSsrc = 45678;
|
|
|
|
constexpr DataRate kTargetRate = DataRate::KilobitsPerSec<800>();
|
|
|
|
std::unique_ptr<RtpPacketToSend> BuildPacket(RtpPacketToSend::Type type,
|
|
uint32_t ssrc,
|
|
uint16_t sequence_number,
|
|
int64_t capture_time_ms,
|
|
size_t size) {
|
|
auto packet = std::make_unique<RtpPacketToSend>(nullptr);
|
|
packet->set_packet_type(type);
|
|
packet->SetSsrc(ssrc);
|
|
packet->SetSequenceNumber(sequence_number);
|
|
packet->set_capture_time_ms(capture_time_ms);
|
|
packet->SetPayloadSize(size);
|
|
return packet;
|
|
}
|
|
} // namespace
|
|
|
|
// Mock callback proxy, where both new and old api redirects to common mock
|
|
// methods that focus on core aspects.
|
|
class MockPacingControllerCallback : public PacingController::PacketSender {
|
|
public:
|
|
void SendRtpPacket(std::unique_ptr<RtpPacketToSend> packet,
|
|
const PacedPacketInfo& cluster_info) override {
|
|
SendPacket(packet->Ssrc(), packet->SequenceNumber(),
|
|
packet->capture_time_ms(),
|
|
packet->packet_type() == RtpPacketToSend::Type::kRetransmission,
|
|
packet->packet_type() == RtpPacketToSend::Type::kPadding);
|
|
}
|
|
|
|
std::vector<std::unique_ptr<RtpPacketToSend>> GeneratePadding(
|
|
DataSize target_size) override {
|
|
std::vector<std::unique_ptr<RtpPacketToSend>> ret;
|
|
size_t padding_size = SendPadding(target_size.bytes());
|
|
if (padding_size > 0) {
|
|
auto packet = std::make_unique<RtpPacketToSend>(nullptr);
|
|
packet->SetPayloadSize(padding_size);
|
|
packet->set_packet_type(RtpPacketToSend::Type::kPadding);
|
|
ret.emplace_back(std::move(packet));
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
MOCK_METHOD5(SendPacket,
|
|
void(uint32_t ssrc,
|
|
uint16_t sequence_number,
|
|
int64_t capture_timestamp,
|
|
bool retransmission,
|
|
bool padding));
|
|
MOCK_METHOD1(SendPadding, size_t(size_t target_size));
|
|
};
|
|
|
|
// Mock callback implementing the raw api.
|
|
class MockPacketSender : public PacingController::PacketSender {
|
|
public:
|
|
MOCK_METHOD2(SendRtpPacket,
|
|
void(std::unique_ptr<RtpPacketToSend> packet,
|
|
const PacedPacketInfo& cluster_info));
|
|
MOCK_METHOD1(
|
|
GeneratePadding,
|
|
std::vector<std::unique_ptr<RtpPacketToSend>>(DataSize target_size));
|
|
};
|
|
|
|
class PacingControllerPadding : public PacingController::PacketSender {
|
|
public:
|
|
static const size_t kPaddingPacketSize = 224;
|
|
|
|
PacingControllerPadding() : padding_sent_(0) {}
|
|
|
|
void SendRtpPacket(std::unique_ptr<RtpPacketToSend> packet,
|
|
const PacedPacketInfo& pacing_info) override {}
|
|
|
|
std::vector<std::unique_ptr<RtpPacketToSend>> GeneratePadding(
|
|
DataSize target_size) override {
|
|
size_t num_packets =
|
|
(target_size.bytes() + kPaddingPacketSize - 1) / kPaddingPacketSize;
|
|
std::vector<std::unique_ptr<RtpPacketToSend>> packets;
|
|
for (size_t i = 0; i < num_packets; ++i) {
|
|
packets.emplace_back(std::make_unique<RtpPacketToSend>(nullptr));
|
|
packets.back()->SetPadding(kPaddingPacketSize);
|
|
packets.back()->set_packet_type(RtpPacketToSend::Type::kPadding);
|
|
padding_sent_ += kPaddingPacketSize;
|
|
}
|
|
return packets;
|
|
}
|
|
|
|
size_t padding_sent() { return padding_sent_; }
|
|
|
|
private:
|
|
size_t padding_sent_;
|
|
};
|
|
|
|
class PacingControllerProbing : public PacingController::PacketSender {
|
|
public:
|
|
PacingControllerProbing() : packets_sent_(0), padding_sent_(0) {}
|
|
|
|
void SendRtpPacket(std::unique_ptr<RtpPacketToSend> packet,
|
|
const PacedPacketInfo& pacing_info) override {
|
|
if (packet->packet_type() != RtpPacketToSend::Type::kPadding) {
|
|
++packets_sent_;
|
|
}
|
|
}
|
|
|
|
std::vector<std::unique_ptr<RtpPacketToSend>> GeneratePadding(
|
|
DataSize target_size) override {
|
|
std::vector<std::unique_ptr<RtpPacketToSend>> packets;
|
|
packets.emplace_back(std::make_unique<RtpPacketToSend>(nullptr));
|
|
packets.back()->SetPadding(target_size.bytes());
|
|
packets.back()->set_packet_type(RtpPacketToSend::Type::kPadding);
|
|
padding_sent_ += target_size.bytes();
|
|
return packets;
|
|
}
|
|
|
|
int packets_sent() const { return packets_sent_; }
|
|
|
|
int padding_sent() const { return padding_sent_; }
|
|
|
|
private:
|
|
int packets_sent_;
|
|
int padding_sent_;
|
|
};
|
|
|
|
class PacingControllerTest : public ::testing::Test {
|
|
protected:
|
|
PacingControllerTest() : clock_(123456) {
|
|
srand(0);
|
|
// Need to initialize PacingController after we initialize clock.
|
|
pacer_ = std::make_unique<PacingController>(&clock_, &callback_, nullptr,
|
|
nullptr);
|
|
Init();
|
|
}
|
|
|
|
void Init() {
|
|
pacer_->CreateProbeCluster(kFirstClusterRate, /*cluster_id=*/0);
|
|
pacer_->CreateProbeCluster(kSecondClusterRate, /*cluster_id=*/1);
|
|
// Default to bitrate probing disabled for testing purposes. Probing tests
|
|
// have to enable probing, either by creating a new PacingController
|
|
// instance or by calling SetProbingEnabled(true).
|
|
pacer_->SetProbingEnabled(false);
|
|
pacer_->SetPacingRates(kTargetRate * kPaceMultiplier, DataRate::Zero());
|
|
|
|
clock_.AdvanceTime(TimeUntilNextProcess());
|
|
}
|
|
|
|
void Send(RtpPacketToSend::Type type,
|
|
uint32_t ssrc,
|
|
uint16_t sequence_number,
|
|
int64_t capture_time_ms,
|
|
size_t size) {
|
|
pacer_->EnqueuePacket(
|
|
BuildPacket(type, ssrc, sequence_number, capture_time_ms, size));
|
|
}
|
|
|
|
void SendAndExpectPacket(RtpPacketToSend::Type type,
|
|
uint32_t ssrc,
|
|
uint16_t sequence_number,
|
|
int64_t capture_time_ms,
|
|
size_t size) {
|
|
Send(type, ssrc, sequence_number, capture_time_ms, size);
|
|
EXPECT_CALL(
|
|
callback_,
|
|
SendPacket(ssrc, sequence_number, capture_time_ms,
|
|
type == RtpPacketToSend::Type::kRetransmission, false))
|
|
.Times(1);
|
|
}
|
|
|
|
std::unique_ptr<RtpPacketToSend> BuildRtpPacket(RtpPacketToSend::Type type) {
|
|
auto packet = std::make_unique<RtpPacketToSend>(nullptr);
|
|
packet->set_packet_type(type);
|
|
switch (type) {
|
|
case RtpPacketToSend::Type::kAudio:
|
|
packet->SetSsrc(kAudioSsrc);
|
|
break;
|
|
case RtpPacketToSend::Type::kVideo:
|
|
packet->SetSsrc(kVideoSsrc);
|
|
break;
|
|
case RtpPacketToSend::Type::kRetransmission:
|
|
case RtpPacketToSend::Type::kPadding:
|
|
packet->SetSsrc(kVideoRtxSsrc);
|
|
break;
|
|
case RtpPacketToSend::Type::kForwardErrorCorrection:
|
|
packet->SetSsrc(kFlexFecSsrc);
|
|
break;
|
|
}
|
|
|
|
packet->SetPayloadSize(234);
|
|
return packet;
|
|
}
|
|
|
|
TimeDelta TimeUntilNextProcess() {
|
|
// TODO(bugs.webrtc.org/10809): Replace this with TimeUntilAvailableBudget()
|
|
// once ported from WIP code. For now, emulate PacedSender method.
|
|
|
|
TimeDelta elapsed_time = pacer_->TimeElapsedSinceLastProcess();
|
|
if (pacer_->IsPaused()) {
|
|
return std::max(PacingController::kPausedProcessInterval - elapsed_time,
|
|
TimeDelta::Zero());
|
|
}
|
|
|
|
auto next_probe = pacer_->TimeUntilNextProbe();
|
|
if (next_probe) {
|
|
return *next_probe;
|
|
}
|
|
|
|
const TimeDelta min_packet_limit = TimeDelta::ms(5);
|
|
return std::max(min_packet_limit - elapsed_time, TimeDelta::Zero());
|
|
}
|
|
|
|
SimulatedClock clock_;
|
|
MockPacingControllerCallback callback_;
|
|
std::unique_ptr<PacingController> pacer_;
|
|
};
|
|
|
|
class PacingControllerFieldTrialTest : public ::testing::Test {
|
|
protected:
|
|
struct MediaStream {
|
|
const RtpPacketToSend::Type type;
|
|
const uint32_t ssrc;
|
|
const size_t packet_size;
|
|
uint16_t seq_num;
|
|
};
|
|
|
|
const int kProcessIntervalsPerSecond = 1000 / 5;
|
|
|
|
PacingControllerFieldTrialTest() : clock_(123456) {}
|
|
void InsertPacket(PacingController* pacer, MediaStream* stream) {
|
|
pacer->EnqueuePacket(
|
|
BuildPacket(stream->type, stream->ssrc, stream->seq_num++,
|
|
clock_.TimeInMilliseconds(), stream->packet_size));
|
|
}
|
|
void ProcessNext(PacingController* pacer) {
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
pacer->ProcessPackets();
|
|
}
|
|
MediaStream audio{/*type*/ RtpPacketToSend::Type::kAudio,
|
|
/*ssrc*/ 3333, /*packet_size*/ 100, /*seq_num*/ 1000};
|
|
MediaStream video{/*type*/ RtpPacketToSend::Type::kVideo,
|
|
/*ssrc*/ 4444, /*packet_size*/ 1000, /*seq_num*/ 1000};
|
|
SimulatedClock clock_;
|
|
MockPacingControllerCallback callback_;
|
|
};
|
|
|
|
TEST_F(PacingControllerFieldTrialTest, DefaultNoPaddingInSilence) {
|
|
PacingController pacer(&clock_, &callback_, nullptr, nullptr);
|
|
pacer.SetPacingRates(kTargetRate, DataRate::Zero());
|
|
// Video packet to reset last send time and provide padding data.
|
|
InsertPacket(&pacer, &video);
|
|
EXPECT_CALL(callback_, SendPacket).Times(1);
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
pacer.ProcessPackets();
|
|
EXPECT_CALL(callback_, SendPadding).Times(0);
|
|
// Waiting 500 ms should not trigger sending of padding.
|
|
clock_.AdvanceTimeMilliseconds(500);
|
|
pacer.ProcessPackets();
|
|
}
|
|
|
|
TEST_F(PacingControllerFieldTrialTest, PaddingInSilenceWithTrial) {
|
|
ScopedFieldTrials trial("WebRTC-Pacer-PadInSilence/Enabled/");
|
|
PacingController pacer(&clock_, &callback_, nullptr, nullptr);
|
|
pacer.SetPacingRates(kTargetRate, DataRate::Zero());
|
|
// Video packet to reset last send time and provide padding data.
|
|
InsertPacket(&pacer, &video);
|
|
EXPECT_CALL(callback_, SendPacket).Times(2);
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
pacer.ProcessPackets();
|
|
EXPECT_CALL(callback_, SendPadding).WillOnce(Return(1000));
|
|
// Waiting 500 ms should trigger sending of padding.
|
|
clock_.AdvanceTimeMilliseconds(500);
|
|
pacer.ProcessPackets();
|
|
}
|
|
|
|
TEST_F(PacingControllerFieldTrialTest, DefaultCongestionWindowAffectsAudio) {
|
|
EXPECT_CALL(callback_, SendPadding).Times(0);
|
|
PacingController pacer(&clock_, &callback_, nullptr, nullptr);
|
|
pacer.SetPacingRates(DataRate::bps(10000000), DataRate::Zero());
|
|
pacer.SetCongestionWindow(DataSize::bytes(800));
|
|
pacer.UpdateOutstandingData(DataSize::Zero());
|
|
// Video packet fills congestion window.
|
|
InsertPacket(&pacer, &video);
|
|
EXPECT_CALL(callback_, SendPacket).Times(1);
|
|
ProcessNext(&pacer);
|
|
// Audio packet blocked due to congestion.
|
|
InsertPacket(&pacer, &audio);
|
|
EXPECT_CALL(callback_, SendPacket).Times(0);
|
|
ProcessNext(&pacer);
|
|
ProcessNext(&pacer);
|
|
// Audio packet unblocked when congestion window clear.
|
|
::testing::Mock::VerifyAndClearExpectations(&callback_);
|
|
pacer.UpdateOutstandingData(DataSize::Zero());
|
|
EXPECT_CALL(callback_, SendPacket).Times(1);
|
|
ProcessNext(&pacer);
|
|
}
|
|
|
|
TEST_F(PacingControllerFieldTrialTest,
|
|
CongestionWindowDoesNotAffectAudioInTrial) {
|
|
ScopedFieldTrials trial("WebRTC-Pacer-BlockAudio/Disabled/");
|
|
EXPECT_CALL(callback_, SendPadding).Times(0);
|
|
PacingController pacer(&clock_, &callback_, nullptr, nullptr);
|
|
pacer.SetPacingRates(DataRate::bps(10000000), DataRate::Zero());
|
|
pacer.SetCongestionWindow(DataSize::bytes(800));
|
|
pacer.UpdateOutstandingData(DataSize::Zero());
|
|
// Video packet fills congestion window.
|
|
InsertPacket(&pacer, &video);
|
|
EXPECT_CALL(callback_, SendPacket).Times(1);
|
|
ProcessNext(&pacer);
|
|
// Audio not blocked due to congestion.
|
|
InsertPacket(&pacer, &audio);
|
|
EXPECT_CALL(callback_, SendPacket).Times(1);
|
|
ProcessNext(&pacer);
|
|
}
|
|
|
|
TEST_F(PacingControllerFieldTrialTest, DefaultBudgetAffectsAudio) {
|
|
PacingController pacer(&clock_, &callback_, nullptr, nullptr);
|
|
pacer.SetPacingRates(
|
|
DataRate::bps(video.packet_size / 3 * 8 * kProcessIntervalsPerSecond),
|
|
DataRate::Zero());
|
|
// Video fills budget for following process periods.
|
|
InsertPacket(&pacer, &video);
|
|
EXPECT_CALL(callback_, SendPacket).Times(1);
|
|
ProcessNext(&pacer);
|
|
// Audio packet blocked due to budget limit.
|
|
EXPECT_CALL(callback_, SendPacket).Times(0);
|
|
InsertPacket(&pacer, &audio);
|
|
ProcessNext(&pacer);
|
|
ProcessNext(&pacer);
|
|
::testing::Mock::VerifyAndClearExpectations(&callback_);
|
|
// Audio packet unblocked when the budget has recovered.
|
|
EXPECT_CALL(callback_, SendPacket).Times(1);
|
|
ProcessNext(&pacer);
|
|
ProcessNext(&pacer);
|
|
}
|
|
|
|
TEST_F(PacingControllerFieldTrialTest, BudgetDoesNotAffectAudioInTrial) {
|
|
ScopedFieldTrials trial("WebRTC-Pacer-BlockAudio/Disabled/");
|
|
EXPECT_CALL(callback_, SendPadding).Times(0);
|
|
PacingController pacer(&clock_, &callback_, nullptr, nullptr);
|
|
pacer.SetPacingRates(
|
|
DataRate::bps(video.packet_size / 3 * 8 * kProcessIntervalsPerSecond),
|
|
DataRate::Zero());
|
|
// Video fills budget for following process periods.
|
|
InsertPacket(&pacer, &video);
|
|
EXPECT_CALL(callback_, SendPacket).Times(1);
|
|
ProcessNext(&pacer);
|
|
// Audio packet not blocked due to budget limit.
|
|
EXPECT_CALL(callback_, SendPacket).Times(1);
|
|
InsertPacket(&pacer, &audio);
|
|
ProcessNext(&pacer);
|
|
}
|
|
|
|
TEST_F(PacingControllerTest, FirstSentPacketTimeIsSet) {
|
|
uint16_t sequence_number = 1234;
|
|
const uint32_t kSsrc = 12345;
|
|
const size_t kSizeBytes = 250;
|
|
const size_t kPacketToSend = 3;
|
|
const Timestamp kStartTime = clock_.CurrentTime();
|
|
|
|
// No packet sent.
|
|
EXPECT_FALSE(pacer_->FirstSentPacketTime().has_value());
|
|
|
|
for (size_t i = 0; i < kPacketToSend; ++i) {
|
|
SendAndExpectPacket(RtpPacketToSend::Type::kVideo, kSsrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), kSizeBytes);
|
|
pacer_->ProcessPackets();
|
|
clock_.AdvanceTime(TimeUntilNextProcess());
|
|
}
|
|
EXPECT_EQ(kStartTime, pacer_->FirstSentPacketTime());
|
|
}
|
|
|
|
TEST_F(PacingControllerTest, QueuePacket) {
|
|
uint32_t ssrc = 12345;
|
|
uint16_t sequence_number = 1234;
|
|
// Due to the multiplicative factor we can send 5 packets during a send
|
|
// interval. (network capacity * multiplier / (8 bits per byte *
|
|
// (packet size * #send intervals per second)
|
|
const size_t packets_to_send =
|
|
kTargetRate.bps() * kPaceMultiplier / (8 * 250 * 200);
|
|
for (size_t i = 0; i < packets_to_send; ++i) {
|
|
SendAndExpectPacket(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), 250);
|
|
}
|
|
|
|
int64_t queued_packet_timestamp = clock_.TimeInMilliseconds();
|
|
Send(RtpPacketToSend::Type::kVideo, ssrc, sequence_number,
|
|
queued_packet_timestamp, 250);
|
|
EXPECT_EQ(packets_to_send + 1, pacer_->QueueSizePackets());
|
|
pacer_->ProcessPackets();
|
|
EXPECT_CALL(callback_, SendPadding).Times(0);
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
EXPECT_EQ(1u, pacer_->QueueSizePackets());
|
|
EXPECT_CALL(callback_, SendPacket(ssrc, sequence_number++,
|
|
queued_packet_timestamp, false, false))
|
|
.Times(1);
|
|
pacer_->ProcessPackets();
|
|
sequence_number++;
|
|
EXPECT_EQ(0u, pacer_->QueueSizePackets());
|
|
|
|
// We can send packets_to_send -1 packets of size 250 during the current
|
|
// interval since one packet has already been sent.
|
|
for (size_t i = 0; i < packets_to_send - 1; ++i) {
|
|
SendAndExpectPacket(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), 250);
|
|
}
|
|
Send(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), 250);
|
|
EXPECT_EQ(packets_to_send, pacer_->QueueSizePackets());
|
|
pacer_->ProcessPackets();
|
|
EXPECT_EQ(1u, pacer_->QueueSizePackets());
|
|
}
|
|
|
|
TEST_F(PacingControllerTest, PaceQueuedPackets) {
|
|
uint32_t ssrc = 12345;
|
|
uint16_t sequence_number = 1234;
|
|
|
|
// Due to the multiplicative factor we can send 5 packets during a send
|
|
// interval. (network capacity * multiplier / (8 bits per byte *
|
|
// (packet size * #send intervals per second)
|
|
const size_t packets_to_send_per_interval =
|
|
kTargetRate.bps() * kPaceMultiplier / (8 * 250 * 200);
|
|
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
|
SendAndExpectPacket(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), 250);
|
|
}
|
|
|
|
for (size_t j = 0; j < packets_to_send_per_interval * 10; ++j) {
|
|
Send(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), 250);
|
|
}
|
|
EXPECT_EQ(packets_to_send_per_interval + packets_to_send_per_interval * 10,
|
|
pacer_->QueueSizePackets());
|
|
pacer_->ProcessPackets();
|
|
EXPECT_EQ(packets_to_send_per_interval * 10, pacer_->QueueSizePackets());
|
|
EXPECT_CALL(callback_, SendPadding).Times(0);
|
|
for (int k = 0; k < 10; ++k) {
|
|
clock_.AdvanceTime(TimeUntilNextProcess());
|
|
EXPECT_CALL(callback_, SendPacket(ssrc, _, _, false, false))
|
|
.Times(packets_to_send_per_interval);
|
|
pacer_->ProcessPackets();
|
|
}
|
|
EXPECT_EQ(0u, pacer_->QueueSizePackets());
|
|
clock_.AdvanceTime(TimeUntilNextProcess());
|
|
EXPECT_EQ(0u, pacer_->QueueSizePackets());
|
|
pacer_->ProcessPackets();
|
|
|
|
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
|
SendAndExpectPacket(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), 250);
|
|
}
|
|
Send(RtpPacketToSend::Type::kVideo, ssrc, sequence_number,
|
|
clock_.TimeInMilliseconds(), 250);
|
|
pacer_->ProcessPackets();
|
|
EXPECT_EQ(1u, pacer_->QueueSizePackets());
|
|
}
|
|
|
|
TEST_F(PacingControllerTest, RepeatedRetransmissionsAllowed) {
|
|
// Send one packet, then two retransmissions of that packet.
|
|
for (size_t i = 0; i < 3; i++) {
|
|
constexpr uint32_t ssrc = 333;
|
|
constexpr uint16_t sequence_number = 444;
|
|
constexpr size_t bytes = 250;
|
|
bool is_retransmission = (i != 0); // Original followed by retransmissions.
|
|
SendAndExpectPacket(
|
|
is_retransmission ? RtpPacketToSend::Type::kRetransmission
|
|
: RtpPacketToSend::Type::kVideo,
|
|
ssrc, sequence_number, clock_.TimeInMilliseconds(), bytes);
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
}
|
|
pacer_->ProcessPackets();
|
|
}
|
|
|
|
TEST_F(PacingControllerTest,
|
|
CanQueuePacketsWithSameSequenceNumberOnDifferentSsrcs) {
|
|
uint32_t ssrc = 12345;
|
|
uint16_t sequence_number = 1234;
|
|
|
|
SendAndExpectPacket(RtpPacketToSend::Type::kVideo, ssrc, sequence_number,
|
|
clock_.TimeInMilliseconds(), 250);
|
|
|
|
// Expect packet on second ssrc to be queued and sent as well.
|
|
SendAndExpectPacket(RtpPacketToSend::Type::kVideo, ssrc + 1, sequence_number,
|
|
clock_.TimeInMilliseconds(), 250);
|
|
|
|
clock_.AdvanceTimeMilliseconds(1000);
|
|
pacer_->ProcessPackets();
|
|
}
|
|
|
|
TEST_F(PacingControllerTest, Padding) {
|
|
uint32_t ssrc = 12345;
|
|
uint16_t sequence_number = 1234;
|
|
|
|
pacer_->SetPacingRates(kTargetRate * kPaceMultiplier, kTargetRate);
|
|
|
|
// Due to the multiplicative factor we can send 5 packets during a send
|
|
// interval. (network capacity * multiplier / (8 bits per byte *
|
|
// (packet size * #send intervals per second)
|
|
const size_t packets_to_send_per_interval =
|
|
kTargetRate.bps() * kPaceMultiplier / (8 * 250 * 200);
|
|
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
|
SendAndExpectPacket(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), 250);
|
|
}
|
|
// No padding is expected since we have sent too much already.
|
|
EXPECT_CALL(callback_, SendPadding).Times(0);
|
|
pacer_->ProcessPackets();
|
|
EXPECT_EQ(0u, pacer_->QueueSizePackets());
|
|
|
|
// 5 milliseconds later should not send padding since we filled the buffers
|
|
// initially.
|
|
EXPECT_CALL(callback_, SendPadding(250)).Times(0);
|
|
clock_.AdvanceTime(TimeUntilNextProcess());
|
|
pacer_->ProcessPackets();
|
|
|
|
// 5 milliseconds later we have enough budget to send some padding.
|
|
EXPECT_CALL(callback_, SendPadding(250)).WillOnce(Return(250));
|
|
EXPECT_CALL(callback_, SendPacket(_, _, _, _, true)).Times(1);
|
|
clock_.AdvanceTime(TimeUntilNextProcess());
|
|
pacer_->ProcessPackets();
|
|
}
|
|
|
|
TEST_F(PacingControllerTest, NoPaddingBeforeNormalPacket) {
|
|
pacer_->SetPacingRates(kTargetRate * kPaceMultiplier, kTargetRate);
|
|
|
|
EXPECT_CALL(callback_, SendPadding).Times(0);
|
|
pacer_->ProcessPackets();
|
|
clock_.AdvanceTime(TimeUntilNextProcess());
|
|
|
|
pacer_->ProcessPackets();
|
|
clock_.AdvanceTime(TimeUntilNextProcess());
|
|
|
|
uint32_t ssrc = 12345;
|
|
uint16_t sequence_number = 1234;
|
|
int64_t capture_time_ms = 56789;
|
|
|
|
SendAndExpectPacket(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++,
|
|
capture_time_ms, 250);
|
|
EXPECT_CALL(callback_, SendPadding(250)).WillOnce(Return(250));
|
|
EXPECT_CALL(callback_, SendPacket(_, _, _, _, true)).Times(1);
|
|
pacer_->ProcessPackets();
|
|
}
|
|
|
|
TEST_F(PacingControllerTest, VerifyPaddingUpToBitrate) {
|
|
uint32_t ssrc = 12345;
|
|
uint16_t sequence_number = 1234;
|
|
int64_t capture_time_ms = 56789;
|
|
const int kTimeStep = 5;
|
|
const int64_t kBitrateWindow = 100;
|
|
pacer_->SetPacingRates(kTargetRate * kPaceMultiplier, kTargetRate);
|
|
|
|
int64_t start_time = clock_.TimeInMilliseconds();
|
|
while (clock_.TimeInMilliseconds() - start_time < kBitrateWindow) {
|
|
SendAndExpectPacket(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++,
|
|
capture_time_ms, 250);
|
|
EXPECT_CALL(callback_, SendPadding(250)).WillOnce(Return(250));
|
|
EXPECT_CALL(callback_, SendPacket(_, _, _, _, true)).Times(1);
|
|
pacer_->ProcessPackets();
|
|
clock_.AdvanceTimeMilliseconds(kTimeStep);
|
|
}
|
|
}
|
|
|
|
TEST_F(PacingControllerTest, VerifyAverageBitrateVaryingMediaPayload) {
|
|
uint32_t ssrc = 12345;
|
|
uint16_t sequence_number = 1234;
|
|
int64_t capture_time_ms = 56789;
|
|
const int kTimeStep = 5;
|
|
const int64_t kBitrateWindow = 10000;
|
|
PacingControllerPadding callback;
|
|
pacer_ =
|
|
std::make_unique<PacingController>(&clock_, &callback, nullptr, nullptr);
|
|
pacer_->SetProbingEnabled(false);
|
|
pacer_->SetPacingRates(kTargetRate * kPaceMultiplier, kTargetRate);
|
|
|
|
int64_t start_time = clock_.TimeInMilliseconds();
|
|
size_t media_bytes = 0;
|
|
while (clock_.TimeInMilliseconds() - start_time < kBitrateWindow) {
|
|
int rand_value = rand(); // NOLINT (rand_r instead of rand)
|
|
size_t media_payload = rand_value % 100 + 200; // [200, 300] bytes.
|
|
Send(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++,
|
|
capture_time_ms, media_payload);
|
|
media_bytes += media_payload;
|
|
clock_.AdvanceTimeMilliseconds(kTimeStep);
|
|
pacer_->ProcessPackets();
|
|
}
|
|
EXPECT_NEAR(kTargetRate.kbps(),
|
|
static_cast<int>(8 * (media_bytes + callback.padding_sent()) /
|
|
kBitrateWindow),
|
|
1);
|
|
}
|
|
|
|
TEST_F(PacingControllerTest, Priority) {
|
|
uint32_t ssrc_low_priority = 12345;
|
|
uint32_t ssrc = 12346;
|
|
uint16_t sequence_number = 1234;
|
|
int64_t capture_time_ms = 56789;
|
|
int64_t capture_time_ms_low_priority = 1234567;
|
|
|
|
// Due to the multiplicative factor we can send 5 packets during a send
|
|
// interval. (network capacity * multiplier / (8 bits per byte *
|
|
// (packet size * #send intervals per second)
|
|
const size_t packets_to_send_per_interval =
|
|
kTargetRate.bps() * kPaceMultiplier / (8 * 250 * 200);
|
|
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
|
SendAndExpectPacket(RtpPacketToSend::Type::kRetransmission, ssrc,
|
|
sequence_number++, clock_.TimeInMilliseconds(), 250);
|
|
}
|
|
pacer_->ProcessPackets();
|
|
EXPECT_EQ(0u, pacer_->QueueSizePackets());
|
|
|
|
// Expect normal and low priority to be queued and high to pass through.
|
|
Send(RtpPacketToSend::Type::kVideo, ssrc_low_priority, sequence_number++,
|
|
capture_time_ms_low_priority, 250);
|
|
|
|
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
|
Send(RtpPacketToSend::Type::kRetransmission, ssrc, sequence_number++,
|
|
capture_time_ms, 250);
|
|
}
|
|
Send(RtpPacketToSend::Type::kAudio, ssrc, sequence_number++, capture_time_ms,
|
|
250);
|
|
|
|
// Expect all high and normal priority to be sent out first.
|
|
EXPECT_CALL(callback_, SendPadding).Times(0);
|
|
EXPECT_CALL(callback_, SendPacket(ssrc, _, capture_time_ms, _, _))
|
|
.Times(packets_to_send_per_interval + 1);
|
|
|
|
clock_.AdvanceTime(TimeUntilNextProcess());
|
|
pacer_->ProcessPackets();
|
|
EXPECT_EQ(1u, pacer_->QueueSizePackets());
|
|
|
|
EXPECT_CALL(callback_, SendPacket(ssrc_low_priority, _,
|
|
capture_time_ms_low_priority, _, _))
|
|
.Times(1);
|
|
|
|
clock_.AdvanceTime(TimeUntilNextProcess());
|
|
pacer_->ProcessPackets();
|
|
}
|
|
|
|
TEST_F(PacingControllerTest, RetransmissionPriority) {
|
|
uint32_t ssrc = 12345;
|
|
uint16_t sequence_number = 1234;
|
|
int64_t capture_time_ms = 45678;
|
|
int64_t capture_time_ms_retransmission = 56789;
|
|
|
|
// Due to the multiplicative factor we can send 5 packets during a send
|
|
// interval. (network capacity * multiplier / (8 bits per byte *
|
|
// (packet size * #send intervals per second)
|
|
const size_t packets_to_send_per_interval =
|
|
kTargetRate.bps() * kPaceMultiplier / (8 * 250 * 200);
|
|
pacer_->ProcessPackets();
|
|
EXPECT_EQ(0u, pacer_->QueueSizePackets());
|
|
|
|
// Alternate retransmissions and normal packets.
|
|
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
|
Send(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++,
|
|
capture_time_ms, 250);
|
|
Send(RtpPacketToSend::Type::kRetransmission, ssrc, sequence_number++,
|
|
capture_time_ms_retransmission, 250);
|
|
}
|
|
EXPECT_EQ(2 * packets_to_send_per_interval, pacer_->QueueSizePackets());
|
|
|
|
// Expect all retransmissions to be sent out first despite having a later
|
|
// capture time.
|
|
EXPECT_CALL(callback_, SendPadding).Times(0);
|
|
EXPECT_CALL(callback_, SendPacket(_, _, _, false, _)).Times(0);
|
|
EXPECT_CALL(callback_,
|
|
SendPacket(ssrc, _, capture_time_ms_retransmission, true, _))
|
|
.Times(packets_to_send_per_interval);
|
|
|
|
clock_.AdvanceTime(TimeUntilNextProcess());
|
|
pacer_->ProcessPackets();
|
|
EXPECT_EQ(packets_to_send_per_interval, pacer_->QueueSizePackets());
|
|
|
|
// Expect the remaining (non-retransmission) packets to be sent.
|
|
EXPECT_CALL(callback_, SendPadding).Times(0);
|
|
EXPECT_CALL(callback_, SendPacket(_, _, _, true, _)).Times(0);
|
|
EXPECT_CALL(callback_, SendPacket(ssrc, _, capture_time_ms, false, _))
|
|
.Times(packets_to_send_per_interval);
|
|
|
|
clock_.AdvanceTime(TimeUntilNextProcess());
|
|
pacer_->ProcessPackets();
|
|
|
|
EXPECT_EQ(0u, pacer_->QueueSizePackets());
|
|
}
|
|
|
|
TEST_F(PacingControllerTest, HighPrioDoesntAffectBudget) {
|
|
uint32_t ssrc = 12346;
|
|
uint16_t sequence_number = 1234;
|
|
int64_t capture_time_ms = 56789;
|
|
|
|
// As high prio packets doesn't affect the budget, we should be able to send
|
|
// a high number of them at once.
|
|
for (int i = 0; i < 25; ++i) {
|
|
SendAndExpectPacket(RtpPacketToSend::Type::kAudio, ssrc, sequence_number++,
|
|
capture_time_ms, 250);
|
|
}
|
|
pacer_->ProcessPackets();
|
|
// Low prio packets does affect the budget.
|
|
// Due to the multiplicative factor we can send 5 packets during a send
|
|
// interval. (network capacity * multiplier / (8 bits per byte *
|
|
// (packet size * #send intervals per second)
|
|
const size_t packets_to_send_per_interval =
|
|
kTargetRate.bps() * kPaceMultiplier / (8 * 250 * 200);
|
|
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
|
SendAndExpectPacket(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), 250);
|
|
}
|
|
Send(RtpPacketToSend::Type::kVideo, ssrc, sequence_number, capture_time_ms,
|
|
250);
|
|
clock_.AdvanceTime(TimeUntilNextProcess());
|
|
pacer_->ProcessPackets();
|
|
EXPECT_EQ(1u, pacer_->QueueSizePackets());
|
|
EXPECT_CALL(callback_,
|
|
SendPacket(ssrc, sequence_number++, capture_time_ms, false, _))
|
|
.Times(1);
|
|
clock_.AdvanceTime(TimeUntilNextProcess());
|
|
pacer_->ProcessPackets();
|
|
EXPECT_EQ(0u, pacer_->QueueSizePackets());
|
|
}
|
|
|
|
TEST_F(PacingControllerTest, SendsOnlyPaddingWhenCongested) {
|
|
uint32_t ssrc = 202020;
|
|
uint16_t sequence_number = 1000;
|
|
int kPacketSize = 250;
|
|
int kCongestionWindow = kPacketSize * 10;
|
|
|
|
pacer_->UpdateOutstandingData(DataSize::Zero());
|
|
pacer_->SetCongestionWindow(DataSize::bytes(kCongestionWindow));
|
|
int sent_data = 0;
|
|
while (sent_data < kCongestionWindow) {
|
|
sent_data += kPacketSize;
|
|
SendAndExpectPacket(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), kPacketSize);
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
pacer_->ProcessPackets();
|
|
}
|
|
::testing::Mock::VerifyAndClearExpectations(&callback_);
|
|
EXPECT_CALL(callback_, SendPacket).Times(0);
|
|
EXPECT_CALL(callback_, SendPadding).Times(0);
|
|
|
|
size_t blocked_packets = 0;
|
|
int64_t expected_time_until_padding = 500;
|
|
while (expected_time_until_padding > 5) {
|
|
Send(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), kPacketSize);
|
|
blocked_packets++;
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
pacer_->ProcessPackets();
|
|
expected_time_until_padding -= 5;
|
|
}
|
|
::testing::Mock::VerifyAndClearExpectations(&callback_);
|
|
EXPECT_CALL(callback_, SendPadding(1)).WillOnce(Return(1));
|
|
EXPECT_CALL(callback_, SendPacket(_, _, _, _, true)).Times(1);
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
pacer_->ProcessPackets();
|
|
EXPECT_EQ(blocked_packets, pacer_->QueueSizePackets());
|
|
}
|
|
|
|
TEST_F(PacingControllerTest, DoesNotAllowOveruseAfterCongestion) {
|
|
uint32_t ssrc = 202020;
|
|
uint16_t seq_num = 1000;
|
|
int size = 1000;
|
|
auto now_ms = [this] { return clock_.TimeInMilliseconds(); };
|
|
EXPECT_CALL(callback_, SendPadding).Times(0);
|
|
// The pacing rate is low enough that the budget should not allow two packets
|
|
// to be sent in a row.
|
|
pacer_->SetPacingRates(DataRate::bps(400 * 8 * 1000 / 5), DataRate::Zero());
|
|
// The congestion window is small enough to only let one packet through.
|
|
pacer_->SetCongestionWindow(DataSize::bytes(800));
|
|
pacer_->UpdateOutstandingData(DataSize::Zero());
|
|
// Not yet budget limited or congested, packet is sent.
|
|
Send(RtpPacketToSend::Type::kVideo, ssrc, seq_num++, now_ms(), size);
|
|
EXPECT_CALL(callback_, SendPacket).Times(1);
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
pacer_->ProcessPackets();
|
|
// Packet blocked due to congestion.
|
|
Send(RtpPacketToSend::Type::kVideo, ssrc, seq_num++, now_ms(), size);
|
|
EXPECT_CALL(callback_, SendPacket).Times(0);
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
pacer_->ProcessPackets();
|
|
// Packet blocked due to congestion.
|
|
Send(RtpPacketToSend::Type::kVideo, ssrc, seq_num++, now_ms(), size);
|
|
EXPECT_CALL(callback_, SendPacket).Times(0);
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
pacer_->ProcessPackets();
|
|
pacer_->UpdateOutstandingData(DataSize::Zero());
|
|
// Congestion removed and budget has recovered, packet is sent.
|
|
Send(RtpPacketToSend::Type::kVideo, ssrc, seq_num++, now_ms(), size);
|
|
EXPECT_CALL(callback_, SendPacket).Times(1);
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
pacer_->ProcessPackets();
|
|
pacer_->UpdateOutstandingData(DataSize::Zero());
|
|
// Should be blocked due to budget limitation as congestion has be removed.
|
|
Send(RtpPacketToSend::Type::kVideo, ssrc, seq_num++, now_ms(), size);
|
|
EXPECT_CALL(callback_, SendPacket).Times(0);
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
pacer_->ProcessPackets();
|
|
}
|
|
|
|
TEST_F(PacingControllerTest, ResumesSendingWhenCongestionEnds) {
|
|
uint32_t ssrc = 202020;
|
|
uint16_t sequence_number = 1000;
|
|
int64_t kPacketSize = 250;
|
|
int64_t kCongestionCount = 10;
|
|
int64_t kCongestionWindow = kPacketSize * kCongestionCount;
|
|
int64_t kCongestionTimeMs = 1000;
|
|
|
|
pacer_->UpdateOutstandingData(DataSize::Zero());
|
|
pacer_->SetCongestionWindow(DataSize::bytes(kCongestionWindow));
|
|
int sent_data = 0;
|
|
while (sent_data < kCongestionWindow) {
|
|
sent_data += kPacketSize;
|
|
SendAndExpectPacket(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), kPacketSize);
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
pacer_->ProcessPackets();
|
|
}
|
|
::testing::Mock::VerifyAndClearExpectations(&callback_);
|
|
EXPECT_CALL(callback_, SendPacket).Times(0);
|
|
int unacked_packets = 0;
|
|
for (int duration = 0; duration < kCongestionTimeMs; duration += 5) {
|
|
Send(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), kPacketSize);
|
|
unacked_packets++;
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
pacer_->ProcessPackets();
|
|
}
|
|
::testing::Mock::VerifyAndClearExpectations(&callback_);
|
|
|
|
// First mark half of the congested packets as cleared and make sure that just
|
|
// as many are sent
|
|
int ack_count = kCongestionCount / 2;
|
|
EXPECT_CALL(callback_, SendPacket(ssrc, _, _, false, _)).Times(ack_count);
|
|
pacer_->UpdateOutstandingData(
|
|
DataSize::bytes(kCongestionWindow - kPacketSize * ack_count));
|
|
|
|
for (int duration = 0; duration < kCongestionTimeMs; duration += 5) {
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
pacer_->ProcessPackets();
|
|
}
|
|
unacked_packets -= ack_count;
|
|
::testing::Mock::VerifyAndClearExpectations(&callback_);
|
|
|
|
// Second make sure all packets are sent if sent packets are continuously
|
|
// marked as acked.
|
|
EXPECT_CALL(callback_, SendPacket(ssrc, _, _, false, _))
|
|
.Times(unacked_packets);
|
|
for (int duration = 0; duration < kCongestionTimeMs; duration += 5) {
|
|
pacer_->UpdateOutstandingData(DataSize::Zero());
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
pacer_->ProcessPackets();
|
|
}
|
|
}
|
|
|
|
TEST_F(PacingControllerTest, Pause) {
|
|
uint32_t ssrc_low_priority = 12345;
|
|
uint32_t ssrc = 12346;
|
|
uint32_t ssrc_high_priority = 12347;
|
|
uint16_t sequence_number = 1234;
|
|
int64_t capture_time_ms = clock_.TimeInMilliseconds();
|
|
|
|
EXPECT_EQ(TimeDelta::Zero(), pacer_->OldestPacketWaitTime());
|
|
|
|
// Due to the multiplicative factor we can send 5 packets during a send
|
|
// interval. (network capacity * multiplier / (8 bits per byte *
|
|
// (packet size * #send intervals per second)
|
|
const size_t packets_to_send_per_interval =
|
|
kTargetRate.bps() * kPaceMultiplier / (8 * 250 * 200);
|
|
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
|
SendAndExpectPacket(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), 250);
|
|
}
|
|
|
|
pacer_->ProcessPackets();
|
|
|
|
pacer_->Pause();
|
|
|
|
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
|
Send(RtpPacketToSend::Type::kVideo, ssrc_low_priority, sequence_number++,
|
|
capture_time_ms, 250);
|
|
Send(RtpPacketToSend::Type::kRetransmission, ssrc, sequence_number++,
|
|
capture_time_ms, 250);
|
|
Send(RtpPacketToSend::Type::kAudio, ssrc_high_priority, sequence_number++,
|
|
capture_time_ms, 250);
|
|
}
|
|
clock_.AdvanceTimeMilliseconds(10000);
|
|
int64_t second_capture_time_ms = clock_.TimeInMilliseconds();
|
|
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
|
Send(RtpPacketToSend::Type::kVideo, ssrc_low_priority, sequence_number++,
|
|
second_capture_time_ms, 250);
|
|
Send(RtpPacketToSend::Type::kRetransmission, ssrc, sequence_number++,
|
|
second_capture_time_ms, 250);
|
|
Send(RtpPacketToSend::Type::kAudio, ssrc_high_priority, sequence_number++,
|
|
second_capture_time_ms, 250);
|
|
}
|
|
|
|
// Expect everything to be queued.
|
|
EXPECT_EQ(TimeDelta::ms(second_capture_time_ms - capture_time_ms),
|
|
pacer_->OldestPacketWaitTime());
|
|
|
|
EXPECT_CALL(callback_, SendPadding(1)).WillOnce(Return(1));
|
|
EXPECT_CALL(callback_, SendPacket(_, _, _, _, true)).Times(1);
|
|
pacer_->ProcessPackets();
|
|
|
|
int64_t expected_time_until_send = 500;
|
|
EXPECT_CALL(callback_, SendPadding).Times(0);
|
|
while (expected_time_until_send >= 5) {
|
|
pacer_->ProcessPackets();
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
expected_time_until_send -= 5;
|
|
}
|
|
|
|
::testing::Mock::VerifyAndClearExpectations(&callback_);
|
|
EXPECT_CALL(callback_, SendPadding(1)).WillOnce(Return(1));
|
|
EXPECT_CALL(callback_, SendPacket(_, _, _, _, true)).Times(1);
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
pacer_->ProcessPackets();
|
|
::testing::Mock::VerifyAndClearExpectations(&callback_);
|
|
|
|
// Expect high prio packets to come out first followed by normal
|
|
// prio packets and low prio packets (all in capture order).
|
|
{
|
|
::testing::InSequence sequence;
|
|
EXPECT_CALL(callback_,
|
|
SendPacket(ssrc_high_priority, _, capture_time_ms, _, _))
|
|
.Times(packets_to_send_per_interval);
|
|
EXPECT_CALL(callback_,
|
|
SendPacket(ssrc_high_priority, _, second_capture_time_ms, _, _))
|
|
.Times(packets_to_send_per_interval);
|
|
|
|
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
|
EXPECT_CALL(callback_, SendPacket(ssrc, _, capture_time_ms, _, _))
|
|
.Times(1);
|
|
}
|
|
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
|
EXPECT_CALL(callback_, SendPacket(ssrc, _, second_capture_time_ms, _, _))
|
|
.Times(1);
|
|
}
|
|
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
|
EXPECT_CALL(callback_,
|
|
SendPacket(ssrc_low_priority, _, capture_time_ms, _, _))
|
|
.Times(1);
|
|
}
|
|
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
|
EXPECT_CALL(callback_, SendPacket(ssrc_low_priority, _,
|
|
second_capture_time_ms, _, _))
|
|
.Times(1);
|
|
}
|
|
}
|
|
pacer_->Resume();
|
|
|
|
// The pacer was resumed directly after the previous process call finished. It
|
|
// will therefore wait 5 ms until next process.
|
|
clock_.AdvanceTime(TimeUntilNextProcess());
|
|
|
|
for (size_t i = 0; i < 4; i++) {
|
|
pacer_->ProcessPackets();
|
|
clock_.AdvanceTime(TimeUntilNextProcess());
|
|
}
|
|
|
|
EXPECT_EQ(TimeDelta::Zero(), pacer_->OldestPacketWaitTime());
|
|
}
|
|
|
|
TEST_F(PacingControllerTest, ExpectedQueueTimeMs) {
|
|
uint32_t ssrc = 12346;
|
|
uint16_t sequence_number = 1234;
|
|
const size_t kNumPackets = 60;
|
|
const size_t kPacketSize = 1200;
|
|
const int32_t kMaxBitrate = kPaceMultiplier * 30000;
|
|
EXPECT_EQ(TimeDelta::Zero(), pacer_->OldestPacketWaitTime());
|
|
|
|
pacer_->SetPacingRates(DataRate::bps(30000 * kPaceMultiplier),
|
|
DataRate::Zero());
|
|
for (size_t i = 0; i < kNumPackets; ++i) {
|
|
SendAndExpectPacket(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), kPacketSize);
|
|
}
|
|
|
|
// Queue in ms = 1000 * (bytes in queue) *8 / (bits per second)
|
|
TimeDelta queue_time =
|
|
TimeDelta::ms(1000 * kNumPackets * kPacketSize * 8 / kMaxBitrate);
|
|
EXPECT_EQ(queue_time, pacer_->ExpectedQueueTime());
|
|
|
|
const Timestamp time_start = clock_.CurrentTime();
|
|
while (pacer_->QueueSizePackets() > 0) {
|
|
clock_.AdvanceTime(TimeUntilNextProcess());
|
|
pacer_->ProcessPackets();
|
|
}
|
|
TimeDelta duration = clock_.CurrentTime() - time_start;
|
|
|
|
EXPECT_EQ(TimeDelta::Zero(), pacer_->ExpectedQueueTime());
|
|
|
|
// Allow for aliasing, duration should be within one pack of max time limit.
|
|
const TimeDelta deviation =
|
|
duration - PacingController::kMaxExpectedQueueLength;
|
|
EXPECT_LT(deviation.Abs(),
|
|
TimeDelta::ms(1000 * kPacketSize * 8 / kMaxBitrate));
|
|
}
|
|
|
|
TEST_F(PacingControllerTest, QueueTimeGrowsOverTime) {
|
|
uint32_t ssrc = 12346;
|
|
uint16_t sequence_number = 1234;
|
|
EXPECT_EQ(TimeDelta::Zero(), pacer_->OldestPacketWaitTime());
|
|
|
|
pacer_->SetPacingRates(DataRate::bps(30000 * kPaceMultiplier),
|
|
DataRate::Zero());
|
|
SendAndExpectPacket(RtpPacketToSend::Type::kVideo, ssrc, sequence_number,
|
|
clock_.TimeInMilliseconds(), 1200);
|
|
|
|
clock_.AdvanceTimeMilliseconds(500);
|
|
EXPECT_EQ(TimeDelta::ms(500), pacer_->OldestPacketWaitTime());
|
|
pacer_->ProcessPackets();
|
|
EXPECT_EQ(TimeDelta::Zero(), pacer_->OldestPacketWaitTime());
|
|
}
|
|
|
|
TEST_F(PacingControllerTest, ProbingWithInsertedPackets) {
|
|
const size_t kPacketSize = 1200;
|
|
const int kInitialBitrateBps = 300000;
|
|
uint32_t ssrc = 12346;
|
|
uint16_t sequence_number = 1234;
|
|
|
|
PacingControllerProbing packet_sender;
|
|
pacer_ = std::make_unique<PacingController>(&clock_, &packet_sender, nullptr,
|
|
nullptr);
|
|
pacer_->CreateProbeCluster(kFirstClusterRate,
|
|
/*cluster_id=*/0);
|
|
pacer_->CreateProbeCluster(kSecondClusterRate,
|
|
/*cluster_id=*/1);
|
|
pacer_->SetPacingRates(DataRate::bps(kInitialBitrateBps * kPaceMultiplier),
|
|
DataRate::Zero());
|
|
|
|
for (int i = 0; i < 10; ++i) {
|
|
Send(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), kPacketSize);
|
|
}
|
|
|
|
int64_t start = clock_.TimeInMilliseconds();
|
|
while (packet_sender.packets_sent() < 5) {
|
|
clock_.AdvanceTime(TimeUntilNextProcess());
|
|
pacer_->ProcessPackets();
|
|
}
|
|
int packets_sent = packet_sender.packets_sent();
|
|
// Validate first cluster bitrate. Note that we have to account for number
|
|
// of intervals and hence (packets_sent - 1) on the first cluster.
|
|
EXPECT_NEAR((packets_sent - 1) * kPacketSize * 8000 /
|
|
(clock_.TimeInMilliseconds() - start),
|
|
kFirstClusterRate.bps(), kProbingErrorMargin.bps());
|
|
EXPECT_EQ(0, packet_sender.padding_sent());
|
|
|
|
clock_.AdvanceTime(TimeUntilNextProcess());
|
|
start = clock_.TimeInMilliseconds();
|
|
while (packet_sender.packets_sent() < 10) {
|
|
clock_.AdvanceTime(TimeUntilNextProcess());
|
|
pacer_->ProcessPackets();
|
|
}
|
|
packets_sent = packet_sender.packets_sent() - packets_sent;
|
|
// Validate second cluster bitrate.
|
|
EXPECT_NEAR((packets_sent - 1) * kPacketSize * 8000 /
|
|
(clock_.TimeInMilliseconds() - start),
|
|
kSecondClusterRate.bps(), kProbingErrorMargin.bps());
|
|
}
|
|
|
|
TEST_F(PacingControllerTest, ProbingWithPaddingSupport) {
|
|
const size_t kPacketSize = 1200;
|
|
const int kInitialBitrateBps = 300000;
|
|
uint32_t ssrc = 12346;
|
|
uint16_t sequence_number = 1234;
|
|
|
|
PacingControllerProbing packet_sender;
|
|
pacer_ = std::make_unique<PacingController>(&clock_, &packet_sender, nullptr,
|
|
nullptr);
|
|
pacer_->CreateProbeCluster(kFirstClusterRate,
|
|
/*cluster_id=*/0);
|
|
pacer_->SetPacingRates(DataRate::bps(kInitialBitrateBps * kPaceMultiplier),
|
|
DataRate::Zero());
|
|
|
|
for (int i = 0; i < 3; ++i) {
|
|
Send(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), kPacketSize);
|
|
}
|
|
|
|
int64_t start = clock_.TimeInMilliseconds();
|
|
int process_count = 0;
|
|
while (process_count < 5) {
|
|
clock_.AdvanceTime(TimeUntilNextProcess());
|
|
pacer_->ProcessPackets();
|
|
++process_count;
|
|
}
|
|
int packets_sent = packet_sender.packets_sent();
|
|
int padding_sent = packet_sender.padding_sent();
|
|
EXPECT_GT(packets_sent, 0);
|
|
EXPECT_GT(padding_sent, 0);
|
|
// Note that the number of intervals here for kPacketSize is
|
|
// packets_sent due to padding in the same cluster.
|
|
EXPECT_NEAR((packets_sent * kPacketSize * 8000 + padding_sent) /
|
|
(clock_.TimeInMilliseconds() - start),
|
|
kFirstClusterRate.bps(), kProbingErrorMargin.bps());
|
|
}
|
|
|
|
TEST_F(PacingControllerTest, PaddingOveruse) {
|
|
uint32_t ssrc = 12346;
|
|
uint16_t sequence_number = 1234;
|
|
const size_t kPacketSize = 1200;
|
|
|
|
pacer_->ProcessPackets();
|
|
pacer_->SetPacingRates(DataRate::bps(60000 * kPaceMultiplier),
|
|
DataRate::Zero());
|
|
|
|
SendAndExpectPacket(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), kPacketSize);
|
|
pacer_->ProcessPackets();
|
|
|
|
// Add 30kbit padding. When increasing budget, media budget will increase from
|
|
// negative (overuse) while padding budget will increase from 0.
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
pacer_->SetPacingRates(DataRate::bps(60000 * kPaceMultiplier),
|
|
DataRate::bps(30000));
|
|
|
|
SendAndExpectPacket(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), kPacketSize);
|
|
EXPECT_LT(TimeDelta::ms(5), pacer_->ExpectedQueueTime());
|
|
// Don't send padding if queue is non-empty, even if padding budget > 0.
|
|
EXPECT_CALL(callback_, SendPadding).Times(0);
|
|
pacer_->ProcessPackets();
|
|
}
|
|
|
|
TEST_F(PacingControllerTest, ProbeClusterId) {
|
|
MockPacketSender callback;
|
|
|
|
pacer_ =
|
|
std::make_unique<PacingController>(&clock_, &callback, nullptr, nullptr);
|
|
Init();
|
|
|
|
uint32_t ssrc = 12346;
|
|
uint16_t sequence_number = 1234;
|
|
const size_t kPacketSize = 1200;
|
|
|
|
pacer_->SetPacingRates(kTargetRate * kPaceMultiplier, kTargetRate);
|
|
pacer_->SetProbingEnabled(true);
|
|
for (int i = 0; i < 10; ++i) {
|
|
Send(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), kPacketSize);
|
|
}
|
|
|
|
// First probing cluster.
|
|
EXPECT_CALL(callback,
|
|
SendRtpPacket(_, Field(&PacedPacketInfo::probe_cluster_id, 0)))
|
|
.Times(5);
|
|
|
|
for (int i = 0; i < 5; ++i) {
|
|
clock_.AdvanceTimeMilliseconds(20);
|
|
pacer_->ProcessPackets();
|
|
}
|
|
|
|
// Second probing cluster.
|
|
EXPECT_CALL(callback,
|
|
SendRtpPacket(_, Field(&PacedPacketInfo::probe_cluster_id, 1)))
|
|
.Times(5);
|
|
|
|
for (int i = 0; i < 5; ++i) {
|
|
clock_.AdvanceTimeMilliseconds(20);
|
|
pacer_->ProcessPackets();
|
|
}
|
|
|
|
// Needed for the Field comparer below.
|
|
const int kNotAProbe = PacedPacketInfo::kNotAProbe;
|
|
// No more probing packets.
|
|
EXPECT_CALL(callback, GeneratePadding).WillOnce([&](DataSize padding_size) {
|
|
std::vector<std::unique_ptr<RtpPacketToSend>> padding_packets;
|
|
padding_packets.emplace_back(
|
|
BuildPacket(RtpPacketToSend::Type::kPadding, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), padding_size.bytes()));
|
|
return padding_packets;
|
|
});
|
|
EXPECT_CALL(
|
|
callback,
|
|
SendRtpPacket(_, Field(&PacedPacketInfo::probe_cluster_id, kNotAProbe)))
|
|
.Times(1);
|
|
pacer_->ProcessPackets();
|
|
}
|
|
|
|
TEST_F(PacingControllerTest, OwnedPacketPrioritizedOnType) {
|
|
MockPacketSender callback;
|
|
pacer_ =
|
|
std::make_unique<PacingController>(&clock_, &callback, nullptr, nullptr);
|
|
Init();
|
|
|
|
// Insert a packet of each type, from low to high priority. Since priority
|
|
// is weighted higher than insert order, these should come out of the pacer
|
|
// in backwards order with the exception of FEC and Video.
|
|
for (RtpPacketToSend::Type type :
|
|
{RtpPacketToSend::Type::kPadding,
|
|
RtpPacketToSend::Type::kForwardErrorCorrection,
|
|
RtpPacketToSend::Type::kVideo, RtpPacketToSend::Type::kRetransmission,
|
|
RtpPacketToSend::Type::kAudio}) {
|
|
pacer_->EnqueuePacket(BuildRtpPacket(type));
|
|
}
|
|
|
|
::testing::InSequence seq;
|
|
EXPECT_CALL(
|
|
callback,
|
|
SendRtpPacket(Pointee(Property(&RtpPacketToSend::Ssrc, kAudioSsrc)), _));
|
|
EXPECT_CALL(callback,
|
|
SendRtpPacket(
|
|
Pointee(Property(&RtpPacketToSend::Ssrc, kVideoRtxSsrc)), _));
|
|
|
|
// FEC and video actually have the same priority, so will come out in
|
|
// insertion order.
|
|
EXPECT_CALL(callback,
|
|
SendRtpPacket(
|
|
Pointee(Property(&RtpPacketToSend::Ssrc, kFlexFecSsrc)), _));
|
|
EXPECT_CALL(
|
|
callback,
|
|
SendRtpPacket(Pointee(Property(&RtpPacketToSend::Ssrc, kVideoSsrc)), _));
|
|
|
|
EXPECT_CALL(callback,
|
|
SendRtpPacket(
|
|
Pointee(Property(&RtpPacketToSend::Ssrc, kVideoRtxSsrc)), _));
|
|
|
|
clock_.AdvanceTimeMilliseconds(200);
|
|
pacer_->ProcessPackets();
|
|
}
|
|
} // namespace test
|
|
} // namespace webrtc
|