mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-12 21:30:45 +01:00

Sample rates not divisible by 100, in particular 11025 Hz and 22050 Hz, have long been used with APM in Chrome, but the support has never been stated explicitly. This CL makes minor modifications to the APM API to clarify how rates are handled when 10 ms is not an integer number of samples. Unit tests are also extended to cover this case better. This does not update all references to 10 ms and implicit floor(sample_rate/100) computations, but it does at least take us closer to a correct API. Note that not all code needs to support these sample rates. For example, audio processing submodules only need to operate on the native APM rates 16000, 32000, 48000. Bug: chromium:1332484 Change-Id: I1dad15468f6ccb9c0d4d09c5819fe87f8388d5b8 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/268769 Reviewed-by: Henrik Andreassson <henrika@webrtc.org> Commit-Queue: Sam Zackrisson <saza@webrtc.org> Reviewed-by: Ivo Creusen <ivoc@webrtc.org> Cr-Commit-Position: refs/heads/main@{#37682}
367 lines
16 KiB
C++
367 lines
16 KiB
C++
/*
|
|
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "common_audio/resampler/push_sinc_resampler.h"
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <cstring>
|
|
#include <memory>
|
|
|
|
#include "common_audio/include/audio_util.h"
|
|
#include "common_audio/resampler/sinusoidal_linear_chirp_source.h"
|
|
#include "rtc_base/time_utils.h"
|
|
#include "test/gmock.h"
|
|
#include "test/gtest.h"
|
|
|
|
namespace webrtc {
|
|
namespace {
|
|
|
|
// Almost all conversions have an RMS error of around -14 dbFS.
|
|
const double kResamplingRMSError = -14.42;
|
|
|
|
// Used to convert errors to dbFS.
|
|
template <typename T>
|
|
T DBFS(T x) {
|
|
return 20 * std::log10(x);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
class PushSincResamplerTest : public ::testing::TestWithParam<
|
|
::testing::tuple<int, int, double, double>> {
|
|
public:
|
|
PushSincResamplerTest()
|
|
: input_rate_(::testing::get<0>(GetParam())),
|
|
output_rate_(::testing::get<1>(GetParam())),
|
|
rms_error_(::testing::get<2>(GetParam())),
|
|
low_freq_error_(::testing::get<3>(GetParam())) {}
|
|
|
|
~PushSincResamplerTest() override {}
|
|
|
|
protected:
|
|
void ResampleBenchmarkTest(bool int_format);
|
|
void ResampleTest(bool int_format);
|
|
|
|
int input_rate_;
|
|
int output_rate_;
|
|
double rms_error_;
|
|
double low_freq_error_;
|
|
};
|
|
|
|
class ZeroSource : public SincResamplerCallback {
|
|
public:
|
|
void Run(size_t frames, float* destination) override {
|
|
std::memset(destination, 0, sizeof(float) * frames);
|
|
}
|
|
};
|
|
|
|
void PushSincResamplerTest::ResampleBenchmarkTest(bool int_format) {
|
|
const size_t input_samples = static_cast<size_t>(input_rate_ / 100);
|
|
const size_t output_samples = static_cast<size_t>(output_rate_ / 100);
|
|
const int kResampleIterations = 500000;
|
|
|
|
// Source for data to be resampled.
|
|
ZeroSource resampler_source;
|
|
|
|
std::unique_ptr<float[]> resampled_destination(new float[output_samples]);
|
|
std::unique_ptr<float[]> source(new float[input_samples]);
|
|
std::unique_ptr<int16_t[]> source_int(new int16_t[input_samples]);
|
|
std::unique_ptr<int16_t[]> destination_int(new int16_t[output_samples]);
|
|
|
|
resampler_source.Run(input_samples, source.get());
|
|
for (size_t i = 0; i < input_samples; ++i) {
|
|
source_int[i] = static_cast<int16_t>(floor(32767 * source[i] + 0.5));
|
|
}
|
|
|
|
printf("Benchmarking %d iterations of %d Hz -> %d Hz:\n", kResampleIterations,
|
|
input_rate_, output_rate_);
|
|
const double io_ratio = input_rate_ / static_cast<double>(output_rate_);
|
|
SincResampler sinc_resampler(io_ratio, SincResampler::kDefaultRequestSize,
|
|
&resampler_source);
|
|
int64_t start = rtc::TimeNanos();
|
|
for (int i = 0; i < kResampleIterations; ++i) {
|
|
sinc_resampler.Resample(output_samples, resampled_destination.get());
|
|
}
|
|
double total_time_sinc_us =
|
|
(rtc::TimeNanos() - start) / rtc::kNumNanosecsPerMicrosec;
|
|
printf("SincResampler took %.2f us per frame.\n",
|
|
total_time_sinc_us / kResampleIterations);
|
|
|
|
PushSincResampler resampler(input_samples, output_samples);
|
|
start = rtc::TimeNanos();
|
|
if (int_format) {
|
|
for (int i = 0; i < kResampleIterations; ++i) {
|
|
EXPECT_EQ(output_samples,
|
|
resampler.Resample(source_int.get(), input_samples,
|
|
destination_int.get(), output_samples));
|
|
}
|
|
} else {
|
|
for (int i = 0; i < kResampleIterations; ++i) {
|
|
EXPECT_EQ(output_samples, resampler.Resample(source.get(), input_samples,
|
|
resampled_destination.get(),
|
|
output_samples));
|
|
}
|
|
}
|
|
double total_time_us =
|
|
(rtc::TimeNanos() - start) / rtc::kNumNanosecsPerMicrosec;
|
|
printf(
|
|
"PushSincResampler took %.2f us per frame; which is a %.1f%% overhead "
|
|
"on SincResampler.\n\n",
|
|
total_time_us / kResampleIterations,
|
|
(total_time_us - total_time_sinc_us) / total_time_sinc_us * 100);
|
|
}
|
|
|
|
// Disabled because it takes too long to run routinely. Use for performance
|
|
// benchmarking when needed.
|
|
TEST_P(PushSincResamplerTest, DISABLED_BenchmarkInt) {
|
|
ResampleBenchmarkTest(true);
|
|
}
|
|
|
|
TEST_P(PushSincResamplerTest, DISABLED_BenchmarkFloat) {
|
|
ResampleBenchmarkTest(false);
|
|
}
|
|
|
|
// Tests resampling using a given input and output sample rate.
|
|
void PushSincResamplerTest::ResampleTest(bool int_format) {
|
|
// Make comparisons using one second of data.
|
|
static const double kTestDurationSecs = 1;
|
|
// 10 ms blocks.
|
|
const size_t kNumBlocks = static_cast<size_t>(kTestDurationSecs * 100);
|
|
const size_t input_block_size = static_cast<size_t>(input_rate_ / 100);
|
|
const size_t output_block_size = static_cast<size_t>(output_rate_ / 100);
|
|
const size_t input_samples =
|
|
static_cast<size_t>(kTestDurationSecs * input_rate_);
|
|
const size_t output_samples =
|
|
static_cast<size_t>(kTestDurationSecs * output_rate_);
|
|
|
|
// Nyquist frequency for the input sampling rate.
|
|
const double input_nyquist_freq = 0.5 * input_rate_;
|
|
|
|
// Source for data to be resampled.
|
|
SinusoidalLinearChirpSource resampler_source(input_rate_, input_samples,
|
|
input_nyquist_freq, 0);
|
|
|
|
PushSincResampler resampler(input_block_size, output_block_size);
|
|
|
|
// TODO(dalecurtis): If we switch to AVX/SSE optimization, we'll need to
|
|
// allocate these on 32-byte boundaries and ensure they're sized % 32 bytes.
|
|
std::unique_ptr<float[]> resampled_destination(new float[output_samples]);
|
|
std::unique_ptr<float[]> pure_destination(new float[output_samples]);
|
|
std::unique_ptr<float[]> source(new float[input_samples]);
|
|
std::unique_ptr<int16_t[]> source_int(new int16_t[input_block_size]);
|
|
std::unique_ptr<int16_t[]> destination_int(new int16_t[output_block_size]);
|
|
|
|
// The sinc resampler has an implicit delay of approximately half the kernel
|
|
// size at the input sample rate. By moving to a push model, this delay
|
|
// becomes explicit and is managed by zero-stuffing in PushSincResampler. We
|
|
// deal with it in the test by delaying the "pure" source to match. It must be
|
|
// checked before the first call to Resample(), because ChunkSize() will
|
|
// change afterwards.
|
|
const size_t output_delay_samples =
|
|
output_block_size - resampler.get_resampler_for_testing()->ChunkSize();
|
|
|
|
// Generate resampled signal.
|
|
// With the PushSincResampler, we produce the signal block-by-10ms-block
|
|
// rather than in a single pass, to exercise how it will be used in WebRTC.
|
|
resampler_source.Run(input_samples, source.get());
|
|
if (int_format) {
|
|
for (size_t i = 0; i < kNumBlocks; ++i) {
|
|
FloatToS16(&source[i * input_block_size], input_block_size,
|
|
source_int.get());
|
|
EXPECT_EQ(output_block_size,
|
|
resampler.Resample(source_int.get(), input_block_size,
|
|
destination_int.get(), output_block_size));
|
|
S16ToFloat(destination_int.get(), output_block_size,
|
|
&resampled_destination[i * output_block_size]);
|
|
}
|
|
} else {
|
|
for (size_t i = 0; i < kNumBlocks; ++i) {
|
|
EXPECT_EQ(
|
|
output_block_size,
|
|
resampler.Resample(&source[i * input_block_size], input_block_size,
|
|
&resampled_destination[i * output_block_size],
|
|
output_block_size));
|
|
}
|
|
}
|
|
|
|
// Generate pure signal.
|
|
SinusoidalLinearChirpSource pure_source(
|
|
output_rate_, output_samples, input_nyquist_freq, output_delay_samples);
|
|
pure_source.Run(output_samples, pure_destination.get());
|
|
|
|
// Range of the Nyquist frequency (0.5 * min(input rate, output_rate)) which
|
|
// we refer to as low and high.
|
|
static const double kLowFrequencyNyquistRange = 0.7;
|
|
static const double kHighFrequencyNyquistRange = 0.9;
|
|
|
|
// Calculate Root-Mean-Square-Error and maximum error for the resampling.
|
|
double sum_of_squares = 0;
|
|
double low_freq_max_error = 0;
|
|
double high_freq_max_error = 0;
|
|
int minimum_rate = std::min(input_rate_, output_rate_);
|
|
double low_frequency_range = kLowFrequencyNyquistRange * 0.5 * minimum_rate;
|
|
double high_frequency_range = kHighFrequencyNyquistRange * 0.5 * minimum_rate;
|
|
|
|
for (size_t i = 0; i < output_samples; ++i) {
|
|
double error = fabs(resampled_destination[i] - pure_destination[i]);
|
|
|
|
if (pure_source.Frequency(i) < low_frequency_range) {
|
|
if (error > low_freq_max_error)
|
|
low_freq_max_error = error;
|
|
} else if (pure_source.Frequency(i) < high_frequency_range) {
|
|
if (error > high_freq_max_error)
|
|
high_freq_max_error = error;
|
|
}
|
|
// TODO(dalecurtis): Sanity check frequencies > kHighFrequencyNyquistRange.
|
|
|
|
sum_of_squares += error * error;
|
|
}
|
|
|
|
double rms_error = sqrt(sum_of_squares / output_samples);
|
|
|
|
rms_error = DBFS(rms_error);
|
|
// In order to keep the thresholds in this test identical to SincResamplerTest
|
|
// we must account for the quantization error introduced by truncating from
|
|
// float to int. This happens twice (once at input and once at output) and we
|
|
// allow for the maximum possible error (1 / 32767) for each step.
|
|
//
|
|
// The quantization error is insignificant in the RMS calculation so does not
|
|
// need to be accounted for there.
|
|
low_freq_max_error = DBFS(low_freq_max_error - 2.0 / 32767);
|
|
high_freq_max_error = DBFS(high_freq_max_error - 2.0 / 32767);
|
|
|
|
EXPECT_LE(rms_error, rms_error_);
|
|
EXPECT_LE(low_freq_max_error, low_freq_error_);
|
|
|
|
// All conversions currently have a high frequency error around -6 dbFS.
|
|
static const double kHighFrequencyMaxError = -6.01;
|
|
EXPECT_LE(high_freq_max_error, kHighFrequencyMaxError);
|
|
}
|
|
|
|
TEST_P(PushSincResamplerTest, ResampleInt) {
|
|
ResampleTest(true);
|
|
}
|
|
|
|
TEST_P(PushSincResamplerTest, ResampleFloat) {
|
|
ResampleTest(false);
|
|
}
|
|
|
|
// Thresholds chosen arbitrarily based on what each resampling reported during
|
|
// testing. All thresholds are in dbFS, http://en.wikipedia.org/wiki/DBFS.
|
|
INSTANTIATE_TEST_SUITE_P(
|
|
PushSincResamplerTest,
|
|
PushSincResamplerTest,
|
|
::testing::Values(
|
|
// First run through the rates tested in SincResamplerTest. The
|
|
// thresholds are identical.
|
|
//
|
|
// We don't directly test rates which fail to provide an integer number
|
|
// of samples in a 10 ms block (22050 and 11025 Hz), they are replaced
|
|
// by nearby rates in order to simplify testing.
|
|
//
|
|
// The PushSincResampler is in practice sample rate agnostic and derives
|
|
// resampling ratios from the block size, which for WebRTC purposes are
|
|
// blocks of floor(sample_rate/100) samples. So the 22050 Hz case is
|
|
// treated identically to the 22000 Hz case. Direct tests of 22050 Hz
|
|
// have to account for the simulated clock drift induced by the
|
|
// resampler inferring an incorrect sample rate ratio, without testing
|
|
// anything new within the resampler itself.
|
|
|
|
// To 22kHz
|
|
std::make_tuple(8000, 22000, kResamplingRMSError, -62.73),
|
|
std::make_tuple(11000, 22000, kResamplingRMSError, -74.17),
|
|
std::make_tuple(16000, 22000, kResamplingRMSError, -62.54),
|
|
std::make_tuple(22000, 22000, kResamplingRMSError, -73.53),
|
|
std::make_tuple(32000, 22000, kResamplingRMSError, -46.45),
|
|
std::make_tuple(44100, 22000, kResamplingRMSError, -28.34),
|
|
std::make_tuple(48000, 22000, -15.01, -25.56),
|
|
std::make_tuple(96000, 22000, -18.49, -13.30),
|
|
std::make_tuple(192000, 22000, -20.50, -9.20),
|
|
|
|
// To 44.1kHz
|
|
::testing::make_tuple(8000, 44100, kResamplingRMSError, -62.73),
|
|
::testing::make_tuple(11000, 44100, kResamplingRMSError, -63.57),
|
|
::testing::make_tuple(16000, 44100, kResamplingRMSError, -62.54),
|
|
::testing::make_tuple(22000, 44100, kResamplingRMSError, -62.73),
|
|
::testing::make_tuple(32000, 44100, kResamplingRMSError, -63.32),
|
|
::testing::make_tuple(44100, 44100, kResamplingRMSError, -73.53),
|
|
::testing::make_tuple(48000, 44100, -15.01, -64.04),
|
|
::testing::make_tuple(96000, 44100, -18.49, -25.51),
|
|
::testing::make_tuple(192000, 44100, -20.50, -13.31),
|
|
|
|
// To 48kHz
|
|
::testing::make_tuple(8000, 48000, kResamplingRMSError, -63.43),
|
|
::testing::make_tuple(11000, 48000, kResamplingRMSError, -63.96),
|
|
::testing::make_tuple(16000, 48000, kResamplingRMSError, -63.96),
|
|
::testing::make_tuple(22000, 48000, kResamplingRMSError, -63.80),
|
|
::testing::make_tuple(32000, 48000, kResamplingRMSError, -64.04),
|
|
::testing::make_tuple(44100, 48000, kResamplingRMSError, -62.63),
|
|
::testing::make_tuple(48000, 48000, kResamplingRMSError, -73.52),
|
|
::testing::make_tuple(96000, 48000, -18.40, -28.44),
|
|
::testing::make_tuple(192000, 48000, -20.43, -14.11),
|
|
|
|
// To 96kHz
|
|
::testing::make_tuple(8000, 96000, kResamplingRMSError, -63.19),
|
|
::testing::make_tuple(11000, 96000, kResamplingRMSError, -63.89),
|
|
::testing::make_tuple(16000, 96000, kResamplingRMSError, -63.39),
|
|
::testing::make_tuple(22000, 96000, kResamplingRMSError, -63.39),
|
|
::testing::make_tuple(32000, 96000, kResamplingRMSError, -63.95),
|
|
::testing::make_tuple(44100, 96000, kResamplingRMSError, -62.63),
|
|
::testing::make_tuple(48000, 96000, kResamplingRMSError, -73.52),
|
|
::testing::make_tuple(96000, 96000, kResamplingRMSError, -73.52),
|
|
::testing::make_tuple(192000, 96000, kResamplingRMSError, -28.41),
|
|
|
|
// To 192kHz
|
|
::testing::make_tuple(8000, 192000, kResamplingRMSError, -63.10),
|
|
::testing::make_tuple(11000, 192000, kResamplingRMSError, -63.17),
|
|
::testing::make_tuple(16000, 192000, kResamplingRMSError, -63.14),
|
|
::testing::make_tuple(22000, 192000, kResamplingRMSError, -63.14),
|
|
::testing::make_tuple(32000, 192000, kResamplingRMSError, -63.38),
|
|
::testing::make_tuple(44100, 192000, kResamplingRMSError, -62.63),
|
|
::testing::make_tuple(48000, 192000, kResamplingRMSError, -73.44),
|
|
::testing::make_tuple(96000, 192000, kResamplingRMSError, -73.52),
|
|
::testing::make_tuple(192000, 192000, kResamplingRMSError, -73.52),
|
|
|
|
// Next run through some additional cases interesting for WebRTC.
|
|
// We skip some extreme downsampled cases (192 -> {8, 16}, 96 -> 8)
|
|
// because they violate `kHighFrequencyMaxError`, which is not
|
|
// unexpected. It's very unlikely that we'll see these conversions in
|
|
// practice anyway.
|
|
|
|
// To 8 kHz
|
|
::testing::make_tuple(8000, 8000, kResamplingRMSError, -75.50),
|
|
::testing::make_tuple(16000, 8000, -18.56, -28.79),
|
|
::testing::make_tuple(32000, 8000, -20.36, -14.13),
|
|
::testing::make_tuple(44100, 8000, -21.00, -11.39),
|
|
::testing::make_tuple(48000, 8000, -20.96, -11.04),
|
|
|
|
// To 16 kHz
|
|
::testing::make_tuple(8000, 16000, kResamplingRMSError, -70.30),
|
|
::testing::make_tuple(11000, 16000, kResamplingRMSError, -72.31),
|
|
::testing::make_tuple(16000, 16000, kResamplingRMSError, -75.51),
|
|
::testing::make_tuple(22000, 16000, kResamplingRMSError, -52.08),
|
|
::testing::make_tuple(32000, 16000, -18.48, -28.59),
|
|
::testing::make_tuple(44100, 16000, -19.30, -19.67),
|
|
::testing::make_tuple(48000, 16000, -19.81, -18.11),
|
|
::testing::make_tuple(96000, 16000, -20.95, -10.9596),
|
|
|
|
// To 32 kHz
|
|
::testing::make_tuple(8000, 32000, kResamplingRMSError, -70.30),
|
|
::testing::make_tuple(11000, 32000, kResamplingRMSError, -71.34),
|
|
::testing::make_tuple(16000, 32000, kResamplingRMSError, -75.51),
|
|
::testing::make_tuple(22000, 32000, kResamplingRMSError, -72.05),
|
|
::testing::make_tuple(32000, 32000, kResamplingRMSError, -75.51),
|
|
::testing::make_tuple(44100, 32000, -16.44, -51.0349),
|
|
::testing::make_tuple(48000, 32000, -16.90, -43.9967),
|
|
::testing::make_tuple(96000, 32000, -19.61, -18.04),
|
|
::testing::make_tuple(192000, 32000, -21.02, -10.94)));
|
|
|
|
} // namespace webrtc
|