webrtc/common_audio/resampler/sinc_resampler_unittest.cc
Sam Zackrisson 3bd444ffdb Clarify and extend test support for certain sample rates in audio processing
Sample rates not divisible by 100, in particular 11025 Hz and 22050 Hz, have long been used with APM in Chrome, but the support has never been stated explicitly.

This CL makes minor modifications to the APM API to clarify how rates are handled when 10 ms is not an integer number of samples. Unit tests are also extended to cover this case better.

This does not update all references to 10 ms and implicit floor(sample_rate/100) computations, but it does at least take us closer to a correct API.

Note that not all code needs to support these sample rates. For example, audio processing submodules only need to operate on the native APM rates 16000, 32000, 48000.

Bug: chromium:1332484
Change-Id: I1dad15468f6ccb9c0d4d09c5819fe87f8388d5b8
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/268769
Reviewed-by: Henrik Andreassson <henrika@webrtc.org>
Commit-Queue: Sam Zackrisson <saza@webrtc.org>
Reviewed-by: Ivo Creusen <ivoc@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#37682}
2022-08-03 14:26:36 +00:00

393 lines
16 KiB
C++

/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// Modified from the Chromium original:
// src/media/base/sinc_resampler_unittest.cc
// MSVC++ requires this to be set before any other includes to get M_PI.
#define _USE_MATH_DEFINES
#include "common_audio/resampler/sinc_resampler.h"
#include <math.h>
#include <algorithm>
#include <memory>
#include <tuple>
#include "common_audio/resampler/sinusoidal_linear_chirp_source.h"
#include "rtc_base/system/arch.h"
#include "rtc_base/time_utils.h"
#include "system_wrappers/include/cpu_features_wrapper.h"
#include "test/gmock.h"
#include "test/gtest.h"
using ::testing::_;
namespace webrtc {
static const double kSampleRateRatio = 192000.0 / 44100.0;
static const double kKernelInterpolationFactor = 0.5;
// Helper class to ensure ChunkedResample() functions properly.
class MockSource : public SincResamplerCallback {
public:
MOCK_METHOD(void, Run, (size_t frames, float* destination), (override));
};
ACTION(ClearBuffer) {
memset(arg1, 0, arg0 * sizeof(float));
}
ACTION(FillBuffer) {
// Value chosen arbitrarily such that SincResampler resamples it to something
// easily representable on all platforms; e.g., using kSampleRateRatio this
// becomes 1.81219.
memset(arg1, 64, arg0 * sizeof(float));
}
// Test requesting multiples of ChunkSize() frames results in the proper number
// of callbacks.
TEST(SincResamplerTest, ChunkedResample) {
MockSource mock_source;
// Choose a high ratio of input to output samples which will result in quick
// exhaustion of SincResampler's internal buffers.
SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize,
&mock_source);
static const int kChunks = 2;
size_t max_chunk_size = resampler.ChunkSize() * kChunks;
std::unique_ptr<float[]> resampled_destination(new float[max_chunk_size]);
// Verify requesting ChunkSize() frames causes a single callback.
EXPECT_CALL(mock_source, Run(_, _)).Times(1).WillOnce(ClearBuffer());
resampler.Resample(resampler.ChunkSize(), resampled_destination.get());
// Verify requesting kChunks * ChunkSize() frames causes kChunks callbacks.
::testing::Mock::VerifyAndClear(&mock_source);
EXPECT_CALL(mock_source, Run(_, _))
.Times(kChunks)
.WillRepeatedly(ClearBuffer());
resampler.Resample(max_chunk_size, resampled_destination.get());
}
// Test flush resets the internal state properly.
TEST(SincResamplerTest, Flush) {
MockSource mock_source;
SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize,
&mock_source);
std::unique_ptr<float[]> resampled_destination(
new float[resampler.ChunkSize()]);
// Fill the resampler with junk data.
EXPECT_CALL(mock_source, Run(_, _)).Times(1).WillOnce(FillBuffer());
resampler.Resample(resampler.ChunkSize() / 2, resampled_destination.get());
ASSERT_NE(resampled_destination[0], 0);
// Flush and request more data, which should all be zeros now.
resampler.Flush();
::testing::Mock::VerifyAndClear(&mock_source);
EXPECT_CALL(mock_source, Run(_, _)).Times(1).WillOnce(ClearBuffer());
resampler.Resample(resampler.ChunkSize() / 2, resampled_destination.get());
for (size_t i = 0; i < resampler.ChunkSize() / 2; ++i)
ASSERT_FLOAT_EQ(resampled_destination[i], 0);
}
// Test flush resets the internal state properly.
TEST(SincResamplerTest, DISABLED_SetRatioBench) {
MockSource mock_source;
SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize,
&mock_source);
int64_t start = rtc::TimeNanos();
for (int i = 1; i < 10000; ++i)
resampler.SetRatio(1.0 / i);
double total_time_c_us =
(rtc::TimeNanos() - start) / rtc::kNumNanosecsPerMicrosec;
printf("SetRatio() took %.2fms.\n", total_time_c_us / 1000);
}
// Ensure various optimized Convolve() methods return the same value. Only run
// this test if other optimized methods exist, otherwise the default Convolve()
// will be tested by the parameterized SincResampler tests below.
TEST(SincResamplerTest, Convolve) {
#if defined(WEBRTC_ARCH_X86_FAMILY)
ASSERT_TRUE(GetCPUInfo(kSSE2));
#elif defined(WEBRTC_ARCH_ARM_V7)
ASSERT_TRUE(GetCPUFeaturesARM() & kCPUFeatureNEON);
#endif
// Initialize a dummy resampler.
MockSource mock_source;
SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize,
&mock_source);
// The optimized Convolve methods are slightly more precise than Convolve_C(),
// so comparison must be done using an epsilon.
static const double kEpsilon = 0.00000005;
// Use a kernel from SincResampler as input and kernel data, this has the
// benefit of already being properly sized and aligned for Convolve_SSE().
double result = resampler.Convolve_C(
resampler.kernel_storage_.get(), resampler.kernel_storage_.get(),
resampler.kernel_storage_.get(), kKernelInterpolationFactor);
double result2 = resampler.convolve_proc_(
resampler.kernel_storage_.get(), resampler.kernel_storage_.get(),
resampler.kernel_storage_.get(), kKernelInterpolationFactor);
EXPECT_NEAR(result2, result, kEpsilon);
// Test Convolve() w/ unaligned input pointer.
result = resampler.Convolve_C(
resampler.kernel_storage_.get() + 1, resampler.kernel_storage_.get(),
resampler.kernel_storage_.get(), kKernelInterpolationFactor);
result2 = resampler.convolve_proc_(
resampler.kernel_storage_.get() + 1, resampler.kernel_storage_.get(),
resampler.kernel_storage_.get(), kKernelInterpolationFactor);
EXPECT_NEAR(result2, result, kEpsilon);
}
// Benchmark for the various Convolve() methods. Make sure to build with
// branding=Chrome so that RTC_DCHECKs are compiled out when benchmarking.
// Original benchmarks were run with --convolve-iterations=50000000.
TEST(SincResamplerTest, ConvolveBenchmark) {
// Initialize a dummy resampler.
MockSource mock_source;
SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize,
&mock_source);
// Retrieve benchmark iterations from command line.
// TODO(ajm): Reintroduce this as a command line option.
const int kConvolveIterations = 1000000;
printf("Benchmarking %d iterations:\n", kConvolveIterations);
// Benchmark Convolve_C().
int64_t start = rtc::TimeNanos();
for (int i = 0; i < kConvolveIterations; ++i) {
resampler.Convolve_C(
resampler.kernel_storage_.get(), resampler.kernel_storage_.get(),
resampler.kernel_storage_.get(), kKernelInterpolationFactor);
}
double total_time_c_us =
(rtc::TimeNanos() - start) / rtc::kNumNanosecsPerMicrosec;
printf("Convolve_C took %.2fms.\n", total_time_c_us / 1000);
#if defined(WEBRTC_ARCH_X86_FAMILY)
ASSERT_TRUE(GetCPUInfo(kSSE2));
#elif defined(WEBRTC_ARCH_ARM_V7)
ASSERT_TRUE(GetCPUFeaturesARM() & kCPUFeatureNEON);
#endif
// Benchmark with unaligned input pointer.
start = rtc::TimeNanos();
for (int j = 0; j < kConvolveIterations; ++j) {
resampler.convolve_proc_(
resampler.kernel_storage_.get() + 1, resampler.kernel_storage_.get(),
resampler.kernel_storage_.get(), kKernelInterpolationFactor);
}
double total_time_optimized_unaligned_us =
(rtc::TimeNanos() - start) / rtc::kNumNanosecsPerMicrosec;
printf(
"convolve_proc_(unaligned) took %.2fms; which is %.2fx "
"faster than Convolve_C.\n",
total_time_optimized_unaligned_us / 1000,
total_time_c_us / total_time_optimized_unaligned_us);
// Benchmark with aligned input pointer.
start = rtc::TimeNanos();
for (int j = 0; j < kConvolveIterations; ++j) {
resampler.convolve_proc_(
resampler.kernel_storage_.get(), resampler.kernel_storage_.get(),
resampler.kernel_storage_.get(), kKernelInterpolationFactor);
}
double total_time_optimized_aligned_us =
(rtc::TimeNanos() - start) / rtc::kNumNanosecsPerMicrosec;
printf(
"convolve_proc_ (aligned) took %.2fms; which is %.2fx "
"faster than Convolve_C and %.2fx faster than "
"convolve_proc_ (unaligned).\n",
total_time_optimized_aligned_us / 1000,
total_time_c_us / total_time_optimized_aligned_us,
total_time_optimized_unaligned_us / total_time_optimized_aligned_us);
}
typedef std::tuple<int, int, double, double> SincResamplerTestData;
class SincResamplerTest
: public ::testing::TestWithParam<SincResamplerTestData> {
public:
SincResamplerTest()
: input_rate_(std::get<0>(GetParam())),
output_rate_(std::get<1>(GetParam())),
rms_error_(std::get<2>(GetParam())),
low_freq_error_(std::get<3>(GetParam())) {}
virtual ~SincResamplerTest() {}
protected:
int input_rate_;
int output_rate_;
double rms_error_;
double low_freq_error_;
};
// Tests resampling using a given input and output sample rate.
TEST_P(SincResamplerTest, Resample) {
// Make comparisons using one second of data.
static const double kTestDurationSecs = 1;
const size_t input_samples =
static_cast<size_t>(kTestDurationSecs * input_rate_);
const size_t output_samples =
static_cast<size_t>(kTestDurationSecs * output_rate_);
// Nyquist frequency for the input sampling rate.
const double input_nyquist_freq = 0.5 * input_rate_;
// Source for data to be resampled.
SinusoidalLinearChirpSource resampler_source(input_rate_, input_samples,
input_nyquist_freq, 0);
const double io_ratio = input_rate_ / static_cast<double>(output_rate_);
SincResampler resampler(io_ratio, SincResampler::kDefaultRequestSize,
&resampler_source);
// Force an update to the sample rate ratio to ensure dynamic sample rate
// changes are working correctly.
std::unique_ptr<float[]> kernel(new float[SincResampler::kKernelStorageSize]);
memcpy(kernel.get(), resampler.get_kernel_for_testing(),
SincResampler::kKernelStorageSize);
resampler.SetRatio(M_PI);
ASSERT_NE(0, memcmp(kernel.get(), resampler.get_kernel_for_testing(),
SincResampler::kKernelStorageSize));
resampler.SetRatio(io_ratio);
ASSERT_EQ(0, memcmp(kernel.get(), resampler.get_kernel_for_testing(),
SincResampler::kKernelStorageSize));
// TODO(dalecurtis): If we switch to AVX/SSE optimization, we'll need to
// allocate these on 32-byte boundaries and ensure they're sized % 32 bytes.
std::unique_ptr<float[]> resampled_destination(new float[output_samples]);
std::unique_ptr<float[]> pure_destination(new float[output_samples]);
// Generate resampled signal.
resampler.Resample(output_samples, resampled_destination.get());
// Generate pure signal.
SinusoidalLinearChirpSource pure_source(output_rate_, output_samples,
input_nyquist_freq, 0);
pure_source.Run(output_samples, pure_destination.get());
// Range of the Nyquist frequency (0.5 * min(input rate, output_rate)) which
// we refer to as low and high.
static const double kLowFrequencyNyquistRange = 0.7;
static const double kHighFrequencyNyquistRange = 0.9;
// Calculate Root-Mean-Square-Error and maximum error for the resampling.
double sum_of_squares = 0;
double low_freq_max_error = 0;
double high_freq_max_error = 0;
int minimum_rate = std::min(input_rate_, output_rate_);
double low_frequency_range = kLowFrequencyNyquistRange * 0.5 * minimum_rate;
double high_frequency_range = kHighFrequencyNyquistRange * 0.5 * minimum_rate;
for (size_t i = 0; i < output_samples; ++i) {
double error = fabs(resampled_destination[i] - pure_destination[i]);
if (pure_source.Frequency(i) < low_frequency_range) {
if (error > low_freq_max_error)
low_freq_max_error = error;
} else if (pure_source.Frequency(i) < high_frequency_range) {
if (error > high_freq_max_error)
high_freq_max_error = error;
}
// TODO(dalecurtis): Sanity check frequencies > kHighFrequencyNyquistRange.
sum_of_squares += error * error;
}
double rms_error = sqrt(sum_of_squares / output_samples);
// Convert each error to dbFS.
#define DBFS(x) 20 * log10(x)
rms_error = DBFS(rms_error);
low_freq_max_error = DBFS(low_freq_max_error);
high_freq_max_error = DBFS(high_freq_max_error);
EXPECT_LE(rms_error, rms_error_);
EXPECT_LE(low_freq_max_error, low_freq_error_);
// All conversions currently have a high frequency error around -6 dbFS.
static const double kHighFrequencyMaxError = -6.02;
EXPECT_LE(high_freq_max_error, kHighFrequencyMaxError);
}
// Almost all conversions have an RMS error of around -14 dbFS.
static const double kResamplingRMSError = -14.58;
// Thresholds chosen arbitrarily based on what each resampling reported during
// testing. All thresholds are in dbFS, http://en.wikipedia.org/wiki/DBFS.
INSTANTIATE_TEST_SUITE_P(
SincResamplerTest,
SincResamplerTest,
::testing::Values(
// To 22.05kHz
std::make_tuple(8000, 22050, kResamplingRMSError, -62.73),
std::make_tuple(11025, 22050, kResamplingRMSError, -72.19),
std::make_tuple(16000, 22050, kResamplingRMSError, -62.54),
std::make_tuple(22050, 22050, kResamplingRMSError, -73.53),
std::make_tuple(32000, 22050, kResamplingRMSError, -46.45),
std::make_tuple(44100, 22050, kResamplingRMSError, -28.49),
std::make_tuple(48000, 22050, -15.01, -25.56),
std::make_tuple(96000, 22050, -18.49, -13.42),
std::make_tuple(192000, 22050, -20.50, -9.23),
// To 44.1kHz
std::make_tuple(8000, 44100, kResamplingRMSError, -62.73),
std::make_tuple(11025, 44100, kResamplingRMSError, -72.19),
std::make_tuple(16000, 44100, kResamplingRMSError, -62.54),
std::make_tuple(22050, 44100, kResamplingRMSError, -73.53),
std::make_tuple(32000, 44100, kResamplingRMSError, -63.32),
std::make_tuple(44100, 44100, kResamplingRMSError, -73.52),
std::make_tuple(48000, 44100, -15.01, -64.04),
std::make_tuple(96000, 44100, -18.49, -25.51),
std::make_tuple(192000, 44100, -20.50, -13.31),
// To 48kHz
std::make_tuple(8000, 48000, kResamplingRMSError, -63.43),
std::make_tuple(11025, 48000, kResamplingRMSError, -62.61),
std::make_tuple(16000, 48000, kResamplingRMSError, -63.95),
std::make_tuple(22050, 48000, kResamplingRMSError, -62.42),
std::make_tuple(32000, 48000, kResamplingRMSError, -64.04),
std::make_tuple(44100, 48000, kResamplingRMSError, -62.63),
std::make_tuple(48000, 48000, kResamplingRMSError, -73.52),
std::make_tuple(96000, 48000, -18.40, -28.44),
std::make_tuple(192000, 48000, -20.43, -14.11),
// To 96kHz
std::make_tuple(8000, 96000, kResamplingRMSError, -63.19),
std::make_tuple(11025, 96000, kResamplingRMSError, -62.61),
std::make_tuple(16000, 96000, kResamplingRMSError, -63.39),
std::make_tuple(22050, 96000, kResamplingRMSError, -62.42),
std::make_tuple(32000, 96000, kResamplingRMSError, -63.95),
std::make_tuple(44100, 96000, kResamplingRMSError, -62.63),
std::make_tuple(48000, 96000, kResamplingRMSError, -73.52),
std::make_tuple(96000, 96000, kResamplingRMSError, -73.52),
std::make_tuple(192000, 96000, kResamplingRMSError, -28.41),
// To 192kHz
std::make_tuple(8000, 192000, kResamplingRMSError, -63.10),
std::make_tuple(11025, 192000, kResamplingRMSError, -62.61),
std::make_tuple(16000, 192000, kResamplingRMSError, -63.14),
std::make_tuple(22050, 192000, kResamplingRMSError, -62.42),
std::make_tuple(32000, 192000, kResamplingRMSError, -63.38),
std::make_tuple(44100, 192000, kResamplingRMSError, -62.63),
std::make_tuple(48000, 192000, kResamplingRMSError, -73.44),
std::make_tuple(96000, 192000, kResamplingRMSError, -73.52),
std::make_tuple(192000, 192000, kResamplingRMSError, -73.52)));
} // namespace webrtc