webrtc/test/fuzzers/audio_processing_sample_rate_fuzzer.cc
Sam Zackrisson 3bd444ffdb Clarify and extend test support for certain sample rates in audio processing
Sample rates not divisible by 100, in particular 11025 Hz and 22050 Hz, have long been used with APM in Chrome, but the support has never been stated explicitly.

This CL makes minor modifications to the APM API to clarify how rates are handled when 10 ms is not an integer number of samples. Unit tests are also extended to cover this case better.

This does not update all references to 10 ms and implicit floor(sample_rate/100) computations, but it does at least take us closer to a correct API.

Note that not all code needs to support these sample rates. For example, audio processing submodules only need to operate on the native APM rates 16000, 32000, 48000.

Bug: chromium:1332484
Change-Id: I1dad15468f6ccb9c0d4d09c5819fe87f8388d5b8
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/268769
Reviewed-by: Henrik Andreassson <henrika@webrtc.org>
Commit-Queue: Sam Zackrisson <saza@webrtc.org>
Reviewed-by: Ivo Creusen <ivoc@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#37682}
2022-08-03 14:26:36 +00:00

169 lines
6.8 KiB
C++

/*
* Copyright (c) 2022 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <algorithm>
#include <array>
#include <cmath>
#include <limits>
#include "api/audio/audio_frame.h"
#include "modules/audio_processing/include/audio_frame_proxies.h"
#include "modules/audio_processing/include/audio_processing.h"
#include "modules/audio_processing/test/audio_processing_builder_for_testing.h"
#include "rtc_base/checks.h"
#include "test/fuzzers/fuzz_data_helper.h"
namespace webrtc {
namespace {
constexpr int kMaxNumChannels = 2;
constexpr int kMaxSamplesPerChannel =
AudioFrame::kMaxDataSizeSamples / kMaxNumChannels;
void GenerateFloatFrame(test::FuzzDataHelper& fuzz_data,
int input_rate,
int num_channels,
bool is_capture,
float* const* float_frames) {
const int samples_per_input_channel =
AudioProcessing::GetFrameSize(input_rate);
RTC_DCHECK_LE(samples_per_input_channel, kMaxSamplesPerChannel);
for (int i = 0; i < num_channels; ++i) {
float channel_value;
fuzz_data.CopyTo<float>(&channel_value);
std::fill(float_frames[i], float_frames[i] + samples_per_input_channel,
channel_value);
}
}
void GenerateFixedFrame(test::FuzzDataHelper& fuzz_data,
int input_rate,
int num_channels,
AudioFrame& fixed_frame) {
const int samples_per_input_channel =
AudioProcessing::GetFrameSize(input_rate);
fixed_frame.samples_per_channel_ = samples_per_input_channel;
fixed_frame.sample_rate_hz_ = input_rate;
fixed_frame.num_channels_ = num_channels;
RTC_DCHECK_LE(samples_per_input_channel * num_channels,
AudioFrame::kMaxDataSizeSamples);
// Write interleaved samples.
for (int ch = 0; ch < num_channels; ++ch) {
const int16_t channel_value = fuzz_data.ReadOrDefaultValue<int16_t>(0);
for (int i = ch; i < samples_per_input_channel * num_channels;
i += num_channels) {
fixed_frame.mutable_data()[i] = channel_value;
}
}
}
// No-op processor used to influence APM input/output pipeline decisions based
// on what submodules are present.
class NoopCustomProcessing : public CustomProcessing {
public:
NoopCustomProcessing() {}
~NoopCustomProcessing() override {}
void Initialize(int sample_rate_hz, int num_channels) override {}
void Process(AudioBuffer* audio) override {}
std::string ToString() const override { return ""; }
void SetRuntimeSetting(AudioProcessing::RuntimeSetting setting) override {}
};
} // namespace
// This fuzzer is directed at fuzzing unexpected input and output sample rates
// of APM. For example, the sample rate 22050 Hz is processed by APM in frames
// of floor(22050/100) = 220 samples. This is not exactly 10 ms of audio
// content, and may break assumptions commonly made on the APM frame size.
void FuzzOneInput(const uint8_t* data, size_t size) {
if (size > 100) {
return;
}
test::FuzzDataHelper fuzz_data(rtc::ArrayView<const uint8_t>(data, size));
std::unique_ptr<CustomProcessing> capture_processor =
fuzz_data.ReadOrDefaultValue(true)
? std::make_unique<NoopCustomProcessing>()
: nullptr;
std::unique_ptr<CustomProcessing> render_processor =
fuzz_data.ReadOrDefaultValue(true)
? std::make_unique<NoopCustomProcessing>()
: nullptr;
rtc::scoped_refptr<AudioProcessing> apm =
AudioProcessingBuilderForTesting()
.SetConfig({.pipeline = {.multi_channel_render = true,
.multi_channel_capture = true}})
.SetCapturePostProcessing(std::move(capture_processor))
.SetRenderPreProcessing(std::move(render_processor))
.Create();
RTC_DCHECK(apm);
AudioFrame fixed_frame;
std::array<std::array<float, kMaxSamplesPerChannel>, kMaxNumChannels>
float_frames;
std::array<float*, kMaxNumChannels> float_frame_ptrs;
for (int i = 0; i < kMaxNumChannels; ++i) {
float_frame_ptrs[i] = float_frames[i].data();
}
float* const* ptr_to_float_frames = &float_frame_ptrs[0];
// These are all the sample rates logged by UMA metric
// WebAudio.AudioContext.HardwareSampleRate.
constexpr int kSampleRatesHz[] = {8000, 11025, 16000, 22050, 24000,
32000, 44100, 46875, 48000, 88200,
96000, 176400, 192000, 352800, 384000};
// Choose whether to fuzz the float or int16_t interfaces of APM.
const bool is_float = fuzz_data.ReadOrDefaultValue(true);
// We may run out of fuzz data in the middle of a loop iteration. In
// that case, default values will be used for the rest of that
// iteration.
while (fuzz_data.CanReadBytes(1)) {
// Decide input/output rate for this iteration.
const int input_rate = fuzz_data.SelectOneOf(kSampleRatesHz);
const int output_rate = fuzz_data.SelectOneOf(kSampleRatesHz);
const int num_channels = fuzz_data.ReadOrDefaultValue(true) ? 2 : 1;
// Since render and capture calls have slightly different reinitialization
// procedures, we let the fuzzer choose the order.
const bool is_capture = fuzz_data.ReadOrDefaultValue(true);
// Fill the arrays with audio samples from the data.
int apm_return_code = AudioProcessing::Error::kNoError;
if (is_float) {
GenerateFloatFrame(fuzz_data, input_rate, num_channels, is_capture,
ptr_to_float_frames);
if (is_capture) {
apm_return_code = apm->ProcessStream(
ptr_to_float_frames, StreamConfig(input_rate, num_channels),
StreamConfig(output_rate, num_channels), ptr_to_float_frames);
} else {
apm_return_code = apm->ProcessReverseStream(
ptr_to_float_frames, StreamConfig(input_rate, num_channels),
StreamConfig(output_rate, num_channels), ptr_to_float_frames);
}
RTC_DCHECK_EQ(apm_return_code, AudioProcessing::kNoError);
} else {
GenerateFixedFrame(fuzz_data, input_rate, num_channels, fixed_frame);
if (is_capture) {
apm_return_code = ProcessAudioFrame(apm.get(), &fixed_frame);
} else {
apm_return_code = ProcessReverseAudioFrame(apm.get(), &fixed_frame);
}
// The AudioFrame interface does not allow non-native sample rates, but it
// should not crash.
RTC_DCHECK(apm_return_code == AudioProcessing::kNoError ||
apm_return_code == AudioProcessing::kBadSampleRateError);
}
}
}
} // namespace webrtc