webrtc/rtc_base/virtual_socket_server.cc
Danil Chapovalov babdaa8623 Unbind VirtualSocket from rtc::MessageHandler
Instead protect pending tasks with a shared object.
Some tests destroy VirtualSocket on a different thread than it is used on,
Some tests destroy VirtualSocket together with VirtualSocketServer after
associated thread is deleted, thus complicated check is used to ensure
VirtualSockets are safe to use.

Bug: webrtc:9702
Change-Id: I1a19cd24ac6a598a1cde64434104cad0b750096e
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/274460
Reviewed-by: Tomas Gunnarsson <tommi@webrtc.org>
Commit-Queue: Danil Chapovalov <danilchap@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#38103}
2022-09-16 14:13:41 +00:00

1383 lines
42 KiB
C++

/*
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "rtc_base/virtual_socket_server.h"
#include <errno.h>
#include <math.h>
#include <map>
#include <memory>
#include <vector>
#include "absl/algorithm/container.h"
#include "api/units/time_delta.h"
#include "rtc_base/checks.h"
#include "rtc_base/event.h"
#include "rtc_base/fake_clock.h"
#include "rtc_base/logging.h"
#include "rtc_base/physical_socket_server.h"
#include "rtc_base/socket_address_pair.h"
#include "rtc_base/thread.h"
#include "rtc_base/time_utils.h"
namespace rtc {
using ::webrtc::MutexLock;
using ::webrtc::TaskQueueBase;
using ::webrtc::TimeDelta;
#if defined(WEBRTC_WIN)
const in_addr kInitialNextIPv4 = {{{0x01, 0, 0, 0}}};
#else
// This value is entirely arbitrary, hence the lack of concern about endianness.
const in_addr kInitialNextIPv4 = {0x01000000};
#endif
// Starts at ::2 so as to not cause confusion with ::1.
const in6_addr kInitialNextIPv6 = {
{{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2}}};
const uint16_t kFirstEphemeralPort = 49152;
const uint16_t kLastEphemeralPort = 65535;
const uint16_t kEphemeralPortCount =
kLastEphemeralPort - kFirstEphemeralPort + 1;
const uint32_t kDefaultNetworkCapacity = 64 * 1024;
const uint32_t kDefaultTcpBufferSize = 32 * 1024;
const uint32_t UDP_HEADER_SIZE = 28; // IP + UDP headers
const uint32_t TCP_HEADER_SIZE = 40; // IP + TCP headers
const uint32_t TCP_MSS = 1400; // Maximum segment size
// Note: The current algorithm doesn't work for sample sizes smaller than this.
const int NUM_SAMPLES = 1000;
// Packets are passed between sockets as messages. We copy the data just like
// the kernel does.
class Packet {
public:
Packet(const char* data, size_t size, const SocketAddress& from)
: size_(size), consumed_(0), from_(from) {
RTC_DCHECK(nullptr != data);
data_ = new char[size_];
memcpy(data_, data, size_);
}
~Packet() { delete[] data_; }
const char* data() const { return data_ + consumed_; }
size_t size() const { return size_ - consumed_; }
const SocketAddress& from() const { return from_; }
// Remove the first size bytes from the data.
void Consume(size_t size) {
RTC_DCHECK(size + consumed_ < size_);
consumed_ += size;
}
private:
char* data_;
size_t size_, consumed_;
SocketAddress from_;
};
VirtualSocket::VirtualSocket(VirtualSocketServer* server, int family, int type)
: server_(server),
type_(type),
state_(CS_CLOSED),
error_(0),
network_size_(0),
recv_buffer_size_(0),
bound_(false),
was_any_(false) {
RTC_DCHECK((type_ == SOCK_DGRAM) || (type_ == SOCK_STREAM));
server->SignalReadyToSend.connect(this,
&VirtualSocket::OnSocketServerReadyToSend);
}
VirtualSocket::~VirtualSocket() {
Close();
}
SocketAddress VirtualSocket::GetLocalAddress() const {
return local_addr_;
}
SocketAddress VirtualSocket::GetRemoteAddress() const {
return remote_addr_;
}
void VirtualSocket::SetLocalAddress(const SocketAddress& addr) {
local_addr_ = addr;
}
int VirtualSocket::Bind(const SocketAddress& addr) {
if (!local_addr_.IsNil()) {
error_ = EINVAL;
return -1;
}
local_addr_ = server_->AssignBindAddress(addr);
int result = server_->Bind(this, local_addr_);
if (result != 0) {
local_addr_.Clear();
error_ = EADDRINUSE;
} else {
bound_ = true;
was_any_ = addr.IsAnyIP();
}
return result;
}
int VirtualSocket::Connect(const SocketAddress& addr) {
return InitiateConnect(addr, true);
}
VirtualSocket::SafetyBlock::SafetyBlock(VirtualSocket* socket)
: socket_(*socket) {}
VirtualSocket::SafetyBlock::~SafetyBlock() {
// Ensure `SetNotAlive` was called and there is nothing left to cleanup.
RTC_DCHECK(!alive_);
RTC_DCHECK(posted_connects_.empty());
RTC_DCHECK(recv_buffer_.empty());
RTC_DCHECK(!listen_queue_.has_value());
}
void VirtualSocket::SafetyBlock::SetNotAlive() {
VirtualSocketServer* const server = socket_.server_;
const SocketAddress& local_addr = socket_.local_addr_;
MutexLock lock(&mutex_);
// Cancel pending sockets
if (listen_queue_.has_value()) {
for (const SocketAddress& remote_addr : *listen_queue_) {
server->Disconnect(remote_addr);
}
listen_queue_ = absl::nullopt;
}
// Cancel potential connects
for (const SocketAddress& remote_addr : posted_connects_) {
// Lookup remote side.
VirtualSocket* lookup_socket =
server->LookupConnection(local_addr, remote_addr);
if (lookup_socket) {
// Server socket, remote side is a socket retreived by accept. Accepted
// sockets are not bound so we will not find it by looking in the
// bindings table.
server->Disconnect(lookup_socket);
server->RemoveConnection(local_addr, remote_addr);
} else {
server->Disconnect(remote_addr);
}
}
posted_connects_.clear();
recv_buffer_.clear();
alive_ = false;
}
void VirtualSocket::SafetyBlock::PostSignalReadEvent() {
if (pending_read_signal_event_) {
// Avoid posting multiple times.
return;
}
pending_read_signal_event_ = true;
rtc::scoped_refptr<SafetyBlock> safety(this);
socket_.server_->msg_queue_->PostTask(
[safety = std::move(safety)] { safety->MaybeSignalReadEvent(); });
}
void VirtualSocket::SafetyBlock::MaybeSignalReadEvent() {
{
MutexLock lock(&mutex_);
pending_read_signal_event_ = false;
if (!alive_ || recv_buffer_.empty()) {
return;
}
}
socket_.SignalReadEvent(&socket_);
}
int VirtualSocket::Close() {
if (!local_addr_.IsNil() && bound_) {
// Remove from the binding table.
server_->Unbind(local_addr_, this);
bound_ = false;
}
// Disconnect stream sockets
if (state_ == CS_CONNECTED && type_ == SOCK_STREAM) {
server_->Disconnect(local_addr_, remote_addr_);
}
safety_->SetNotAlive();
state_ = CS_CLOSED;
local_addr_.Clear();
remote_addr_.Clear();
return 0;
}
int VirtualSocket::Send(const void* pv, size_t cb) {
if (CS_CONNECTED != state_) {
error_ = ENOTCONN;
return -1;
}
if (SOCK_DGRAM == type_) {
return SendUdp(pv, cb, remote_addr_);
} else {
return SendTcp(pv, cb);
}
}
int VirtualSocket::SendTo(const void* pv,
size_t cb,
const SocketAddress& addr) {
if (SOCK_DGRAM == type_) {
return SendUdp(pv, cb, addr);
} else {
if (CS_CONNECTED != state_) {
error_ = ENOTCONN;
return -1;
}
return SendTcp(pv, cb);
}
}
int VirtualSocket::Recv(void* pv, size_t cb, int64_t* timestamp) {
SocketAddress addr;
return RecvFrom(pv, cb, &addr, timestamp);
}
int VirtualSocket::RecvFrom(void* pv,
size_t cb,
SocketAddress* paddr,
int64_t* timestamp) {
if (timestamp) {
*timestamp = -1;
}
int data_read = safety_->RecvFrom(pv, cb, *paddr);
if (data_read < 0) {
error_ = EAGAIN;
return -1;
}
if (type_ == SOCK_STREAM) {
bool was_full = (recv_buffer_size_ == server_->recv_buffer_capacity());
recv_buffer_size_ -= data_read;
if (was_full) {
server_->SendTcp(remote_addr_);
}
}
return data_read;
}
int VirtualSocket::SafetyBlock::RecvFrom(void* buffer,
size_t size,
SocketAddress& addr) {
MutexLock lock(&mutex_);
// If we don't have a packet, then either error or wait for one to arrive.
if (recv_buffer_.empty()) {
return -1;
}
// Return the packet at the front of the queue.
Packet& packet = *recv_buffer_.front();
size_t data_read = std::min(size, packet.size());
memcpy(buffer, packet.data(), data_read);
addr = packet.from();
if (data_read < packet.size()) {
packet.Consume(data_read);
} else {
recv_buffer_.pop_front();
}
// To behave like a real socket, SignalReadEvent should fire if there's still
// data buffered.
if (!recv_buffer_.empty()) {
PostSignalReadEvent();
}
return data_read;
}
int VirtualSocket::Listen(int backlog) {
RTC_DCHECK(SOCK_STREAM == type_);
RTC_DCHECK(CS_CLOSED == state_);
if (local_addr_.IsNil()) {
error_ = EINVAL;
return -1;
}
safety_->Listen();
state_ = CS_CONNECTING;
return 0;
}
void VirtualSocket::SafetyBlock::Listen() {
MutexLock lock(&mutex_);
RTC_DCHECK(!listen_queue_.has_value());
listen_queue_.emplace();
}
VirtualSocket* VirtualSocket::Accept(SocketAddress* paddr) {
SafetyBlock::AcceptResult result = safety_->Accept();
if (result.error != 0) {
error_ = result.error;
return nullptr;
}
if (paddr) {
*paddr = result.remote_addr;
}
return result.socket.release();
}
VirtualSocket::SafetyBlock::AcceptResult VirtualSocket::SafetyBlock::Accept() {
AcceptResult result;
MutexLock lock(&mutex_);
RTC_DCHECK(alive_);
if (!listen_queue_.has_value()) {
result.error = EINVAL;
return result;
}
while (!listen_queue_->empty()) {
auto socket = std::make_unique<VirtualSocket>(socket_.server_, AF_INET,
socket_.type_);
// Set the new local address to the same as this server socket.
socket->SetLocalAddress(socket_.local_addr_);
// Sockets made from a socket that 'was Any' need to inherit that.
socket->set_was_any(socket_.was_any());
SocketAddress remote_addr = listen_queue_->front();
listen_queue_->pop_front();
if (socket->InitiateConnect(remote_addr, false) != 0) {
continue;
}
socket->CompleteConnect(remote_addr);
result.socket = std::move(socket);
result.remote_addr = remote_addr;
return result;
}
result.error = EWOULDBLOCK;
return result;
}
int VirtualSocket::GetError() const {
return error_;
}
void VirtualSocket::SetError(int error) {
error_ = error;
}
Socket::ConnState VirtualSocket::GetState() const {
return state_;
}
int VirtualSocket::GetOption(Option opt, int* value) {
OptionsMap::const_iterator it = options_map_.find(opt);
if (it == options_map_.end()) {
return -1;
}
*value = it->second;
return 0; // 0 is success to emulate getsockopt()
}
int VirtualSocket::SetOption(Option opt, int value) {
options_map_[opt] = value;
return 0; // 0 is success to emulate setsockopt()
}
void VirtualSocket::PostPacket(TimeDelta delay,
std::unique_ptr<Packet> packet) {
rtc::scoped_refptr<SafetyBlock> safety = safety_;
VirtualSocket* socket = this;
server_->msg_queue_->PostDelayedTask(
[safety = std::move(safety), socket,
packet = std::move(packet)]() mutable {
if (safety->AddPacket(std::move(packet))) {
socket->SignalReadEvent(socket);
}
},
delay);
}
bool VirtualSocket::SafetyBlock::AddPacket(std::unique_ptr<Packet> packet) {
MutexLock lock(&mutex_);
if (alive_) {
recv_buffer_.push_back(std::move(packet));
}
return alive_;
}
void VirtualSocket::PostConnect(TimeDelta delay,
const SocketAddress& remote_addr) {
safety_->PostConnect(delay, remote_addr);
}
void VirtualSocket::SafetyBlock::PostConnect(TimeDelta delay,
const SocketAddress& remote_addr) {
rtc::scoped_refptr<SafetyBlock> safety(this);
MutexLock lock(&mutex_);
RTC_DCHECK(alive_);
// Save addresses of the pending connects to allow propertly disconnect them
// if socket closes before delayed task below runs.
// `posted_connects_` is an std::list, thus its iterators are valid while the
// element is in the list. It can be removed either in the `Connect` just
// below or by calling SetNotAlive function, thus inside `Connect` `it` should
// be valid when alive_ == true.
auto it = posted_connects_.insert(posted_connects_.end(), remote_addr);
auto task = [safety = std::move(safety), it] {
switch (safety->Connect(it)) {
case Signal::kNone:
break;
case Signal::kReadEvent:
safety->socket_.SignalReadEvent(&safety->socket_);
break;
case Signal::kConnectEvent:
safety->socket_.SignalConnectEvent(&safety->socket_);
break;
}
};
socket_.server_->msg_queue_->PostDelayedTask(std::move(task), delay);
}
VirtualSocket::SafetyBlock::Signal VirtualSocket::SafetyBlock::Connect(
VirtualSocket::SafetyBlock::PostedConnects::iterator remote_addr_it) {
MutexLock lock(&mutex_);
if (!alive_) {
return Signal::kNone;
}
RTC_DCHECK(!posted_connects_.empty());
SocketAddress remote_addr = *remote_addr_it;
posted_connects_.erase(remote_addr_it);
if (listen_queue_.has_value()) {
listen_queue_->push_back(remote_addr);
return Signal::kReadEvent;
}
if (socket_.type_ == SOCK_STREAM && socket_.state_ == CS_CONNECTING) {
socket_.CompleteConnect(remote_addr);
return Signal::kConnectEvent;
}
RTC_LOG(LS_VERBOSE) << "Socket at " << socket_.local_addr_.ToString()
<< " is not listening";
socket_.server_->Disconnect(remote_addr);
return Signal::kNone;
}
bool VirtualSocket::SafetyBlock::IsAlive() {
MutexLock lock(&mutex_);
return alive_;
}
void VirtualSocket::PostDisconnect(TimeDelta delay) {
// Posted task may outlive this. Use different name for `this` inside the task
// to avoid accidental unsafe `this->safety_` instead of safe `safety`
VirtualSocket* socket = this;
rtc::scoped_refptr<SafetyBlock> safety = safety_;
auto task = [safety = std::move(safety), socket] {
if (!safety->IsAlive()) {
return;
}
RTC_DCHECK_EQ(socket->type_, SOCK_STREAM);
if (socket->state_ == CS_CLOSED) {
return;
}
int error_to_signal = (socket->state_ == CS_CONNECTING) ? ECONNREFUSED : 0;
socket->state_ = CS_CLOSED;
socket->remote_addr_.Clear();
socket->SignalCloseEvent(socket, error_to_signal);
};
server_->msg_queue_->PostDelayedTask(std::move(task), delay);
}
int VirtualSocket::InitiateConnect(const SocketAddress& addr, bool use_delay) {
if (!remote_addr_.IsNil()) {
error_ = (CS_CONNECTED == state_) ? EISCONN : EINPROGRESS;
return -1;
}
if (local_addr_.IsNil()) {
// If there's no local address set, grab a random one in the correct AF.
int result = 0;
if (addr.ipaddr().family() == AF_INET) {
result = Bind(SocketAddress("0.0.0.0", 0));
} else if (addr.ipaddr().family() == AF_INET6) {
result = Bind(SocketAddress("::", 0));
}
if (result != 0) {
return result;
}
}
if (type_ == SOCK_DGRAM) {
remote_addr_ = addr;
state_ = CS_CONNECTED;
} else {
int result = server_->Connect(this, addr, use_delay);
if (result != 0) {
error_ = EHOSTUNREACH;
return -1;
}
state_ = CS_CONNECTING;
}
return 0;
}
void VirtualSocket::CompleteConnect(const SocketAddress& addr) {
RTC_DCHECK(CS_CONNECTING == state_);
remote_addr_ = addr;
state_ = CS_CONNECTED;
server_->AddConnection(remote_addr_, local_addr_, this);
}
int VirtualSocket::SendUdp(const void* pv,
size_t cb,
const SocketAddress& addr) {
// If we have not been assigned a local port, then get one.
if (local_addr_.IsNil()) {
local_addr_ = server_->AssignBindAddress(
EmptySocketAddressWithFamily(addr.ipaddr().family()));
int result = server_->Bind(this, local_addr_);
if (result != 0) {
local_addr_.Clear();
error_ = EADDRINUSE;
return result;
}
}
// Send the data in a message to the appropriate socket.
return server_->SendUdp(this, static_cast<const char*>(pv), cb, addr);
}
int VirtualSocket::SendTcp(const void* pv, size_t cb) {
size_t capacity = server_->send_buffer_capacity() - send_buffer_.size();
if (0 == capacity) {
ready_to_send_ = false;
error_ = EWOULDBLOCK;
return -1;
}
size_t consumed = std::min(cb, capacity);
const char* cpv = static_cast<const char*>(pv);
send_buffer_.insert(send_buffer_.end(), cpv, cpv + consumed);
server_->SendTcp(this);
return static_cast<int>(consumed);
}
void VirtualSocket::OnSocketServerReadyToSend() {
if (ready_to_send_) {
// This socket didn't encounter EWOULDBLOCK, so there's nothing to do.
return;
}
if (type_ == SOCK_DGRAM) {
ready_to_send_ = true;
SignalWriteEvent(this);
} else {
RTC_DCHECK(type_ == SOCK_STREAM);
// This will attempt to empty the full send buffer, and will fire
// SignalWriteEvent if successful.
server_->SendTcp(this);
}
}
void VirtualSocket::SetToBlocked() {
ready_to_send_ = false;
error_ = EWOULDBLOCK;
}
void VirtualSocket::UpdateRecv(size_t data_size) {
recv_buffer_size_ += data_size;
}
void VirtualSocket::UpdateSend(size_t data_size) {
size_t new_buffer_size = send_buffer_.size() - data_size;
// Avoid undefined access beyond the last element of the vector.
// This only happens when new_buffer_size is 0.
if (data_size < send_buffer_.size()) {
// memmove is required for potentially overlapping source/destination.
memmove(&send_buffer_[0], &send_buffer_[data_size], new_buffer_size);
}
send_buffer_.resize(new_buffer_size);
}
void VirtualSocket::MaybeSignalWriteEvent(size_t capacity) {
if (!ready_to_send_ && (send_buffer_.size() < capacity)) {
ready_to_send_ = true;
SignalWriteEvent(this);
}
}
uint32_t VirtualSocket::AddPacket(int64_t cur_time, size_t packet_size) {
network_size_ += packet_size;
uint32_t send_delay =
server_->SendDelay(static_cast<uint32_t>(network_size_));
NetworkEntry entry;
entry.size = packet_size;
entry.done_time = cur_time + send_delay;
network_.push_back(entry);
return send_delay;
}
int64_t VirtualSocket::UpdateOrderedDelivery(int64_t ts) {
// Ensure that new packets arrive after previous ones
ts = std::max(ts, last_delivery_time_);
// A socket should not have both ordered and unordered delivery, so its last
// delivery time only needs to be updated when it has ordered delivery.
last_delivery_time_ = ts;
return ts;
}
size_t VirtualSocket::PurgeNetworkPackets(int64_t cur_time) {
while (!network_.empty() && (network_.front().done_time <= cur_time)) {
RTC_DCHECK(network_size_ >= network_.front().size);
network_size_ -= network_.front().size;
network_.pop_front();
}
return network_size_;
}
VirtualSocketServer::VirtualSocketServer() : VirtualSocketServer(nullptr) {}
VirtualSocketServer::VirtualSocketServer(ThreadProcessingFakeClock* fake_clock)
: fake_clock_(fake_clock),
msg_queue_(nullptr),
stop_on_idle_(false),
next_ipv4_(kInitialNextIPv4),
next_ipv6_(kInitialNextIPv6),
next_port_(kFirstEphemeralPort),
bindings_(new AddressMap()),
connections_(new ConnectionMap()),
bandwidth_(0),
network_capacity_(kDefaultNetworkCapacity),
send_buffer_capacity_(kDefaultTcpBufferSize),
recv_buffer_capacity_(kDefaultTcpBufferSize),
delay_mean_(0),
delay_stddev_(0),
delay_samples_(NUM_SAMPLES),
drop_prob_(0.0) {
UpdateDelayDistribution();
}
VirtualSocketServer::~VirtualSocketServer() {
delete bindings_;
delete connections_;
}
IPAddress VirtualSocketServer::GetNextIP(int family) {
if (family == AF_INET) {
IPAddress next_ip(next_ipv4_);
next_ipv4_.s_addr = HostToNetwork32(NetworkToHost32(next_ipv4_.s_addr) + 1);
return next_ip;
} else if (family == AF_INET6) {
IPAddress next_ip(next_ipv6_);
uint32_t* as_ints = reinterpret_cast<uint32_t*>(&next_ipv6_.s6_addr);
as_ints[3] += 1;
return next_ip;
}
return IPAddress();
}
uint16_t VirtualSocketServer::GetNextPort() {
uint16_t port = next_port_;
if (next_port_ < kLastEphemeralPort) {
++next_port_;
} else {
next_port_ = kFirstEphemeralPort;
}
return port;
}
void VirtualSocketServer::SetSendingBlocked(bool blocked) {
{
webrtc::MutexLock lock(&mutex_);
if (blocked == sending_blocked_) {
// Unchanged; nothing to do.
return;
}
sending_blocked_ = blocked;
}
if (!blocked) {
// Sending was blocked, but is now unblocked. This signal gives sockets a
// chance to fire SignalWriteEvent, and for TCP, send buffered data.
SignalReadyToSend();
}
}
VirtualSocket* VirtualSocketServer::CreateSocket(int family, int type) {
return new VirtualSocket(this, family, type);
}
void VirtualSocketServer::SetMessageQueue(Thread* msg_queue) {
msg_queue_ = msg_queue;
}
bool VirtualSocketServer::Wait(webrtc::TimeDelta max_wait_duration,
bool process_io) {
RTC_DCHECK_RUN_ON(msg_queue_);
if (stop_on_idle_ && Thread::Current()->empty()) {
return false;
}
// Note: we don't need to do anything with `process_io` since we don't have
// any real I/O. Received packets come in the form of queued messages, so
// Thread will ensure WakeUp is called if another thread sends a
// packet.
wakeup_.Wait(max_wait_duration);
return true;
}
void VirtualSocketServer::WakeUp() {
wakeup_.Set();
}
void VirtualSocketServer::SetAlternativeLocalAddress(
const rtc::IPAddress& address,
const rtc::IPAddress& alternative) {
alternative_address_mapping_[address] = alternative;
}
bool VirtualSocketServer::ProcessMessagesUntilIdle() {
RTC_DCHECK_RUN_ON(msg_queue_);
stop_on_idle_ = true;
while (!msg_queue_->empty()) {
if (fake_clock_) {
// If using a fake clock, advance it in millisecond increments until the
// queue is empty.
fake_clock_->AdvanceTime(webrtc::TimeDelta::Millis(1));
} else {
// Otherwise, run a normal message loop.
msg_queue_->ProcessMessages(Thread::kForever);
}
}
stop_on_idle_ = false;
return !msg_queue_->IsQuitting();
}
void VirtualSocketServer::SetNextPortForTesting(uint16_t port) {
next_port_ = port;
}
bool VirtualSocketServer::CloseTcpConnections(
const SocketAddress& addr_local,
const SocketAddress& addr_remote) {
VirtualSocket* socket = LookupConnection(addr_local, addr_remote);
if (!socket) {
return false;
}
// Signal the close event on the local connection first.
socket->SignalCloseEvent(socket, 0);
// Trigger the remote connection's close event.
socket->Close();
return true;
}
int VirtualSocketServer::Bind(VirtualSocket* socket,
const SocketAddress& addr) {
RTC_DCHECK(nullptr != socket);
// Address must be completely specified at this point
RTC_DCHECK(!IPIsUnspec(addr.ipaddr()));
RTC_DCHECK(addr.port() != 0);
// Normalize the address (turns v6-mapped addresses into v4-addresses).
SocketAddress normalized(addr.ipaddr().Normalized(), addr.port());
AddressMap::value_type entry(normalized, socket);
return bindings_->insert(entry).second ? 0 : -1;
}
SocketAddress VirtualSocketServer::AssignBindAddress(
const SocketAddress& app_addr) {
RTC_DCHECK(!IPIsUnspec(app_addr.ipaddr()));
// Normalize the IP.
SocketAddress addr;
addr.SetIP(app_addr.ipaddr().Normalized());
// If the IP appears in `alternative_address_mapping_`, meaning the test has
// configured sockets bound to this IP to actually use another IP, replace
// the IP here.
auto alternative = alternative_address_mapping_.find(addr.ipaddr());
if (alternative != alternative_address_mapping_.end()) {
addr.SetIP(alternative->second);
}
if (app_addr.port() != 0) {
addr.SetPort(app_addr.port());
} else {
// Assign a port.
for (int i = 0; i < kEphemeralPortCount; ++i) {
addr.SetPort(GetNextPort());
if (bindings_->find(addr) == bindings_->end()) {
break;
}
}
}
return addr;
}
VirtualSocket* VirtualSocketServer::LookupBinding(const SocketAddress& addr) {
SocketAddress normalized(addr.ipaddr().Normalized(), addr.port());
AddressMap::iterator it = bindings_->find(normalized);
if (it != bindings_->end()) {
return it->second;
}
IPAddress default_ip = GetDefaultSourceAddress(addr.ipaddr().family());
if (!IPIsUnspec(default_ip) && addr.ipaddr() == default_ip) {
// If we can't find a binding for the packet which is sent to the interface
// corresponding to the default route, it should match a binding with the
// correct port to the any address.
SocketAddress sock_addr =
EmptySocketAddressWithFamily(addr.ipaddr().family());
sock_addr.SetPort(addr.port());
return LookupBinding(sock_addr);
}
return nullptr;
}
int VirtualSocketServer::Unbind(const SocketAddress& addr,
VirtualSocket* socket) {
SocketAddress normalized(addr.ipaddr().Normalized(), addr.port());
RTC_DCHECK((*bindings_)[normalized] == socket);
bindings_->erase(bindings_->find(normalized));
return 0;
}
void VirtualSocketServer::AddConnection(const SocketAddress& local,
const SocketAddress& remote,
VirtualSocket* remote_socket) {
// Add this socket pair to our routing table. This will allow
// multiple clients to connect to the same server address.
SocketAddress local_normalized(local.ipaddr().Normalized(), local.port());
SocketAddress remote_normalized(remote.ipaddr().Normalized(), remote.port());
SocketAddressPair address_pair(local_normalized, remote_normalized);
connections_->insert(std::pair<SocketAddressPair, VirtualSocket*>(
address_pair, remote_socket));
}
VirtualSocket* VirtualSocketServer::LookupConnection(
const SocketAddress& local,
const SocketAddress& remote) {
SocketAddress local_normalized(local.ipaddr().Normalized(), local.port());
SocketAddress remote_normalized(remote.ipaddr().Normalized(), remote.port());
SocketAddressPair address_pair(local_normalized, remote_normalized);
ConnectionMap::iterator it = connections_->find(address_pair);
return (connections_->end() != it) ? it->second : nullptr;
}
void VirtualSocketServer::RemoveConnection(const SocketAddress& local,
const SocketAddress& remote) {
SocketAddress local_normalized(local.ipaddr().Normalized(), local.port());
SocketAddress remote_normalized(remote.ipaddr().Normalized(), remote.port());
SocketAddressPair address_pair(local_normalized, remote_normalized);
connections_->erase(address_pair);
}
static double Random() {
return static_cast<double>(rand()) / RAND_MAX;
}
int VirtualSocketServer::Connect(VirtualSocket* socket,
const SocketAddress& remote_addr,
bool use_delay) {
RTC_DCHECK(msg_queue_);
TimeDelta delay = TimeDelta::Millis(use_delay ? GetTransitDelay(socket) : 0);
VirtualSocket* remote = LookupBinding(remote_addr);
if (!CanInteractWith(socket, remote)) {
RTC_LOG(LS_INFO) << "Address family mismatch between "
<< socket->GetLocalAddress().ToString() << " and "
<< remote_addr.ToString();
return -1;
}
if (remote != nullptr) {
remote->PostConnect(delay, socket->GetLocalAddress());
} else {
RTC_LOG(LS_INFO) << "No one listening at " << remote_addr.ToString();
socket->PostDisconnect(delay);
}
return 0;
}
bool VirtualSocketServer::Disconnect(VirtualSocket* socket) {
if (!socket || !msg_queue_)
return false;
// If we simulate packets being delayed, we should simulate the
// equivalent of a FIN being delayed as well.
socket->PostDisconnect(TimeDelta::Millis(GetTransitDelay(socket)));
return true;
}
bool VirtualSocketServer::Disconnect(const SocketAddress& addr) {
return Disconnect(LookupBinding(addr));
}
bool VirtualSocketServer::Disconnect(const SocketAddress& local_addr,
const SocketAddress& remote_addr) {
// Disconnect remote socket, check if it is a child of a server socket.
VirtualSocket* socket = LookupConnection(local_addr, remote_addr);
if (!socket) {
// Not a server socket child, then see if it is bound.
// TODO(tbd): If this is indeed a server socket that has no
// children this will cause the server socket to be
// closed. This might lead to unexpected results, how to fix this?
socket = LookupBinding(remote_addr);
}
Disconnect(socket);
// Remove mapping for both directions.
RemoveConnection(remote_addr, local_addr);
RemoveConnection(local_addr, remote_addr);
return socket != nullptr;
}
int VirtualSocketServer::SendUdp(VirtualSocket* socket,
const char* data,
size_t data_size,
const SocketAddress& remote_addr) {
{
webrtc::MutexLock lock(&mutex_);
++sent_packets_;
if (sending_blocked_) {
socket->SetToBlocked();
return -1;
}
// See if we want to drop this packet.
if (data_size > max_udp_payload_) {
RTC_LOG(LS_VERBOSE) << "Dropping too large UDP payload of size "
<< data_size << ", UDP payload limit is "
<< max_udp_payload_;
// Return as if send was successful; packet disappears.
return data_size;
}
if (Random() < drop_prob_) {
RTC_LOG(LS_VERBOSE) << "Dropping packet: bad luck";
return static_cast<int>(data_size);
}
}
VirtualSocket* recipient = LookupBinding(remote_addr);
if (!recipient) {
// Make a fake recipient for address family checking.
std::unique_ptr<VirtualSocket> dummy_socket(
CreateSocket(AF_INET, SOCK_DGRAM));
dummy_socket->SetLocalAddress(remote_addr);
if (!CanInteractWith(socket, dummy_socket.get())) {
RTC_LOG(LS_VERBOSE) << "Incompatible address families: "
<< socket->GetLocalAddress().ToString() << " and "
<< remote_addr.ToString();
return -1;
}
RTC_LOG(LS_VERBOSE) << "No one listening at " << remote_addr.ToString();
return static_cast<int>(data_size);
}
if (!CanInteractWith(socket, recipient)) {
RTC_LOG(LS_VERBOSE) << "Incompatible address families: "
<< socket->GetLocalAddress().ToString() << " and "
<< remote_addr.ToString();
return -1;
}
{
int64_t cur_time = TimeMillis();
size_t network_size = socket->PurgeNetworkPackets(cur_time);
// Determine whether we have enough bandwidth to accept this packet. To do
// this, we need to update the send queue. Once we know it's current size,
// we know whether we can fit this packet.
//
// NOTE: There are better algorithms for maintaining such a queue (such as
// "Derivative Random Drop"); however, this algorithm is a more accurate
// simulation of what a normal network would do.
{
webrtc::MutexLock lock(&mutex_);
size_t packet_size = data_size + UDP_HEADER_SIZE;
if (network_size + packet_size > network_capacity_) {
RTC_LOG(LS_VERBOSE) << "Dropping packet: network capacity exceeded";
return static_cast<int>(data_size);
}
}
AddPacketToNetwork(socket, recipient, cur_time, data, data_size,
UDP_HEADER_SIZE, false);
return static_cast<int>(data_size);
}
}
void VirtualSocketServer::SendTcp(VirtualSocket* socket) {
{
webrtc::MutexLock lock(&mutex_);
++sent_packets_;
if (sending_blocked_) {
// Eventually the socket's buffer will fill and VirtualSocket::SendTcp
// will set EWOULDBLOCK.
return;
}
}
// TCP can't send more data than will fill up the receiver's buffer.
// We track the data that is in the buffer plus data in flight using the
// recipient's recv_buffer_size_. Anything beyond that must be stored in the
// sender's buffer. We will trigger the buffered data to be sent when data
// is read from the recv_buffer.
// Lookup the local/remote pair in the connections table.
VirtualSocket* recipient =
LookupConnection(socket->GetLocalAddress(), socket->GetRemoteAddress());
if (!recipient) {
RTC_LOG(LS_VERBOSE) << "Sending data to no one.";
return;
}
int64_t cur_time = TimeMillis();
socket->PurgeNetworkPackets(cur_time);
while (true) {
size_t available = recv_buffer_capacity() - recipient->recv_buffer_size();
size_t max_data_size =
std::min<size_t>(available, TCP_MSS - TCP_HEADER_SIZE);
size_t data_size = std::min(socket->send_buffer_size(), max_data_size);
if (0 == data_size)
break;
AddPacketToNetwork(socket, recipient, cur_time, socket->send_buffer_data(),
data_size, TCP_HEADER_SIZE, true);
recipient->UpdateRecv(data_size);
socket->UpdateSend(data_size);
}
socket->MaybeSignalWriteEvent(send_buffer_capacity());
}
void VirtualSocketServer::SendTcp(const SocketAddress& addr) {
VirtualSocket* sender = LookupBinding(addr);
RTC_DCHECK(nullptr != sender);
SendTcp(sender);
}
void VirtualSocketServer::AddPacketToNetwork(VirtualSocket* sender,
VirtualSocket* recipient,
int64_t cur_time,
const char* data,
size_t data_size,
size_t header_size,
bool ordered) {
RTC_DCHECK(msg_queue_);
uint32_t send_delay = sender->AddPacket(cur_time, data_size + header_size);
// Find the delay for crossing the many virtual hops of the network.
uint32_t transit_delay = GetTransitDelay(sender);
// When the incoming packet is from a binding of the any address, translate it
// to the default route here such that the recipient will see the default
// route.
SocketAddress sender_addr = sender->GetLocalAddress();
IPAddress default_ip = GetDefaultSourceAddress(sender_addr.ipaddr().family());
if (sender_addr.IsAnyIP() && !IPIsUnspec(default_ip)) {
sender_addr.SetIP(default_ip);
}
int64_t ts = cur_time + send_delay + transit_delay;
if (ordered) {
ts = sender->UpdateOrderedDelivery(ts);
}
recipient->PostPacket(TimeDelta::Millis(ts - cur_time),
std::make_unique<Packet>(data, data_size, sender_addr));
}
uint32_t VirtualSocketServer::SendDelay(uint32_t size) {
webrtc::MutexLock lock(&mutex_);
if (bandwidth_ == 0)
return 0;
else
return 1000 * size / bandwidth_;
}
#if 0
void PrintFunction(std::vector<std::pair<double, double> >* f) {
return;
double sum = 0;
for (uint32_t i = 0; i < f->size(); ++i) {
std::cout << (*f)[i].first << '\t' << (*f)[i].second << std::endl;
sum += (*f)[i].second;
}
if (!f->empty()) {
const double mean = sum / f->size();
double sum_sq_dev = 0;
for (uint32_t i = 0; i < f->size(); ++i) {
double dev = (*f)[i].second - mean;
sum_sq_dev += dev * dev;
}
std::cout << "Mean = " << mean << " StdDev = "
<< sqrt(sum_sq_dev / f->size()) << std::endl;
}
}
#endif // <unused>
void VirtualSocketServer::UpdateDelayDistribution() {
webrtc::MutexLock lock(&mutex_);
delay_dist_ = CreateDistribution(delay_mean_, delay_stddev_, delay_samples_);
}
static double PI = 4 * atan(1.0);
static double Normal(double x, double mean, double stddev) {
double a = (x - mean) * (x - mean) / (2 * stddev * stddev);
return exp(-a) / (stddev * sqrt(2 * PI));
}
#if 0 // static unused gives a warning
static double Pareto(double x, double min, double k) {
if (x < min)
return 0;
else
return k * std::pow(min, k) / std::pow(x, k+1);
}
#endif
std::unique_ptr<VirtualSocketServer::Function>
VirtualSocketServer::CreateDistribution(uint32_t mean,
uint32_t stddev,
uint32_t samples) {
auto f = std::make_unique<Function>();
if (0 == stddev) {
f->push_back(Point(mean, 1.0));
} else {
double start = 0;
if (mean >= 4 * static_cast<double>(stddev))
start = mean - 4 * static_cast<double>(stddev);
double end = mean + 4 * static_cast<double>(stddev);
for (uint32_t i = 0; i < samples; i++) {
double x = start + (end - start) * i / (samples - 1);
double y = Normal(x, mean, stddev);
f->push_back(Point(x, y));
}
}
return Resample(Invert(Accumulate(std::move(f))), 0, 1, samples);
}
uint32_t VirtualSocketServer::GetTransitDelay(Socket* socket) {
// Use the delay based on the address if it is set.
auto iter = delay_by_ip_.find(socket->GetLocalAddress().ipaddr());
if (iter != delay_by_ip_.end()) {
return static_cast<uint32_t>(iter->second);
}
// Otherwise, use the delay from the distribution distribution.
size_t index = rand() % delay_dist_->size();
double delay = (*delay_dist_)[index].second;
// RTC_LOG_F(LS_INFO) << "random[" << index << "] = " << delay;
return static_cast<uint32_t>(delay);
}
struct FunctionDomainCmp {
bool operator()(const VirtualSocketServer::Point& p1,
const VirtualSocketServer::Point& p2) {
return p1.first < p2.first;
}
bool operator()(double v1, const VirtualSocketServer::Point& p2) {
return v1 < p2.first;
}
bool operator()(const VirtualSocketServer::Point& p1, double v2) {
return p1.first < v2;
}
};
std::unique_ptr<VirtualSocketServer::Function> VirtualSocketServer::Accumulate(
std::unique_ptr<Function> f) {
RTC_DCHECK(f->size() >= 1);
double v = 0;
for (Function::size_type i = 0; i < f->size() - 1; ++i) {
double dx = (*f)[i + 1].first - (*f)[i].first;
double avgy = ((*f)[i + 1].second + (*f)[i].second) / 2;
(*f)[i].second = v;
v = v + dx * avgy;
}
(*f)[f->size() - 1].second = v;
return f;
}
std::unique_ptr<VirtualSocketServer::Function> VirtualSocketServer::Invert(
std::unique_ptr<Function> f) {
for (Function::size_type i = 0; i < f->size(); ++i)
std::swap((*f)[i].first, (*f)[i].second);
absl::c_sort(*f, FunctionDomainCmp());
return f;
}
std::unique_ptr<VirtualSocketServer::Function> VirtualSocketServer::Resample(
std::unique_ptr<Function> f,
double x1,
double x2,
uint32_t samples) {
auto g = std::make_unique<Function>();
for (size_t i = 0; i < samples; i++) {
double x = x1 + (x2 - x1) * i / (samples - 1);
double y = Evaluate(f.get(), x);
g->push_back(Point(x, y));
}
return g;
}
double VirtualSocketServer::Evaluate(const Function* f, double x) {
Function::const_iterator iter =
absl::c_lower_bound(*f, x, FunctionDomainCmp());
if (iter == f->begin()) {
return (*f)[0].second;
} else if (iter == f->end()) {
RTC_DCHECK(f->size() >= 1);
return (*f)[f->size() - 1].second;
} else if (iter->first == x) {
return iter->second;
} else {
double x1 = (iter - 1)->first;
double y1 = (iter - 1)->second;
double x2 = iter->first;
double y2 = iter->second;
return y1 + (y2 - y1) * (x - x1) / (x2 - x1);
}
}
bool VirtualSocketServer::CanInteractWith(VirtualSocket* local,
VirtualSocket* remote) {
if (!local || !remote) {
return false;
}
IPAddress local_ip = local->GetLocalAddress().ipaddr();
IPAddress remote_ip = remote->GetLocalAddress().ipaddr();
IPAddress local_normalized = local_ip.Normalized();
IPAddress remote_normalized = remote_ip.Normalized();
// Check if the addresses are the same family after Normalization (turns
// mapped IPv6 address into IPv4 addresses).
// This will stop unmapped V6 addresses from talking to mapped V6 addresses.
if (local_normalized.family() == remote_normalized.family()) {
return true;
}
// If ip1 is IPv4 and ip2 is :: and ip2 is not IPV6_V6ONLY.
int remote_v6_only = 0;
remote->GetOption(Socket::OPT_IPV6_V6ONLY, &remote_v6_only);
if (local_ip.family() == AF_INET && !remote_v6_only && IPIsAny(remote_ip)) {
return true;
}
// Same check, backwards.
int local_v6_only = 0;
local->GetOption(Socket::OPT_IPV6_V6ONLY, &local_v6_only);
if (remote_ip.family() == AF_INET && !local_v6_only && IPIsAny(local_ip)) {
return true;
}
// Check to see if either socket was explicitly bound to IPv6-any.
// These sockets can talk with anyone.
if (local_ip.family() == AF_INET6 && local->was_any()) {
return true;
}
if (remote_ip.family() == AF_INET6 && remote->was_any()) {
return true;
}
return false;
}
IPAddress VirtualSocketServer::GetDefaultSourceAddress(int family) {
if (family == AF_INET) {
return default_source_address_v4_;
}
if (family == AF_INET6) {
return default_source_address_v6_;
}
return IPAddress();
}
void VirtualSocketServer::SetDefaultSourceAddress(const IPAddress& from_addr) {
RTC_DCHECK(!IPIsAny(from_addr));
if (from_addr.family() == AF_INET) {
default_source_address_v4_ = from_addr;
} else if (from_addr.family() == AF_INET6) {
default_source_address_v6_ = from_addr;
}
}
void VirtualSocketServer::set_bandwidth(uint32_t bandwidth) {
webrtc::MutexLock lock(&mutex_);
bandwidth_ = bandwidth;
}
void VirtualSocketServer::set_network_capacity(uint32_t capacity) {
webrtc::MutexLock lock(&mutex_);
network_capacity_ = capacity;
}
uint32_t VirtualSocketServer::send_buffer_capacity() const {
webrtc::MutexLock lock(&mutex_);
return send_buffer_capacity_;
}
void VirtualSocketServer::set_send_buffer_capacity(uint32_t capacity) {
webrtc::MutexLock lock(&mutex_);
send_buffer_capacity_ = capacity;
}
uint32_t VirtualSocketServer::recv_buffer_capacity() const {
webrtc::MutexLock lock(&mutex_);
return recv_buffer_capacity_;
}
void VirtualSocketServer::set_recv_buffer_capacity(uint32_t capacity) {
webrtc::MutexLock lock(&mutex_);
recv_buffer_capacity_ = capacity;
}
void VirtualSocketServer::set_delay_mean(uint32_t delay_mean) {
webrtc::MutexLock lock(&mutex_);
delay_mean_ = delay_mean;
}
void VirtualSocketServer::set_delay_stddev(uint32_t delay_stddev) {
webrtc::MutexLock lock(&mutex_);
delay_stddev_ = delay_stddev;
}
void VirtualSocketServer::set_delay_samples(uint32_t delay_samples) {
webrtc::MutexLock lock(&mutex_);
delay_samples_ = delay_samples;
}
void VirtualSocketServer::set_drop_probability(double drop_prob) {
RTC_DCHECK_GE(drop_prob, 0.0);
RTC_DCHECK_LE(drop_prob, 1.0);
webrtc::MutexLock lock(&mutex_);
drop_prob_ = drop_prob;
}
void VirtualSocketServer::set_max_udp_payload(size_t payload_size) {
webrtc::MutexLock lock(&mutex_);
max_udp_payload_ = payload_size;
}
uint32_t VirtualSocketServer::sent_packets() const {
webrtc::MutexLock lock(&mutex_);
return sent_packets_;
}
} // namespace rtc