mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-13 05:40:42 +01:00

This CL increases the maximum supported sample rate so that all rates up to 384000 Hz are handled. The CL also adds tests that verifies that APM works as intended for different combinations of number of channels and sample rates. Bug: webrtc:10882 Change-Id: I98738e33ac21413ae00fec10bb43b8796ae2078c Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/150532 Commit-Queue: Per Åhgren <peah@webrtc.org> Reviewed-by: Sam Zackrisson <saza@webrtc.org> Cr-Commit-Position: refs/heads/master@{#29014}
376 lines
14 KiB
C++
376 lines
14 KiB
C++
/*
|
|
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/audio_processing/audio_buffer.h"
|
|
|
|
#include <string.h>
|
|
|
|
#include <cstdint>
|
|
|
|
#include "common_audio/channel_buffer.h"
|
|
#include "common_audio/include/audio_util.h"
|
|
#include "common_audio/resampler/push_sinc_resampler.h"
|
|
#include "modules/audio_processing/splitting_filter.h"
|
|
#include "rtc_base/checks.h"
|
|
|
|
namespace webrtc {
|
|
namespace {
|
|
|
|
constexpr size_t kSamplesPer32kHzChannel = 320;
|
|
constexpr size_t kSamplesPer48kHzChannel = 480;
|
|
constexpr size_t kMaxSamplesPerChannel = AudioBuffer::kMaxSampleRate / 100;
|
|
|
|
size_t NumBandsFromFramesPerChannel(size_t num_frames) {
|
|
if (num_frames == kSamplesPer32kHzChannel) {
|
|
return 2;
|
|
}
|
|
if (num_frames == kSamplesPer48kHzChannel) {
|
|
return 3;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
AudioBuffer::AudioBuffer(size_t input_rate,
|
|
size_t input_num_channels,
|
|
size_t buffer_rate,
|
|
size_t buffer_num_channels,
|
|
size_t output_rate,
|
|
size_t output_num_channels)
|
|
: AudioBuffer(static_cast<int>(input_rate) / 100,
|
|
input_num_channels,
|
|
static_cast<int>(buffer_rate) / 100,
|
|
buffer_num_channels,
|
|
static_cast<int>(output_rate) / 100) {}
|
|
|
|
AudioBuffer::AudioBuffer(size_t input_num_frames,
|
|
size_t input_num_channels,
|
|
size_t buffer_num_frames,
|
|
size_t buffer_num_channels,
|
|
size_t output_num_frames)
|
|
: input_num_frames_(input_num_frames),
|
|
input_num_channels_(input_num_channels),
|
|
buffer_num_frames_(buffer_num_frames),
|
|
buffer_num_channels_(buffer_num_channels),
|
|
output_num_frames_(output_num_frames),
|
|
output_num_channels_(0),
|
|
num_channels_(buffer_num_channels),
|
|
num_bands_(NumBandsFromFramesPerChannel(buffer_num_frames_)),
|
|
num_split_frames_(rtc::CheckedDivExact(buffer_num_frames_, num_bands_)),
|
|
data_(new ChannelBuffer<float>(buffer_num_frames_, buffer_num_channels_)),
|
|
output_buffer_(
|
|
new ChannelBuffer<float>(output_num_frames_, num_channels_)) {
|
|
RTC_DCHECK_GT(input_num_frames_, 0);
|
|
RTC_DCHECK_GT(buffer_num_frames_, 0);
|
|
RTC_DCHECK_GT(output_num_frames_, 0);
|
|
RTC_DCHECK_GT(input_num_channels_, 0);
|
|
RTC_DCHECK_GT(buffer_num_channels_, 0);
|
|
RTC_DCHECK_LE(buffer_num_channels_, input_num_channels_);
|
|
|
|
const bool input_resampling_needed = input_num_frames_ != buffer_num_frames_;
|
|
const bool output_resampling_needed =
|
|
output_num_frames_ != buffer_num_frames_;
|
|
if (input_resampling_needed) {
|
|
for (size_t i = 0; i < buffer_num_channels_; ++i) {
|
|
input_resamplers_.push_back(std::unique_ptr<PushSincResampler>(
|
|
new PushSincResampler(input_num_frames_, buffer_num_frames_)));
|
|
}
|
|
}
|
|
|
|
if (output_resampling_needed) {
|
|
for (size_t i = 0; i < buffer_num_channels_; ++i) {
|
|
output_resamplers_.push_back(std::unique_ptr<PushSincResampler>(
|
|
new PushSincResampler(buffer_num_frames_, output_num_frames_)));
|
|
}
|
|
}
|
|
|
|
if (num_bands_ > 1) {
|
|
split_data_.reset(new ChannelBuffer<float>(
|
|
buffer_num_frames_, buffer_num_channels_, num_bands_));
|
|
splitting_filter_.reset(new SplittingFilter(
|
|
buffer_num_channels_, num_bands_, buffer_num_frames_));
|
|
}
|
|
}
|
|
|
|
AudioBuffer::~AudioBuffer() {}
|
|
|
|
void AudioBuffer::set_downmixing_to_specific_channel(size_t channel) {
|
|
downmix_by_averaging_ = false;
|
|
RTC_DCHECK_GT(input_num_channels_, channel);
|
|
channel_for_downmixing_ = std::min(channel, input_num_channels_ - 1);
|
|
}
|
|
|
|
void AudioBuffer::set_downmixing_by_averaging() {
|
|
downmix_by_averaging_ = true;
|
|
}
|
|
|
|
void AudioBuffer::CopyFrom(const float* const* data,
|
|
const StreamConfig& stream_config) {
|
|
RTC_DCHECK_EQ(stream_config.num_frames(), input_num_frames_);
|
|
RTC_DCHECK_EQ(stream_config.num_channels(), input_num_channels_);
|
|
RestoreNumChannels();
|
|
const bool downmix_needed = input_num_channels_ > 1 && num_channels_ == 1;
|
|
|
|
const bool resampling_needed = input_num_frames_ != buffer_num_frames_;
|
|
|
|
if (downmix_needed) {
|
|
RTC_DCHECK_GE(kMaxSamplesPerChannel, input_num_frames_);
|
|
|
|
std::array<float, kMaxSamplesPerChannel> downmix;
|
|
if (downmix_by_averaging_) {
|
|
const float kOneByNumChannels = 1.f / input_num_channels_;
|
|
for (size_t i = 0; i < input_num_frames_; ++i) {
|
|
float value = data[0][i];
|
|
for (size_t j = 1; j < input_num_channels_; ++j) {
|
|
value += data[j][i];
|
|
}
|
|
downmix[i] = value * kOneByNumChannels;
|
|
}
|
|
}
|
|
const float* downmixed_data =
|
|
downmix_by_averaging_ ? downmix.data() : data[channel_for_downmixing_];
|
|
|
|
if (resampling_needed) {
|
|
input_resamplers_[0]->Resample(downmixed_data, input_num_frames_,
|
|
data_->channels()[0], buffer_num_frames_);
|
|
}
|
|
const float* data_to_convert =
|
|
resampling_needed ? data_->channels()[0] : downmixed_data;
|
|
FloatToFloatS16(data_to_convert, buffer_num_frames_, data_->channels()[0]);
|
|
} else {
|
|
if (resampling_needed) {
|
|
for (size_t i = 0; i < num_channels_; ++i) {
|
|
input_resamplers_[i]->Resample(data[i], input_num_frames_,
|
|
data_->channels()[i],
|
|
buffer_num_frames_);
|
|
FloatToFloatS16(data_->channels()[i], buffer_num_frames_,
|
|
data_->channels()[i]);
|
|
}
|
|
} else {
|
|
for (size_t i = 0; i < num_channels_; ++i) {
|
|
FloatToFloatS16(data[i], buffer_num_frames_, data_->channels()[i]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void AudioBuffer::CopyTo(const StreamConfig& stream_config,
|
|
float* const* data) {
|
|
RTC_DCHECK_EQ(stream_config.num_frames(), output_num_frames_);
|
|
|
|
const bool resampling_needed = output_num_frames_ != buffer_num_frames_;
|
|
if (resampling_needed) {
|
|
for (size_t i = 0; i < num_channels_; ++i) {
|
|
FloatS16ToFloat(data_->channels()[i], buffer_num_frames_,
|
|
data_->channels()[i]);
|
|
output_resamplers_[i]->Resample(data_->channels()[i], buffer_num_frames_,
|
|
data[i], output_num_frames_);
|
|
}
|
|
} else {
|
|
for (size_t i = 0; i < num_channels_; ++i) {
|
|
FloatS16ToFloat(data_->channels()[i], buffer_num_frames_, data[i]);
|
|
}
|
|
}
|
|
|
|
for (size_t i = num_channels_; i < stream_config.num_channels(); ++i) {
|
|
memcpy(data[i], data[0], output_num_frames_ * sizeof(**data));
|
|
}
|
|
}
|
|
|
|
void AudioBuffer::RestoreNumChannels() {
|
|
num_channels_ = buffer_num_channels_;
|
|
data_->set_num_channels(buffer_num_channels_);
|
|
if (split_data_.get()) {
|
|
split_data_->set_num_channels(buffer_num_channels_);
|
|
}
|
|
}
|
|
|
|
void AudioBuffer::set_num_channels(size_t num_channels) {
|
|
RTC_DCHECK_GE(buffer_num_channels_, num_channels);
|
|
num_channels_ = num_channels;
|
|
data_->set_num_channels(num_channels);
|
|
if (split_data_.get()) {
|
|
split_data_->set_num_channels(num_channels);
|
|
}
|
|
}
|
|
|
|
// The resampler is only for supporting 48kHz to 16kHz in the reverse stream.
|
|
void AudioBuffer::CopyFrom(const AudioFrame* frame) {
|
|
RTC_DCHECK_EQ(frame->num_channels_, input_num_channels_);
|
|
RTC_DCHECK_EQ(frame->samples_per_channel_, input_num_frames_);
|
|
RestoreNumChannels();
|
|
|
|
const bool resampling_required = input_num_frames_ != buffer_num_frames_;
|
|
|
|
const int16_t* interleaved = frame->data();
|
|
if (num_channels_ == 1) {
|
|
if (input_num_channels_ == 1) {
|
|
if (resampling_required) {
|
|
std::array<float, kMaxSamplesPerChannel> float_buffer;
|
|
S16ToFloatS16(interleaved, input_num_frames_, float_buffer.data());
|
|
input_resamplers_[0]->Resample(float_buffer.data(), input_num_frames_,
|
|
data_->channels()[0],
|
|
buffer_num_frames_);
|
|
} else {
|
|
S16ToFloatS16(interleaved, input_num_frames_, data_->channels()[0]);
|
|
}
|
|
} else {
|
|
std::array<float, kMaxSamplesPerChannel> float_buffer;
|
|
float* downmixed_data =
|
|
resampling_required ? float_buffer.data() : data_->channels()[0];
|
|
if (downmix_by_averaging_) {
|
|
for (size_t j = 0, k = 0; j < input_num_frames_; ++j) {
|
|
int32_t sum = 0;
|
|
for (size_t i = 0; i < input_num_channels_; ++i, ++k) {
|
|
sum += interleaved[k];
|
|
}
|
|
downmixed_data[j] = sum / static_cast<int16_t>(input_num_channels_);
|
|
}
|
|
} else {
|
|
for (size_t j = 0, k = channel_for_downmixing_; j < input_num_frames_;
|
|
++j, k += input_num_channels_) {
|
|
downmixed_data[j] = interleaved[k];
|
|
}
|
|
}
|
|
|
|
if (resampling_required) {
|
|
input_resamplers_[0]->Resample(downmixed_data, input_num_frames_,
|
|
data_->channels()[0],
|
|
buffer_num_frames_);
|
|
}
|
|
}
|
|
} else {
|
|
auto deinterleave_channel = [](size_t channel, size_t num_channels,
|
|
size_t samples_per_channel, const int16_t* x,
|
|
float* y) {
|
|
for (size_t j = 0, k = channel; j < samples_per_channel;
|
|
++j, k += num_channels) {
|
|
y[j] = x[k];
|
|
}
|
|
};
|
|
|
|
if (resampling_required) {
|
|
std::array<float, kMaxSamplesPerChannel> float_buffer;
|
|
for (size_t i = 0; i < num_channels_; ++i) {
|
|
deinterleave_channel(i, num_channels_, input_num_frames_, interleaved,
|
|
float_buffer.data());
|
|
input_resamplers_[i]->Resample(float_buffer.data(), input_num_frames_,
|
|
data_->channels()[i],
|
|
buffer_num_frames_);
|
|
}
|
|
} else {
|
|
for (size_t i = 0; i < num_channels_; ++i) {
|
|
deinterleave_channel(i, num_channels_, input_num_frames_, interleaved,
|
|
data_->channels()[i]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void AudioBuffer::CopyTo(AudioFrame* frame) const {
|
|
RTC_DCHECK(frame->num_channels_ == num_channels_ || num_channels_ == 1);
|
|
RTC_DCHECK_EQ(frame->samples_per_channel_, output_num_frames_);
|
|
|
|
const bool resampling_required = buffer_num_frames_ != output_num_frames_;
|
|
|
|
int16_t* interleaved = frame->mutable_data();
|
|
if (num_channels_ == 1) {
|
|
std::array<float, kMaxSamplesPerChannel> float_buffer;
|
|
|
|
if (resampling_required) {
|
|
output_resamplers_[0]->Resample(data_->channels()[0], buffer_num_frames_,
|
|
float_buffer.data(), output_num_frames_);
|
|
}
|
|
const float* deinterleaved =
|
|
resampling_required ? float_buffer.data() : data_->channels()[0];
|
|
|
|
if (frame->num_channels_ == 1) {
|
|
for (size_t j = 0; j < output_num_frames_; ++j) {
|
|
interleaved[j] = FloatS16ToS16(deinterleaved[j]);
|
|
}
|
|
} else {
|
|
for (size_t i = 0, k = 0; i < output_num_frames_; ++i) {
|
|
float tmp = FloatS16ToS16(deinterleaved[i]);
|
|
for (size_t j = 0; j < frame->num_channels_; ++j, ++k) {
|
|
interleaved[k] = tmp;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
auto interleave_channel = [](size_t channel, size_t num_channels,
|
|
size_t samples_per_channel, const float* x,
|
|
int16_t* y) {
|
|
for (size_t k = 0, j = channel; k < samples_per_channel;
|
|
++k, j += num_channels) {
|
|
y[j] = FloatS16ToS16(x[k]);
|
|
}
|
|
};
|
|
|
|
if (resampling_required) {
|
|
for (size_t i = 0; i < num_channels_; ++i) {
|
|
std::array<float, kMaxSamplesPerChannel> float_buffer;
|
|
output_resamplers_[i]->Resample(data_->channels()[i],
|
|
buffer_num_frames_, float_buffer.data(),
|
|
output_num_frames_);
|
|
interleave_channel(i, frame->num_channels_, output_num_frames_,
|
|
float_buffer.data(), interleaved);
|
|
}
|
|
} else {
|
|
for (size_t i = 0; i < num_channels_; ++i) {
|
|
interleave_channel(i, frame->num_channels_, output_num_frames_,
|
|
data_->channels()[i], interleaved);
|
|
}
|
|
}
|
|
|
|
for (size_t i = num_channels_; i < frame->num_channels_; ++i) {
|
|
for (size_t j = 0, k = i, n = num_channels_; j < output_num_frames_;
|
|
++j, k += frame->num_channels_, n += frame->num_channels_) {
|
|
interleaved[k] = interleaved[n];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void AudioBuffer::SplitIntoFrequencyBands() {
|
|
splitting_filter_->Analysis(data_.get(), split_data_.get());
|
|
}
|
|
|
|
void AudioBuffer::MergeFrequencyBands() {
|
|
splitting_filter_->Synthesis(split_data_.get(), data_.get());
|
|
}
|
|
|
|
void AudioBuffer::ExportSplitChannelData(size_t channel,
|
|
int16_t* const* split_band_data) {
|
|
for (size_t k = 0; k < num_bands(); ++k) {
|
|
const float* band_data = split_bands(channel)[k];
|
|
|
|
RTC_DCHECK(split_band_data[k]);
|
|
RTC_DCHECK(band_data);
|
|
for (size_t i = 0; i < num_frames_per_band(); ++i) {
|
|
split_band_data[k][i] = FloatS16ToS16(band_data[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
void AudioBuffer::ImportSplitChannelData(
|
|
size_t channel,
|
|
const int16_t* const* split_band_data) {
|
|
for (size_t k = 0; k < num_bands(); ++k) {
|
|
float* band_data = split_bands(channel)[k];
|
|
RTC_DCHECK(split_band_data[k]);
|
|
RTC_DCHECK(band_data);
|
|
for (size_t i = 0; i < num_frames_per_band(); ++i) {
|
|
band_data[i] = split_band_data[k][i];
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace webrtc
|