mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-13 05:40:42 +01:00

When the `WebRTC-Audio-GainController2` field trial is used, the initial APM configuration is adjusted depending on its original values and the field trial parameters. This CL fixes two cases when the code crashes: 1. when, in the initial APM config, AGC1 is enabled, AGC2 is disabled and TS is enabled 2. when the initial APM sample rate is different from the capture one and the VAD APM sub-module is not re-initialized This CL also improves the unit tests coverage and it has been tested offline to check that the VAD sub-module is created only when expected and that AGC2 uses its internal VAD when expected. The tests ran on a few Wav files with different sample rates and one AEC dump and on 16 different APM and field trial configurations. Bug: chromium:1407341, b/265112132 Change-Id: I7cc267ea81cb02be92c1f37f273b7ae93b6e4634 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/290988 Commit-Queue: Alessio Bazzica <alessiob@webrtc.org> Reviewed-by: Olga Sharonova <olka@webrtc.org> Cr-Commit-Position: refs/heads/main@{#39118}
2648 lines
101 KiB
C++
2648 lines
101 KiB
C++
/*
|
|
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/audio_processing/audio_processing_impl.h"
|
|
|
|
#include <algorithm>
|
|
#include <cstdint>
|
|
#include <cstring>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <type_traits>
|
|
#include <utility>
|
|
|
|
#include "absl/strings/match.h"
|
|
#include "absl/strings/string_view.h"
|
|
#include "absl/types/optional.h"
|
|
#include "api/array_view.h"
|
|
#include "api/audio/audio_frame.h"
|
|
#include "common_audio/audio_converter.h"
|
|
#include "common_audio/include/audio_util.h"
|
|
#include "modules/audio_processing/aec_dump/aec_dump_factory.h"
|
|
#include "modules/audio_processing/audio_buffer.h"
|
|
#include "modules/audio_processing/include/audio_frame_view.h"
|
|
#include "modules/audio_processing/logging/apm_data_dumper.h"
|
|
#include "modules/audio_processing/optionally_built_submodule_creators.h"
|
|
#include "rtc_base/checks.h"
|
|
#include "rtc_base/experiments/field_trial_parser.h"
|
|
#include "rtc_base/logging.h"
|
|
#include "rtc_base/time_utils.h"
|
|
#include "rtc_base/trace_event.h"
|
|
#include "system_wrappers/include/denormal_disabler.h"
|
|
#include "system_wrappers/include/field_trial.h"
|
|
#include "system_wrappers/include/metrics.h"
|
|
|
|
#define RETURN_ON_ERR(expr) \
|
|
do { \
|
|
int err = (expr); \
|
|
if (err != kNoError) { \
|
|
return err; \
|
|
} \
|
|
} while (0)
|
|
|
|
namespace webrtc {
|
|
|
|
namespace {
|
|
|
|
bool SampleRateSupportsMultiBand(int sample_rate_hz) {
|
|
return sample_rate_hz == AudioProcessing::kSampleRate32kHz ||
|
|
sample_rate_hz == AudioProcessing::kSampleRate48kHz;
|
|
}
|
|
|
|
// Checks whether the high-pass filter should be done in the full-band.
|
|
bool EnforceSplitBandHpf() {
|
|
return field_trial::IsEnabled("WebRTC-FullBandHpfKillSwitch");
|
|
}
|
|
|
|
// Checks whether AEC3 should be allowed to decide what the default
|
|
// configuration should be based on the render and capture channel configuration
|
|
// at hand.
|
|
bool UseSetupSpecificDefaultAec3Congfig() {
|
|
return !field_trial::IsEnabled(
|
|
"WebRTC-Aec3SetupSpecificDefaultConfigDefaultsKillSwitch");
|
|
}
|
|
|
|
// Identify the native processing rate that best handles a sample rate.
|
|
int SuitableProcessRate(int minimum_rate,
|
|
int max_splitting_rate,
|
|
bool band_splitting_required) {
|
|
const int uppermost_native_rate =
|
|
band_splitting_required ? max_splitting_rate : 48000;
|
|
for (auto rate : {16000, 32000, 48000}) {
|
|
if (rate >= uppermost_native_rate) {
|
|
return uppermost_native_rate;
|
|
}
|
|
if (rate >= minimum_rate) {
|
|
return rate;
|
|
}
|
|
}
|
|
RTC_DCHECK_NOTREACHED();
|
|
return uppermost_native_rate;
|
|
}
|
|
|
|
GainControl::Mode Agc1ConfigModeToInterfaceMode(
|
|
AudioProcessing::Config::GainController1::Mode mode) {
|
|
using Agc1Config = AudioProcessing::Config::GainController1;
|
|
switch (mode) {
|
|
case Agc1Config::kAdaptiveAnalog:
|
|
return GainControl::kAdaptiveAnalog;
|
|
case Agc1Config::kAdaptiveDigital:
|
|
return GainControl::kAdaptiveDigital;
|
|
case Agc1Config::kFixedDigital:
|
|
return GainControl::kFixedDigital;
|
|
}
|
|
RTC_CHECK_NOTREACHED();
|
|
}
|
|
|
|
bool MinimizeProcessingForUnusedOutput() {
|
|
return !field_trial::IsEnabled("WebRTC-MutedStateKillSwitch");
|
|
}
|
|
|
|
// Maximum lengths that frame of samples being passed from the render side to
|
|
// the capture side can have (does not apply to AEC3).
|
|
static const size_t kMaxAllowedValuesOfSamplesPerBand = 160;
|
|
static const size_t kMaxAllowedValuesOfSamplesPerFrame = 480;
|
|
|
|
// Maximum number of frames to buffer in the render queue.
|
|
// TODO(peah): Decrease this once we properly handle hugely unbalanced
|
|
// reverse and forward call numbers.
|
|
static const size_t kMaxNumFramesToBuffer = 100;
|
|
|
|
void PackRenderAudioBufferForEchoDetector(const AudioBuffer& audio,
|
|
std::vector<float>& packed_buffer) {
|
|
packed_buffer.clear();
|
|
packed_buffer.insert(packed_buffer.end(), audio.channels_const()[0],
|
|
audio.channels_const()[0] + audio.num_frames());
|
|
}
|
|
|
|
// Options for gracefully handling processing errors.
|
|
enum class FormatErrorOutputOption {
|
|
kOutputExactCopyOfInput,
|
|
kOutputBroadcastCopyOfFirstInputChannel,
|
|
kOutputSilence,
|
|
kDoNothing
|
|
};
|
|
|
|
enum class AudioFormatValidity {
|
|
// Format is supported by APM.
|
|
kValidAndSupported,
|
|
// Format has a reasonable interpretation but is not supported.
|
|
kValidButUnsupportedSampleRate,
|
|
// The remaining enums values signal that the audio does not have a reasonable
|
|
// interpretation and cannot be used.
|
|
kInvalidSampleRate,
|
|
kInvalidChannelCount
|
|
};
|
|
|
|
AudioFormatValidity ValidateAudioFormat(const StreamConfig& config) {
|
|
if (config.sample_rate_hz() < 0)
|
|
return AudioFormatValidity::kInvalidSampleRate;
|
|
if (config.num_channels() == 0)
|
|
return AudioFormatValidity::kInvalidChannelCount;
|
|
|
|
// Format has a reasonable interpretation, but may still be unsupported.
|
|
if (config.sample_rate_hz() < 8000 ||
|
|
config.sample_rate_hz() > AudioBuffer::kMaxSampleRate)
|
|
return AudioFormatValidity::kValidButUnsupportedSampleRate;
|
|
|
|
// Format is fully supported.
|
|
return AudioFormatValidity::kValidAndSupported;
|
|
}
|
|
|
|
int AudioFormatValidityToErrorCode(AudioFormatValidity validity) {
|
|
switch (validity) {
|
|
case AudioFormatValidity::kValidAndSupported:
|
|
return AudioProcessing::kNoError;
|
|
case AudioFormatValidity::kValidButUnsupportedSampleRate: // fall-through
|
|
case AudioFormatValidity::kInvalidSampleRate:
|
|
return AudioProcessing::kBadSampleRateError;
|
|
case AudioFormatValidity::kInvalidChannelCount:
|
|
return AudioProcessing::kBadNumberChannelsError;
|
|
}
|
|
RTC_DCHECK(false);
|
|
}
|
|
|
|
// Returns an AudioProcessing::Error together with the best possible option for
|
|
// output audio content.
|
|
std::pair<int, FormatErrorOutputOption> ChooseErrorOutputOption(
|
|
const StreamConfig& input_config,
|
|
const StreamConfig& output_config) {
|
|
AudioFormatValidity input_validity = ValidateAudioFormat(input_config);
|
|
AudioFormatValidity output_validity = ValidateAudioFormat(output_config);
|
|
|
|
if (input_validity == AudioFormatValidity::kValidAndSupported &&
|
|
output_validity == AudioFormatValidity::kValidAndSupported &&
|
|
(output_config.num_channels() == 1 ||
|
|
output_config.num_channels() == input_config.num_channels())) {
|
|
return {AudioProcessing::kNoError, FormatErrorOutputOption::kDoNothing};
|
|
}
|
|
|
|
int error_code = AudioFormatValidityToErrorCode(input_validity);
|
|
if (error_code == AudioProcessing::kNoError) {
|
|
error_code = AudioFormatValidityToErrorCode(output_validity);
|
|
}
|
|
if (error_code == AudioProcessing::kNoError) {
|
|
// The individual formats are valid but there is some error - must be
|
|
// channel mismatch.
|
|
error_code = AudioProcessing::kBadNumberChannelsError;
|
|
}
|
|
|
|
FormatErrorOutputOption output_option;
|
|
if (output_validity != AudioFormatValidity::kValidAndSupported &&
|
|
output_validity != AudioFormatValidity::kValidButUnsupportedSampleRate) {
|
|
// The output format is uninterpretable: cannot do anything.
|
|
output_option = FormatErrorOutputOption::kDoNothing;
|
|
} else if (input_validity != AudioFormatValidity::kValidAndSupported &&
|
|
input_validity !=
|
|
AudioFormatValidity::kValidButUnsupportedSampleRate) {
|
|
// The input format is uninterpretable: cannot use it, must output silence.
|
|
output_option = FormatErrorOutputOption::kOutputSilence;
|
|
} else if (input_config.sample_rate_hz() != output_config.sample_rate_hz()) {
|
|
// Sample rates do not match: Cannot copy input into output, output silence.
|
|
// Note: If the sample rates are in a supported range, we could resample.
|
|
// However, that would significantly increase complexity of this error
|
|
// handling code.
|
|
output_option = FormatErrorOutputOption::kOutputSilence;
|
|
} else if (input_config.num_channels() != output_config.num_channels()) {
|
|
// Channel counts do not match: We cannot easily map input channels to
|
|
// output channels.
|
|
output_option =
|
|
FormatErrorOutputOption::kOutputBroadcastCopyOfFirstInputChannel;
|
|
} else {
|
|
// The formats match exactly.
|
|
RTC_DCHECK(input_config == output_config);
|
|
output_option = FormatErrorOutputOption::kOutputExactCopyOfInput;
|
|
}
|
|
return std::make_pair(error_code, output_option);
|
|
}
|
|
|
|
// Checks if the audio format is supported. If not, the output is populated in a
|
|
// best-effort manner and an APM error code is returned.
|
|
int HandleUnsupportedAudioFormats(const int16_t* const src,
|
|
const StreamConfig& input_config,
|
|
const StreamConfig& output_config,
|
|
int16_t* const dest) {
|
|
RTC_DCHECK(src);
|
|
RTC_DCHECK(dest);
|
|
|
|
auto [error_code, output_option] =
|
|
ChooseErrorOutputOption(input_config, output_config);
|
|
if (error_code == AudioProcessing::kNoError)
|
|
return AudioProcessing::kNoError;
|
|
|
|
const size_t num_output_channels = output_config.num_channels();
|
|
switch (output_option) {
|
|
case FormatErrorOutputOption::kOutputSilence:
|
|
memset(dest, 0, output_config.num_samples() * sizeof(int16_t));
|
|
break;
|
|
case FormatErrorOutputOption::kOutputBroadcastCopyOfFirstInputChannel:
|
|
for (size_t i = 0; i < output_config.num_frames(); ++i) {
|
|
int16_t sample = src[input_config.num_channels() * i];
|
|
for (size_t ch = 0; ch < num_output_channels; ++ch) {
|
|
dest[ch + num_output_channels * i] = sample;
|
|
}
|
|
}
|
|
break;
|
|
case FormatErrorOutputOption::kOutputExactCopyOfInput:
|
|
memcpy(dest, src, output_config.num_samples() * sizeof(int16_t));
|
|
break;
|
|
case FormatErrorOutputOption::kDoNothing:
|
|
break;
|
|
}
|
|
return error_code;
|
|
}
|
|
|
|
// Checks if the audio format is supported. If not, the output is populated in a
|
|
// best-effort manner and an APM error code is returned.
|
|
int HandleUnsupportedAudioFormats(const float* const* src,
|
|
const StreamConfig& input_config,
|
|
const StreamConfig& output_config,
|
|
float* const* dest) {
|
|
RTC_DCHECK(src);
|
|
RTC_DCHECK(dest);
|
|
for (size_t i = 0; i < input_config.num_channels(); ++i) {
|
|
RTC_DCHECK(src[i]);
|
|
}
|
|
for (size_t i = 0; i < output_config.num_channels(); ++i) {
|
|
RTC_DCHECK(dest[i]);
|
|
}
|
|
|
|
auto [error_code, output_option] =
|
|
ChooseErrorOutputOption(input_config, output_config);
|
|
if (error_code == AudioProcessing::kNoError)
|
|
return AudioProcessing::kNoError;
|
|
|
|
const size_t num_output_channels = output_config.num_channels();
|
|
switch (output_option) {
|
|
case FormatErrorOutputOption::kOutputSilence:
|
|
for (size_t ch = 0; ch < num_output_channels; ++ch) {
|
|
memset(dest[ch], 0, output_config.num_frames() * sizeof(float));
|
|
}
|
|
break;
|
|
case FormatErrorOutputOption::kOutputBroadcastCopyOfFirstInputChannel:
|
|
for (size_t ch = 0; ch < num_output_channels; ++ch) {
|
|
memcpy(dest[ch], src[0], output_config.num_frames() * sizeof(float));
|
|
}
|
|
break;
|
|
case FormatErrorOutputOption::kOutputExactCopyOfInput:
|
|
for (size_t ch = 0; ch < num_output_channels; ++ch) {
|
|
memcpy(dest[ch], src[ch], output_config.num_frames() * sizeof(float));
|
|
}
|
|
break;
|
|
case FormatErrorOutputOption::kDoNothing:
|
|
break;
|
|
}
|
|
return error_code;
|
|
}
|
|
|
|
using DownmixMethod = AudioProcessing::Config::Pipeline::DownmixMethod;
|
|
|
|
void SetDownmixMethod(AudioBuffer& buffer, DownmixMethod method) {
|
|
switch (method) {
|
|
case DownmixMethod::kAverageChannels:
|
|
buffer.set_downmixing_by_averaging();
|
|
break;
|
|
case DownmixMethod::kUseFirstChannel:
|
|
buffer.set_downmixing_to_specific_channel(/*channel=*/0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
constexpr int kUnspecifiedDataDumpInputVolume = -100;
|
|
|
|
} // namespace
|
|
|
|
// Throughout webrtc, it's assumed that success is represented by zero.
|
|
static_assert(AudioProcessing::kNoError == 0, "kNoError must be zero");
|
|
|
|
absl::optional<AudioProcessingImpl::GainController2ExperimentParams>
|
|
AudioProcessingImpl::GetGainController2ExperimentParams() {
|
|
constexpr char kFieldTrialName[] = "WebRTC-Audio-GainController2";
|
|
|
|
if (!field_trial::IsEnabled(kFieldTrialName)) {
|
|
return absl::nullopt;
|
|
}
|
|
|
|
FieldTrialFlag enabled("Enabled", false);
|
|
|
|
// Whether the gain control should switch to AGC2. Enabled by default.
|
|
FieldTrialParameter<bool> switch_to_agc2("switch_to_agc2", true);
|
|
|
|
// AGC2 input volume controller configuration.
|
|
constexpr InputVolumeController::Config kDefaultInputVolumeControllerConfig;
|
|
FieldTrialConstrained<int> min_input_volume(
|
|
"min_input_volume", kDefaultInputVolumeControllerConfig.min_input_volume,
|
|
0, 255);
|
|
FieldTrialConstrained<int> clipped_level_min(
|
|
"clipped_level_min",
|
|
kDefaultInputVolumeControllerConfig.clipped_level_min, 0, 255);
|
|
FieldTrialConstrained<int> clipped_level_step(
|
|
"clipped_level_step",
|
|
kDefaultInputVolumeControllerConfig.clipped_level_step, 0, 255);
|
|
FieldTrialConstrained<double> clipped_ratio_threshold(
|
|
"clipped_ratio_threshold",
|
|
kDefaultInputVolumeControllerConfig.clipped_ratio_threshold, 0, 1);
|
|
FieldTrialConstrained<int> clipped_wait_frames(
|
|
"clipped_wait_frames",
|
|
kDefaultInputVolumeControllerConfig.clipped_wait_frames, 0,
|
|
absl::nullopt);
|
|
FieldTrialParameter<bool> enable_clipping_predictor(
|
|
"enable_clipping_predictor",
|
|
kDefaultInputVolumeControllerConfig.enable_clipping_predictor);
|
|
FieldTrialConstrained<int> target_range_max_dbfs(
|
|
"target_range_max_dbfs",
|
|
kDefaultInputVolumeControllerConfig.target_range_max_dbfs, -90, 30);
|
|
FieldTrialConstrained<int> target_range_min_dbfs(
|
|
"target_range_min_dbfs",
|
|
kDefaultInputVolumeControllerConfig.target_range_min_dbfs, -90, 30);
|
|
FieldTrialConstrained<int> update_input_volume_wait_frames(
|
|
"update_input_volume_wait_frames",
|
|
kDefaultInputVolumeControllerConfig.update_input_volume_wait_frames, 0,
|
|
absl::nullopt);
|
|
FieldTrialConstrained<double> speech_probability_threshold(
|
|
"speech_probability_threshold",
|
|
kDefaultInputVolumeControllerConfig.speech_probability_threshold, 0, 1);
|
|
FieldTrialConstrained<double> speech_ratio_threshold(
|
|
"speech_ratio_threshold",
|
|
kDefaultInputVolumeControllerConfig.speech_ratio_threshold, 0, 1);
|
|
|
|
// AGC2 adaptive digital controller configuration.
|
|
constexpr AudioProcessing::Config::GainController2::AdaptiveDigital
|
|
kDefaultAdaptiveDigitalConfig;
|
|
FieldTrialConstrained<double> headroom_db(
|
|
"headroom_db", kDefaultAdaptiveDigitalConfig.headroom_db, 0,
|
|
absl::nullopt);
|
|
FieldTrialConstrained<double> max_gain_db(
|
|
"max_gain_db", kDefaultAdaptiveDigitalConfig.max_gain_db, 0,
|
|
absl::nullopt);
|
|
FieldTrialConstrained<double> initial_gain_db(
|
|
"initial_gain_db", kDefaultAdaptiveDigitalConfig.initial_gain_db, 0,
|
|
absl::nullopt);
|
|
FieldTrialConstrained<double> max_gain_change_db_per_second(
|
|
"max_gain_change_db_per_second",
|
|
kDefaultAdaptiveDigitalConfig.max_gain_change_db_per_second, 0,
|
|
absl::nullopt);
|
|
FieldTrialConstrained<double> max_output_noise_level_dbfs(
|
|
"max_output_noise_level_dbfs",
|
|
kDefaultAdaptiveDigitalConfig.max_output_noise_level_dbfs, absl::nullopt,
|
|
0);
|
|
|
|
// Transient suppressor.
|
|
FieldTrialParameter<bool> disallow_transient_suppressor_usage(
|
|
"disallow_transient_suppressor_usage", false);
|
|
|
|
// Field-trial based override for the input volume controller and adaptive
|
|
// digital configs.
|
|
ParseFieldTrial(
|
|
{&enabled, &switch_to_agc2, &min_input_volume, &clipped_level_min,
|
|
&clipped_level_step, &clipped_ratio_threshold, &clipped_wait_frames,
|
|
&enable_clipping_predictor, &target_range_max_dbfs,
|
|
&target_range_min_dbfs, &update_input_volume_wait_frames,
|
|
&speech_probability_threshold, &speech_ratio_threshold, &headroom_db,
|
|
&max_gain_db, &initial_gain_db, &max_gain_change_db_per_second,
|
|
&max_output_noise_level_dbfs, &disallow_transient_suppressor_usage},
|
|
field_trial::FindFullName(kFieldTrialName));
|
|
// Checked already by `IsEnabled()` before parsing, therefore always true.
|
|
RTC_DCHECK(enabled);
|
|
|
|
const bool do_not_change_agc_config = !switch_to_agc2.Get();
|
|
if (do_not_change_agc_config && !disallow_transient_suppressor_usage.Get()) {
|
|
// Return an unspecifed value since, in this case, both the AGC2 and TS
|
|
// configurations won't be adjusted.
|
|
return absl::nullopt;
|
|
}
|
|
using Params = AudioProcessingImpl::GainController2ExperimentParams;
|
|
if (do_not_change_agc_config) {
|
|
// Return a value that leaves the AGC2 config unchanged and that always
|
|
// disables TS.
|
|
return Params{.agc2_config = absl::nullopt,
|
|
.disallow_transient_suppressor_usage = true};
|
|
}
|
|
// Return a value that switches all the gain control to AGC2.
|
|
return Params{
|
|
.agc2_config =
|
|
Params::Agc2Config{
|
|
.input_volume_controller =
|
|
{
|
|
.min_input_volume = min_input_volume.Get(),
|
|
.clipped_level_min = clipped_level_min.Get(),
|
|
.clipped_level_step = clipped_level_step.Get(),
|
|
.clipped_ratio_threshold =
|
|
static_cast<float>(clipped_ratio_threshold.Get()),
|
|
.clipped_wait_frames = clipped_wait_frames.Get(),
|
|
.enable_clipping_predictor =
|
|
enable_clipping_predictor.Get(),
|
|
.target_range_max_dbfs = target_range_max_dbfs.Get(),
|
|
.target_range_min_dbfs = target_range_min_dbfs.Get(),
|
|
.update_input_volume_wait_frames =
|
|
update_input_volume_wait_frames.Get(),
|
|
.speech_probability_threshold = static_cast<float>(
|
|
speech_probability_threshold.Get()),
|
|
.speech_ratio_threshold =
|
|
static_cast<float>(speech_ratio_threshold.Get()),
|
|
},
|
|
.adaptive_digital_controller =
|
|
{
|
|
.headroom_db = static_cast<float>(headroom_db.Get()),
|
|
.max_gain_db = static_cast<float>(max_gain_db.Get()),
|
|
.initial_gain_db =
|
|
static_cast<float>(initial_gain_db.Get()),
|
|
.max_gain_change_db_per_second = static_cast<float>(
|
|
max_gain_change_db_per_second.Get()),
|
|
.max_output_noise_level_dbfs =
|
|
static_cast<float>(max_output_noise_level_dbfs.Get()),
|
|
}},
|
|
.disallow_transient_suppressor_usage =
|
|
disallow_transient_suppressor_usage.Get()};
|
|
}
|
|
|
|
AudioProcessing::Config AudioProcessingImpl::AdjustConfig(
|
|
const AudioProcessing::Config& config,
|
|
const absl::optional<AudioProcessingImpl::GainController2ExperimentParams>&
|
|
experiment_params) {
|
|
if (!experiment_params.has_value() ||
|
|
(!experiment_params->agc2_config.has_value() &&
|
|
!experiment_params->disallow_transient_suppressor_usage)) {
|
|
// When the experiment parameters are unspecified or when the AGC and TS
|
|
// configuration are not overridden, return the unmodified configuration.
|
|
return config;
|
|
}
|
|
|
|
AudioProcessing::Config adjusted_config = config;
|
|
|
|
// Override the transient suppressor configuration.
|
|
if (experiment_params->disallow_transient_suppressor_usage) {
|
|
adjusted_config.transient_suppression.enabled = false;
|
|
}
|
|
|
|
// Override the auto gain control configuration if the AGC1 analog gain
|
|
// controller is active and `experiment_params->agc2_config` is specified.
|
|
const bool agc1_analog_enabled =
|
|
config.gain_controller1.enabled &&
|
|
(config.gain_controller1.mode ==
|
|
AudioProcessing::Config::GainController1::kAdaptiveAnalog ||
|
|
config.gain_controller1.analog_gain_controller.enabled);
|
|
if (agc1_analog_enabled && experiment_params->agc2_config.has_value()) {
|
|
// Check that the unadjusted AGC config meets the preconditions.
|
|
const bool hybrid_agc_config_detected =
|
|
config.gain_controller1.enabled &&
|
|
config.gain_controller1.analog_gain_controller.enabled &&
|
|
!config.gain_controller1.analog_gain_controller
|
|
.enable_digital_adaptive &&
|
|
config.gain_controller2.enabled &&
|
|
config.gain_controller2.adaptive_digital.enabled;
|
|
const bool full_agc1_config_detected =
|
|
config.gain_controller1.enabled &&
|
|
config.gain_controller1.analog_gain_controller.enabled &&
|
|
config.gain_controller1.analog_gain_controller
|
|
.enable_digital_adaptive &&
|
|
!config.gain_controller2.enabled;
|
|
const bool one_and_only_one_input_volume_controller =
|
|
hybrid_agc_config_detected != full_agc1_config_detected;
|
|
const bool agc2_input_volume_controller_enabled =
|
|
config.gain_controller2.enabled &&
|
|
config.gain_controller2.input_volume_controller.enabled;
|
|
if (!one_and_only_one_input_volume_controller ||
|
|
agc2_input_volume_controller_enabled) {
|
|
RTC_LOG(LS_ERROR) << "Cannot adjust AGC config (precondition failed)";
|
|
if (!one_and_only_one_input_volume_controller)
|
|
RTC_LOG(LS_ERROR)
|
|
<< "One and only one input volume controller must be enabled.";
|
|
if (agc2_input_volume_controller_enabled)
|
|
RTC_LOG(LS_ERROR)
|
|
<< "The AGC2 input volume controller must be disabled.";
|
|
} else {
|
|
adjusted_config.gain_controller1.enabled = false;
|
|
adjusted_config.gain_controller1.analog_gain_controller.enabled = false;
|
|
|
|
adjusted_config.gain_controller2.enabled = true;
|
|
adjusted_config.gain_controller2.input_volume_controller.enabled = true;
|
|
adjusted_config.gain_controller2.adaptive_digital =
|
|
experiment_params->agc2_config->adaptive_digital_controller;
|
|
adjusted_config.gain_controller2.adaptive_digital.enabled = true;
|
|
}
|
|
}
|
|
|
|
return adjusted_config;
|
|
}
|
|
|
|
bool AudioProcessingImpl::UseApmVadSubModule(
|
|
const AudioProcessing::Config& config,
|
|
const absl::optional<GainController2ExperimentParams>& experiment_params) {
|
|
// The VAD as an APM sub-module is needed only in one case, that is when TS
|
|
// and AGC2 are both enabled and when the AGC2 experiment is running and its
|
|
// parameters require to fully switch the gain control to AGC2.
|
|
return config.transient_suppression.enabled &&
|
|
config.gain_controller2.enabled &&
|
|
(config.gain_controller2.input_volume_controller.enabled ||
|
|
config.gain_controller2.adaptive_digital.enabled) &&
|
|
experiment_params.has_value() &&
|
|
experiment_params->agc2_config.has_value();
|
|
}
|
|
|
|
AudioProcessingImpl::SubmoduleStates::SubmoduleStates(
|
|
bool capture_post_processor_enabled,
|
|
bool render_pre_processor_enabled,
|
|
bool capture_analyzer_enabled)
|
|
: capture_post_processor_enabled_(capture_post_processor_enabled),
|
|
render_pre_processor_enabled_(render_pre_processor_enabled),
|
|
capture_analyzer_enabled_(capture_analyzer_enabled) {}
|
|
|
|
bool AudioProcessingImpl::SubmoduleStates::Update(
|
|
bool high_pass_filter_enabled,
|
|
bool mobile_echo_controller_enabled,
|
|
bool noise_suppressor_enabled,
|
|
bool adaptive_gain_controller_enabled,
|
|
bool gain_controller2_enabled,
|
|
bool voice_activity_detector_enabled,
|
|
bool gain_adjustment_enabled,
|
|
bool echo_controller_enabled,
|
|
bool transient_suppressor_enabled) {
|
|
bool changed = false;
|
|
changed |= (high_pass_filter_enabled != high_pass_filter_enabled_);
|
|
changed |=
|
|
(mobile_echo_controller_enabled != mobile_echo_controller_enabled_);
|
|
changed |= (noise_suppressor_enabled != noise_suppressor_enabled_);
|
|
changed |=
|
|
(adaptive_gain_controller_enabled != adaptive_gain_controller_enabled_);
|
|
changed |= (gain_controller2_enabled != gain_controller2_enabled_);
|
|
changed |=
|
|
(voice_activity_detector_enabled != voice_activity_detector_enabled_);
|
|
changed |= (gain_adjustment_enabled != gain_adjustment_enabled_);
|
|
changed |= (echo_controller_enabled != echo_controller_enabled_);
|
|
changed |= (transient_suppressor_enabled != transient_suppressor_enabled_);
|
|
if (changed) {
|
|
high_pass_filter_enabled_ = high_pass_filter_enabled;
|
|
mobile_echo_controller_enabled_ = mobile_echo_controller_enabled;
|
|
noise_suppressor_enabled_ = noise_suppressor_enabled;
|
|
adaptive_gain_controller_enabled_ = adaptive_gain_controller_enabled;
|
|
gain_controller2_enabled_ = gain_controller2_enabled;
|
|
voice_activity_detector_enabled_ = voice_activity_detector_enabled;
|
|
gain_adjustment_enabled_ = gain_adjustment_enabled;
|
|
echo_controller_enabled_ = echo_controller_enabled;
|
|
transient_suppressor_enabled_ = transient_suppressor_enabled;
|
|
}
|
|
|
|
changed |= first_update_;
|
|
first_update_ = false;
|
|
return changed;
|
|
}
|
|
|
|
bool AudioProcessingImpl::SubmoduleStates::CaptureMultiBandSubModulesActive()
|
|
const {
|
|
return CaptureMultiBandProcessingPresent();
|
|
}
|
|
|
|
bool AudioProcessingImpl::SubmoduleStates::CaptureMultiBandProcessingPresent()
|
|
const {
|
|
// If echo controller is present, assume it performs active processing.
|
|
return CaptureMultiBandProcessingActive(/*ec_processing_active=*/true);
|
|
}
|
|
|
|
bool AudioProcessingImpl::SubmoduleStates::CaptureMultiBandProcessingActive(
|
|
bool ec_processing_active) const {
|
|
return high_pass_filter_enabled_ || mobile_echo_controller_enabled_ ||
|
|
noise_suppressor_enabled_ || adaptive_gain_controller_enabled_ ||
|
|
(echo_controller_enabled_ && ec_processing_active);
|
|
}
|
|
|
|
bool AudioProcessingImpl::SubmoduleStates::CaptureFullBandProcessingActive()
|
|
const {
|
|
return gain_controller2_enabled_ || capture_post_processor_enabled_ ||
|
|
gain_adjustment_enabled_;
|
|
}
|
|
|
|
bool AudioProcessingImpl::SubmoduleStates::CaptureAnalyzerActive() const {
|
|
return capture_analyzer_enabled_;
|
|
}
|
|
|
|
bool AudioProcessingImpl::SubmoduleStates::RenderMultiBandSubModulesActive()
|
|
const {
|
|
return RenderMultiBandProcessingActive() || mobile_echo_controller_enabled_ ||
|
|
adaptive_gain_controller_enabled_ || echo_controller_enabled_;
|
|
}
|
|
|
|
bool AudioProcessingImpl::SubmoduleStates::RenderFullBandProcessingActive()
|
|
const {
|
|
return render_pre_processor_enabled_;
|
|
}
|
|
|
|
bool AudioProcessingImpl::SubmoduleStates::RenderMultiBandProcessingActive()
|
|
const {
|
|
return false;
|
|
}
|
|
|
|
bool AudioProcessingImpl::SubmoduleStates::HighPassFilteringRequired() const {
|
|
return high_pass_filter_enabled_ || mobile_echo_controller_enabled_ ||
|
|
noise_suppressor_enabled_;
|
|
}
|
|
|
|
AudioProcessingImpl::AudioProcessingImpl()
|
|
: AudioProcessingImpl(/*config=*/{},
|
|
/*capture_post_processor=*/nullptr,
|
|
/*render_pre_processor=*/nullptr,
|
|
/*echo_control_factory=*/nullptr,
|
|
/*echo_detector=*/nullptr,
|
|
/*capture_analyzer=*/nullptr) {}
|
|
|
|
std::atomic<int> AudioProcessingImpl::instance_count_(0);
|
|
|
|
AudioProcessingImpl::AudioProcessingImpl(
|
|
const AudioProcessing::Config& config,
|
|
std::unique_ptr<CustomProcessing> capture_post_processor,
|
|
std::unique_ptr<CustomProcessing> render_pre_processor,
|
|
std::unique_ptr<EchoControlFactory> echo_control_factory,
|
|
rtc::scoped_refptr<EchoDetector> echo_detector,
|
|
std::unique_ptr<CustomAudioAnalyzer> capture_analyzer)
|
|
: data_dumper_(new ApmDataDumper(instance_count_.fetch_add(1) + 1)),
|
|
use_setup_specific_default_aec3_config_(
|
|
UseSetupSpecificDefaultAec3Congfig()),
|
|
gain_controller2_experiment_params_(GetGainController2ExperimentParams()),
|
|
transient_suppressor_vad_mode_(TransientSuppressor::VadMode::kDefault),
|
|
capture_runtime_settings_(RuntimeSettingQueueSize()),
|
|
render_runtime_settings_(RuntimeSettingQueueSize()),
|
|
capture_runtime_settings_enqueuer_(&capture_runtime_settings_),
|
|
render_runtime_settings_enqueuer_(&render_runtime_settings_),
|
|
echo_control_factory_(std::move(echo_control_factory)),
|
|
config_(AdjustConfig(config, gain_controller2_experiment_params_)),
|
|
submodule_states_(!!capture_post_processor,
|
|
!!render_pre_processor,
|
|
!!capture_analyzer),
|
|
submodules_(std::move(capture_post_processor),
|
|
std::move(render_pre_processor),
|
|
std::move(echo_detector),
|
|
std::move(capture_analyzer)),
|
|
constants_(!field_trial::IsEnabled(
|
|
"WebRTC-ApmExperimentalMultiChannelRenderKillSwitch"),
|
|
!field_trial::IsEnabled(
|
|
"WebRTC-ApmExperimentalMultiChannelCaptureKillSwitch"),
|
|
EnforceSplitBandHpf(),
|
|
MinimizeProcessingForUnusedOutput(),
|
|
field_trial::IsEnabled("WebRTC-TransientSuppressorForcedOff")),
|
|
capture_(),
|
|
capture_nonlocked_(),
|
|
applied_input_volume_stats_reporter_(
|
|
InputVolumeStatsReporter::InputVolumeType::kApplied),
|
|
recommended_input_volume_stats_reporter_(
|
|
InputVolumeStatsReporter::InputVolumeType::kRecommended) {
|
|
RTC_LOG(LS_INFO) << "Injected APM submodules:"
|
|
"\nEcho control factory: "
|
|
<< !!echo_control_factory_
|
|
<< "\nEcho detector: " << !!submodules_.echo_detector
|
|
<< "\nCapture analyzer: " << !!submodules_.capture_analyzer
|
|
<< "\nCapture post processor: "
|
|
<< !!submodules_.capture_post_processor
|
|
<< "\nRender pre processor: "
|
|
<< !!submodules_.render_pre_processor;
|
|
if (!DenormalDisabler::IsSupported()) {
|
|
RTC_LOG(LS_INFO) << "Denormal disabler unsupported";
|
|
}
|
|
|
|
RTC_LOG(LS_INFO) << "AudioProcessing: " << config_.ToString();
|
|
|
|
// Mark Echo Controller enabled if a factory is injected.
|
|
capture_nonlocked_.echo_controller_enabled =
|
|
static_cast<bool>(echo_control_factory_);
|
|
|
|
Initialize();
|
|
}
|
|
|
|
AudioProcessingImpl::~AudioProcessingImpl() = default;
|
|
|
|
int AudioProcessingImpl::Initialize() {
|
|
// Run in a single-threaded manner during initialization.
|
|
MutexLock lock_render(&mutex_render_);
|
|
MutexLock lock_capture(&mutex_capture_);
|
|
InitializeLocked();
|
|
return kNoError;
|
|
}
|
|
|
|
int AudioProcessingImpl::Initialize(const ProcessingConfig& processing_config) {
|
|
// Run in a single-threaded manner during initialization.
|
|
MutexLock lock_render(&mutex_render_);
|
|
MutexLock lock_capture(&mutex_capture_);
|
|
InitializeLocked(processing_config);
|
|
return kNoError;
|
|
}
|
|
|
|
void AudioProcessingImpl::MaybeInitializeRender(
|
|
const StreamConfig& input_config,
|
|
const StreamConfig& output_config) {
|
|
ProcessingConfig processing_config = formats_.api_format;
|
|
processing_config.reverse_input_stream() = input_config;
|
|
processing_config.reverse_output_stream() = output_config;
|
|
|
|
if (processing_config == formats_.api_format) {
|
|
return;
|
|
}
|
|
|
|
MutexLock lock_capture(&mutex_capture_);
|
|
InitializeLocked(processing_config);
|
|
}
|
|
|
|
void AudioProcessingImpl::InitializeLocked() {
|
|
UpdateActiveSubmoduleStates();
|
|
|
|
const int render_audiobuffer_sample_rate_hz =
|
|
formats_.api_format.reverse_output_stream().num_frames() == 0
|
|
? formats_.render_processing_format.sample_rate_hz()
|
|
: formats_.api_format.reverse_output_stream().sample_rate_hz();
|
|
if (formats_.api_format.reverse_input_stream().num_channels() > 0) {
|
|
render_.render_audio.reset(new AudioBuffer(
|
|
formats_.api_format.reverse_input_stream().sample_rate_hz(),
|
|
formats_.api_format.reverse_input_stream().num_channels(),
|
|
formats_.render_processing_format.sample_rate_hz(),
|
|
formats_.render_processing_format.num_channels(),
|
|
render_audiobuffer_sample_rate_hz,
|
|
formats_.render_processing_format.num_channels()));
|
|
if (formats_.api_format.reverse_input_stream() !=
|
|
formats_.api_format.reverse_output_stream()) {
|
|
render_.render_converter = AudioConverter::Create(
|
|
formats_.api_format.reverse_input_stream().num_channels(),
|
|
formats_.api_format.reverse_input_stream().num_frames(),
|
|
formats_.api_format.reverse_output_stream().num_channels(),
|
|
formats_.api_format.reverse_output_stream().num_frames());
|
|
} else {
|
|
render_.render_converter.reset(nullptr);
|
|
}
|
|
} else {
|
|
render_.render_audio.reset(nullptr);
|
|
render_.render_converter.reset(nullptr);
|
|
}
|
|
|
|
capture_.capture_audio.reset(new AudioBuffer(
|
|
formats_.api_format.input_stream().sample_rate_hz(),
|
|
formats_.api_format.input_stream().num_channels(),
|
|
capture_nonlocked_.capture_processing_format.sample_rate_hz(),
|
|
formats_.api_format.output_stream().num_channels(),
|
|
formats_.api_format.output_stream().sample_rate_hz(),
|
|
formats_.api_format.output_stream().num_channels()));
|
|
SetDownmixMethod(*capture_.capture_audio,
|
|
config_.pipeline.capture_downmix_method);
|
|
|
|
if (capture_nonlocked_.capture_processing_format.sample_rate_hz() <
|
|
formats_.api_format.output_stream().sample_rate_hz() &&
|
|
formats_.api_format.output_stream().sample_rate_hz() == 48000) {
|
|
capture_.capture_fullband_audio.reset(
|
|
new AudioBuffer(formats_.api_format.input_stream().sample_rate_hz(),
|
|
formats_.api_format.input_stream().num_channels(),
|
|
formats_.api_format.output_stream().sample_rate_hz(),
|
|
formats_.api_format.output_stream().num_channels(),
|
|
formats_.api_format.output_stream().sample_rate_hz(),
|
|
formats_.api_format.output_stream().num_channels()));
|
|
SetDownmixMethod(*capture_.capture_fullband_audio,
|
|
config_.pipeline.capture_downmix_method);
|
|
} else {
|
|
capture_.capture_fullband_audio.reset();
|
|
}
|
|
|
|
AllocateRenderQueue();
|
|
|
|
InitializeGainController1();
|
|
InitializeTransientSuppressor();
|
|
InitializeHighPassFilter(true);
|
|
InitializeResidualEchoDetector();
|
|
InitializeEchoController();
|
|
InitializeGainController2();
|
|
InitializeVoiceActivityDetector();
|
|
InitializeNoiseSuppressor();
|
|
InitializeAnalyzer();
|
|
InitializePostProcessor();
|
|
InitializePreProcessor();
|
|
InitializeCaptureLevelsAdjuster();
|
|
|
|
if (aec_dump_) {
|
|
aec_dump_->WriteInitMessage(formats_.api_format, rtc::TimeUTCMillis());
|
|
}
|
|
}
|
|
|
|
void AudioProcessingImpl::InitializeLocked(const ProcessingConfig& config) {
|
|
UpdateActiveSubmoduleStates();
|
|
|
|
formats_.api_format = config;
|
|
|
|
// Choose maximum rate to use for the split filtering.
|
|
RTC_DCHECK(config_.pipeline.maximum_internal_processing_rate == 48000 ||
|
|
config_.pipeline.maximum_internal_processing_rate == 32000);
|
|
int max_splitting_rate = 48000;
|
|
if (config_.pipeline.maximum_internal_processing_rate == 32000) {
|
|
max_splitting_rate = config_.pipeline.maximum_internal_processing_rate;
|
|
}
|
|
|
|
int capture_processing_rate = SuitableProcessRate(
|
|
std::min(formats_.api_format.input_stream().sample_rate_hz(),
|
|
formats_.api_format.output_stream().sample_rate_hz()),
|
|
max_splitting_rate,
|
|
submodule_states_.CaptureMultiBandSubModulesActive() ||
|
|
submodule_states_.RenderMultiBandSubModulesActive());
|
|
RTC_DCHECK_NE(8000, capture_processing_rate);
|
|
|
|
capture_nonlocked_.capture_processing_format =
|
|
StreamConfig(capture_processing_rate);
|
|
|
|
int render_processing_rate;
|
|
if (!capture_nonlocked_.echo_controller_enabled) {
|
|
render_processing_rate = SuitableProcessRate(
|
|
std::min(formats_.api_format.reverse_input_stream().sample_rate_hz(),
|
|
formats_.api_format.reverse_output_stream().sample_rate_hz()),
|
|
max_splitting_rate,
|
|
submodule_states_.CaptureMultiBandSubModulesActive() ||
|
|
submodule_states_.RenderMultiBandSubModulesActive());
|
|
} else {
|
|
render_processing_rate = capture_processing_rate;
|
|
}
|
|
|
|
// If the forward sample rate is 8 kHz, the render stream is also processed
|
|
// at this rate.
|
|
if (capture_nonlocked_.capture_processing_format.sample_rate_hz() ==
|
|
kSampleRate8kHz) {
|
|
render_processing_rate = kSampleRate8kHz;
|
|
} else {
|
|
render_processing_rate =
|
|
std::max(render_processing_rate, static_cast<int>(kSampleRate16kHz));
|
|
}
|
|
|
|
RTC_DCHECK_NE(8000, render_processing_rate);
|
|
|
|
if (submodule_states_.RenderMultiBandSubModulesActive()) {
|
|
// By default, downmix the render stream to mono for analysis. This has been
|
|
// demonstrated to work well for AEC in most practical scenarios.
|
|
const bool multi_channel_render = config_.pipeline.multi_channel_render &&
|
|
constants_.multi_channel_render_support;
|
|
int render_processing_num_channels =
|
|
multi_channel_render
|
|
? formats_.api_format.reverse_input_stream().num_channels()
|
|
: 1;
|
|
formats_.render_processing_format =
|
|
StreamConfig(render_processing_rate, render_processing_num_channels);
|
|
} else {
|
|
formats_.render_processing_format = StreamConfig(
|
|
formats_.api_format.reverse_input_stream().sample_rate_hz(),
|
|
formats_.api_format.reverse_input_stream().num_channels());
|
|
}
|
|
|
|
if (capture_nonlocked_.capture_processing_format.sample_rate_hz() ==
|
|
kSampleRate32kHz ||
|
|
capture_nonlocked_.capture_processing_format.sample_rate_hz() ==
|
|
kSampleRate48kHz) {
|
|
capture_nonlocked_.split_rate = kSampleRate16kHz;
|
|
} else {
|
|
capture_nonlocked_.split_rate =
|
|
capture_nonlocked_.capture_processing_format.sample_rate_hz();
|
|
}
|
|
|
|
InitializeLocked();
|
|
}
|
|
|
|
void AudioProcessingImpl::ApplyConfig(const AudioProcessing::Config& config) {
|
|
// Run in a single-threaded manner when applying the settings.
|
|
MutexLock lock_render(&mutex_render_);
|
|
MutexLock lock_capture(&mutex_capture_);
|
|
|
|
const auto adjusted_config =
|
|
AdjustConfig(config, gain_controller2_experiment_params_);
|
|
RTC_LOG(LS_INFO) << "AudioProcessing::ApplyConfig: "
|
|
<< adjusted_config.ToString();
|
|
|
|
const bool pipeline_config_changed =
|
|
config_.pipeline.multi_channel_render !=
|
|
adjusted_config.pipeline.multi_channel_render ||
|
|
config_.pipeline.multi_channel_capture !=
|
|
adjusted_config.pipeline.multi_channel_capture ||
|
|
config_.pipeline.maximum_internal_processing_rate !=
|
|
adjusted_config.pipeline.maximum_internal_processing_rate ||
|
|
config_.pipeline.capture_downmix_method !=
|
|
adjusted_config.pipeline.capture_downmix_method;
|
|
|
|
const bool aec_config_changed =
|
|
config_.echo_canceller.enabled !=
|
|
adjusted_config.echo_canceller.enabled ||
|
|
config_.echo_canceller.mobile_mode !=
|
|
adjusted_config.echo_canceller.mobile_mode;
|
|
|
|
const bool agc1_config_changed =
|
|
config_.gain_controller1 != adjusted_config.gain_controller1;
|
|
|
|
const bool agc2_config_changed =
|
|
config_.gain_controller2 != adjusted_config.gain_controller2;
|
|
|
|
const bool ns_config_changed =
|
|
config_.noise_suppression.enabled !=
|
|
adjusted_config.noise_suppression.enabled ||
|
|
config_.noise_suppression.level !=
|
|
adjusted_config.noise_suppression.level;
|
|
|
|
const bool ts_config_changed = config_.transient_suppression.enabled !=
|
|
adjusted_config.transient_suppression.enabled;
|
|
|
|
const bool pre_amplifier_config_changed =
|
|
config_.pre_amplifier.enabled != adjusted_config.pre_amplifier.enabled ||
|
|
config_.pre_amplifier.fixed_gain_factor !=
|
|
adjusted_config.pre_amplifier.fixed_gain_factor;
|
|
|
|
const bool gain_adjustment_config_changed =
|
|
config_.capture_level_adjustment !=
|
|
adjusted_config.capture_level_adjustment;
|
|
|
|
config_ = adjusted_config;
|
|
|
|
if (aec_config_changed) {
|
|
InitializeEchoController();
|
|
}
|
|
|
|
if (ns_config_changed) {
|
|
InitializeNoiseSuppressor();
|
|
}
|
|
|
|
if (ts_config_changed) {
|
|
InitializeTransientSuppressor();
|
|
}
|
|
|
|
InitializeHighPassFilter(false);
|
|
|
|
if (agc1_config_changed) {
|
|
InitializeGainController1();
|
|
}
|
|
|
|
const bool config_ok = GainController2::Validate(config_.gain_controller2);
|
|
if (!config_ok) {
|
|
RTC_LOG(LS_ERROR)
|
|
<< "Invalid Gain Controller 2 config; using the default config.";
|
|
config_.gain_controller2 = AudioProcessing::Config::GainController2();
|
|
}
|
|
|
|
if (agc2_config_changed || ts_config_changed) {
|
|
// AGC2 also depends on TS because of the possible dependency on the APM VAD
|
|
// sub-module.
|
|
InitializeGainController2();
|
|
InitializeVoiceActivityDetector();
|
|
}
|
|
|
|
if (pre_amplifier_config_changed || gain_adjustment_config_changed) {
|
|
InitializeCaptureLevelsAdjuster();
|
|
}
|
|
|
|
// Reinitialization must happen after all submodule configuration to avoid
|
|
// additional reinitializations on the next capture / render processing call.
|
|
if (pipeline_config_changed) {
|
|
InitializeLocked(formats_.api_format);
|
|
}
|
|
}
|
|
|
|
void AudioProcessingImpl::OverrideSubmoduleCreationForTesting(
|
|
const ApmSubmoduleCreationOverrides& overrides) {
|
|
MutexLock lock(&mutex_capture_);
|
|
submodule_creation_overrides_ = overrides;
|
|
}
|
|
|
|
int AudioProcessingImpl::proc_sample_rate_hz() const {
|
|
// Used as callback from submodules, hence locking is not allowed.
|
|
return capture_nonlocked_.capture_processing_format.sample_rate_hz();
|
|
}
|
|
|
|
int AudioProcessingImpl::proc_fullband_sample_rate_hz() const {
|
|
return capture_.capture_fullband_audio
|
|
? capture_.capture_fullband_audio->num_frames() * 100
|
|
: capture_nonlocked_.capture_processing_format.sample_rate_hz();
|
|
}
|
|
|
|
int AudioProcessingImpl::proc_split_sample_rate_hz() const {
|
|
// Used as callback from submodules, hence locking is not allowed.
|
|
return capture_nonlocked_.split_rate;
|
|
}
|
|
|
|
size_t AudioProcessingImpl::num_reverse_channels() const {
|
|
// Used as callback from submodules, hence locking is not allowed.
|
|
return formats_.render_processing_format.num_channels();
|
|
}
|
|
|
|
size_t AudioProcessingImpl::num_input_channels() const {
|
|
// Used as callback from submodules, hence locking is not allowed.
|
|
return formats_.api_format.input_stream().num_channels();
|
|
}
|
|
|
|
size_t AudioProcessingImpl::num_proc_channels() const {
|
|
// Used as callback from submodules, hence locking is not allowed.
|
|
const bool multi_channel_capture = config_.pipeline.multi_channel_capture &&
|
|
constants_.multi_channel_capture_support;
|
|
if (capture_nonlocked_.echo_controller_enabled && !multi_channel_capture) {
|
|
return 1;
|
|
}
|
|
return num_output_channels();
|
|
}
|
|
|
|
size_t AudioProcessingImpl::num_output_channels() const {
|
|
// Used as callback from submodules, hence locking is not allowed.
|
|
return formats_.api_format.output_stream().num_channels();
|
|
}
|
|
|
|
void AudioProcessingImpl::set_output_will_be_muted(bool muted) {
|
|
MutexLock lock(&mutex_capture_);
|
|
HandleCaptureOutputUsedSetting(!muted);
|
|
}
|
|
|
|
void AudioProcessingImpl::HandleCaptureOutputUsedSetting(
|
|
bool capture_output_used) {
|
|
capture_.capture_output_used =
|
|
capture_output_used || !constants_.minimize_processing_for_unused_output;
|
|
|
|
if (submodules_.agc_manager.get()) {
|
|
submodules_.agc_manager->HandleCaptureOutputUsedChange(
|
|
capture_.capture_output_used);
|
|
}
|
|
if (submodules_.echo_controller) {
|
|
submodules_.echo_controller->SetCaptureOutputUsage(
|
|
capture_.capture_output_used);
|
|
}
|
|
if (submodules_.noise_suppressor) {
|
|
submodules_.noise_suppressor->SetCaptureOutputUsage(
|
|
capture_.capture_output_used);
|
|
}
|
|
if (submodules_.gain_controller2) {
|
|
submodules_.gain_controller2->SetCaptureOutputUsed(
|
|
capture_.capture_output_used);
|
|
}
|
|
}
|
|
|
|
void AudioProcessingImpl::SetRuntimeSetting(RuntimeSetting setting) {
|
|
PostRuntimeSetting(setting);
|
|
}
|
|
|
|
bool AudioProcessingImpl::PostRuntimeSetting(RuntimeSetting setting) {
|
|
switch (setting.type()) {
|
|
case RuntimeSetting::Type::kCustomRenderProcessingRuntimeSetting:
|
|
case RuntimeSetting::Type::kPlayoutAudioDeviceChange:
|
|
return render_runtime_settings_enqueuer_.Enqueue(setting);
|
|
case RuntimeSetting::Type::kCapturePreGain:
|
|
case RuntimeSetting::Type::kCapturePostGain:
|
|
case RuntimeSetting::Type::kCaptureCompressionGain:
|
|
case RuntimeSetting::Type::kCaptureFixedPostGain:
|
|
case RuntimeSetting::Type::kCaptureOutputUsed:
|
|
return capture_runtime_settings_enqueuer_.Enqueue(setting);
|
|
case RuntimeSetting::Type::kPlayoutVolumeChange: {
|
|
bool enqueueing_successful;
|
|
enqueueing_successful =
|
|
capture_runtime_settings_enqueuer_.Enqueue(setting);
|
|
enqueueing_successful =
|
|
render_runtime_settings_enqueuer_.Enqueue(setting) &&
|
|
enqueueing_successful;
|
|
return enqueueing_successful;
|
|
}
|
|
case RuntimeSetting::Type::kNotSpecified:
|
|
RTC_DCHECK_NOTREACHED();
|
|
return true;
|
|
}
|
|
// The language allows the enum to have a non-enumerator
|
|
// value. Check that this doesn't happen.
|
|
RTC_DCHECK_NOTREACHED();
|
|
return true;
|
|
}
|
|
|
|
AudioProcessingImpl::RuntimeSettingEnqueuer::RuntimeSettingEnqueuer(
|
|
SwapQueue<RuntimeSetting>* runtime_settings)
|
|
: runtime_settings_(*runtime_settings) {
|
|
RTC_DCHECK(runtime_settings);
|
|
}
|
|
|
|
AudioProcessingImpl::RuntimeSettingEnqueuer::~RuntimeSettingEnqueuer() =
|
|
default;
|
|
|
|
bool AudioProcessingImpl::RuntimeSettingEnqueuer::Enqueue(
|
|
RuntimeSetting setting) {
|
|
const bool successful_insert = runtime_settings_.Insert(&setting);
|
|
|
|
if (!successful_insert) {
|
|
RTC_LOG(LS_ERROR) << "Cannot enqueue a new runtime setting.";
|
|
}
|
|
return successful_insert;
|
|
}
|
|
|
|
void AudioProcessingImpl::MaybeInitializeCapture(
|
|
const StreamConfig& input_config,
|
|
const StreamConfig& output_config) {
|
|
ProcessingConfig processing_config;
|
|
bool reinitialization_required = false;
|
|
{
|
|
// Acquire the capture lock in order to access api_format. The lock is
|
|
// released immediately, as we may need to acquire the render lock as part
|
|
// of the conditional reinitialization.
|
|
MutexLock lock_capture(&mutex_capture_);
|
|
processing_config = formats_.api_format;
|
|
reinitialization_required = UpdateActiveSubmoduleStates();
|
|
}
|
|
|
|
if (processing_config.input_stream() != input_config) {
|
|
reinitialization_required = true;
|
|
}
|
|
|
|
if (processing_config.output_stream() != output_config) {
|
|
reinitialization_required = true;
|
|
}
|
|
|
|
if (reinitialization_required) {
|
|
MutexLock lock_render(&mutex_render_);
|
|
MutexLock lock_capture(&mutex_capture_);
|
|
// Reread the API format since the render format may have changed.
|
|
processing_config = formats_.api_format;
|
|
processing_config.input_stream() = input_config;
|
|
processing_config.output_stream() = output_config;
|
|
InitializeLocked(processing_config);
|
|
}
|
|
}
|
|
|
|
int AudioProcessingImpl::ProcessStream(const float* const* src,
|
|
const StreamConfig& input_config,
|
|
const StreamConfig& output_config,
|
|
float* const* dest) {
|
|
TRACE_EVENT0("webrtc", "AudioProcessing::ProcessStream_StreamConfig");
|
|
DenormalDisabler denormal_disabler;
|
|
RETURN_ON_ERR(
|
|
HandleUnsupportedAudioFormats(src, input_config, output_config, dest));
|
|
MaybeInitializeCapture(input_config, output_config);
|
|
|
|
MutexLock lock_capture(&mutex_capture_);
|
|
|
|
if (aec_dump_) {
|
|
RecordUnprocessedCaptureStream(src);
|
|
}
|
|
|
|
capture_.capture_audio->CopyFrom(src, formats_.api_format.input_stream());
|
|
if (capture_.capture_fullband_audio) {
|
|
capture_.capture_fullband_audio->CopyFrom(
|
|
src, formats_.api_format.input_stream());
|
|
}
|
|
RETURN_ON_ERR(ProcessCaptureStreamLocked());
|
|
if (capture_.capture_fullband_audio) {
|
|
capture_.capture_fullband_audio->CopyTo(formats_.api_format.output_stream(),
|
|
dest);
|
|
} else {
|
|
capture_.capture_audio->CopyTo(formats_.api_format.output_stream(), dest);
|
|
}
|
|
|
|
if (aec_dump_) {
|
|
RecordProcessedCaptureStream(dest);
|
|
}
|
|
return kNoError;
|
|
}
|
|
|
|
void AudioProcessingImpl::HandleCaptureRuntimeSettings() {
|
|
RuntimeSetting setting;
|
|
int num_settings_processed = 0;
|
|
while (capture_runtime_settings_.Remove(&setting)) {
|
|
if (aec_dump_) {
|
|
aec_dump_->WriteRuntimeSetting(setting);
|
|
}
|
|
switch (setting.type()) {
|
|
case RuntimeSetting::Type::kCapturePreGain:
|
|
if (config_.pre_amplifier.enabled ||
|
|
config_.capture_level_adjustment.enabled) {
|
|
float value;
|
|
setting.GetFloat(&value);
|
|
// If the pre-amplifier is used, apply the new gain to the
|
|
// pre-amplifier regardless if the capture level adjustment is
|
|
// activated. This approach allows both functionalities to coexist
|
|
// until they have been properly merged.
|
|
if (config_.pre_amplifier.enabled) {
|
|
config_.pre_amplifier.fixed_gain_factor = value;
|
|
} else {
|
|
config_.capture_level_adjustment.pre_gain_factor = value;
|
|
}
|
|
|
|
// Use both the pre-amplifier and the capture level adjustment gains
|
|
// as pre-gains.
|
|
float gain = 1.f;
|
|
if (config_.pre_amplifier.enabled) {
|
|
gain *= config_.pre_amplifier.fixed_gain_factor;
|
|
}
|
|
if (config_.capture_level_adjustment.enabled) {
|
|
gain *= config_.capture_level_adjustment.pre_gain_factor;
|
|
}
|
|
|
|
submodules_.capture_levels_adjuster->SetPreGain(gain);
|
|
}
|
|
// TODO(bugs.chromium.org/9138): Log setting handling by Aec Dump.
|
|
break;
|
|
case RuntimeSetting::Type::kCapturePostGain:
|
|
if (config_.capture_level_adjustment.enabled) {
|
|
float value;
|
|
setting.GetFloat(&value);
|
|
config_.capture_level_adjustment.post_gain_factor = value;
|
|
submodules_.capture_levels_adjuster->SetPostGain(
|
|
config_.capture_level_adjustment.post_gain_factor);
|
|
}
|
|
// TODO(bugs.chromium.org/9138): Log setting handling by Aec Dump.
|
|
break;
|
|
case RuntimeSetting::Type::kCaptureCompressionGain: {
|
|
if (!submodules_.agc_manager &&
|
|
!(submodules_.gain_controller2 &&
|
|
config_.gain_controller2.input_volume_controller.enabled)) {
|
|
float value;
|
|
setting.GetFloat(&value);
|
|
int int_value = static_cast<int>(value + .5f);
|
|
config_.gain_controller1.compression_gain_db = int_value;
|
|
if (submodules_.gain_control) {
|
|
int error =
|
|
submodules_.gain_control->set_compression_gain_db(int_value);
|
|
RTC_DCHECK_EQ(kNoError, error);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case RuntimeSetting::Type::kCaptureFixedPostGain: {
|
|
if (submodules_.gain_controller2) {
|
|
float value;
|
|
setting.GetFloat(&value);
|
|
config_.gain_controller2.fixed_digital.gain_db = value;
|
|
submodules_.gain_controller2->SetFixedGainDb(value);
|
|
}
|
|
break;
|
|
}
|
|
case RuntimeSetting::Type::kPlayoutVolumeChange: {
|
|
int value;
|
|
setting.GetInt(&value);
|
|
capture_.playout_volume = value;
|
|
break;
|
|
}
|
|
case RuntimeSetting::Type::kPlayoutAudioDeviceChange:
|
|
RTC_DCHECK_NOTREACHED();
|
|
break;
|
|
case RuntimeSetting::Type::kCustomRenderProcessingRuntimeSetting:
|
|
RTC_DCHECK_NOTREACHED();
|
|
break;
|
|
case RuntimeSetting::Type::kNotSpecified:
|
|
RTC_DCHECK_NOTREACHED();
|
|
break;
|
|
case RuntimeSetting::Type::kCaptureOutputUsed:
|
|
bool value;
|
|
setting.GetBool(&value);
|
|
HandleCaptureOutputUsedSetting(value);
|
|
break;
|
|
}
|
|
++num_settings_processed;
|
|
}
|
|
|
|
if (num_settings_processed >= RuntimeSettingQueueSize()) {
|
|
// Handle overrun of the runtime settings queue, which likely will has
|
|
// caused settings to be discarded.
|
|
HandleOverrunInCaptureRuntimeSettingsQueue();
|
|
}
|
|
}
|
|
|
|
void AudioProcessingImpl::HandleOverrunInCaptureRuntimeSettingsQueue() {
|
|
// Fall back to a safe state for the case when a setting for capture output
|
|
// usage setting has been missed.
|
|
HandleCaptureOutputUsedSetting(/*capture_output_used=*/true);
|
|
}
|
|
|
|
void AudioProcessingImpl::HandleRenderRuntimeSettings() {
|
|
RuntimeSetting setting;
|
|
while (render_runtime_settings_.Remove(&setting)) {
|
|
if (aec_dump_) {
|
|
aec_dump_->WriteRuntimeSetting(setting);
|
|
}
|
|
switch (setting.type()) {
|
|
case RuntimeSetting::Type::kPlayoutAudioDeviceChange: // fall-through
|
|
case RuntimeSetting::Type::kPlayoutVolumeChange: // fall-through
|
|
case RuntimeSetting::Type::kCustomRenderProcessingRuntimeSetting:
|
|
if (submodules_.render_pre_processor) {
|
|
submodules_.render_pre_processor->SetRuntimeSetting(setting);
|
|
}
|
|
break;
|
|
case RuntimeSetting::Type::kCapturePreGain: // fall-through
|
|
case RuntimeSetting::Type::kCapturePostGain: // fall-through
|
|
case RuntimeSetting::Type::kCaptureCompressionGain: // fall-through
|
|
case RuntimeSetting::Type::kCaptureFixedPostGain: // fall-through
|
|
case RuntimeSetting::Type::kCaptureOutputUsed: // fall-through
|
|
case RuntimeSetting::Type::kNotSpecified:
|
|
RTC_DCHECK_NOTREACHED();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void AudioProcessingImpl::QueueBandedRenderAudio(AudioBuffer* audio) {
|
|
RTC_DCHECK_GE(160, audio->num_frames_per_band());
|
|
|
|
if (submodules_.echo_control_mobile) {
|
|
EchoControlMobileImpl::PackRenderAudioBuffer(audio, num_output_channels(),
|
|
num_reverse_channels(),
|
|
&aecm_render_queue_buffer_);
|
|
RTC_DCHECK(aecm_render_signal_queue_);
|
|
// Insert the samples into the queue.
|
|
if (!aecm_render_signal_queue_->Insert(&aecm_render_queue_buffer_)) {
|
|
// The data queue is full and needs to be emptied.
|
|
EmptyQueuedRenderAudio();
|
|
|
|
// Retry the insert (should always work).
|
|
bool result =
|
|
aecm_render_signal_queue_->Insert(&aecm_render_queue_buffer_);
|
|
RTC_DCHECK(result);
|
|
}
|
|
}
|
|
|
|
if (!submodules_.agc_manager && submodules_.gain_control) {
|
|
GainControlImpl::PackRenderAudioBuffer(*audio, &agc_render_queue_buffer_);
|
|
// Insert the samples into the queue.
|
|
if (!agc_render_signal_queue_->Insert(&agc_render_queue_buffer_)) {
|
|
// The data queue is full and needs to be emptied.
|
|
EmptyQueuedRenderAudio();
|
|
|
|
// Retry the insert (should always work).
|
|
bool result = agc_render_signal_queue_->Insert(&agc_render_queue_buffer_);
|
|
RTC_DCHECK(result);
|
|
}
|
|
}
|
|
}
|
|
|
|
void AudioProcessingImpl::QueueNonbandedRenderAudio(AudioBuffer* audio) {
|
|
if (submodules_.echo_detector) {
|
|
PackRenderAudioBufferForEchoDetector(*audio, red_render_queue_buffer_);
|
|
RTC_DCHECK(red_render_signal_queue_);
|
|
// Insert the samples into the queue.
|
|
if (!red_render_signal_queue_->Insert(&red_render_queue_buffer_)) {
|
|
// The data queue is full and needs to be emptied.
|
|
EmptyQueuedRenderAudio();
|
|
|
|
// Retry the insert (should always work).
|
|
bool result = red_render_signal_queue_->Insert(&red_render_queue_buffer_);
|
|
RTC_DCHECK(result);
|
|
}
|
|
}
|
|
}
|
|
|
|
void AudioProcessingImpl::AllocateRenderQueue() {
|
|
const size_t new_agc_render_queue_element_max_size =
|
|
std::max(static_cast<size_t>(1), kMaxAllowedValuesOfSamplesPerBand);
|
|
|
|
const size_t new_red_render_queue_element_max_size =
|
|
std::max(static_cast<size_t>(1), kMaxAllowedValuesOfSamplesPerFrame);
|
|
|
|
// Reallocate the queues if the queue item sizes are too small to fit the
|
|
// data to put in the queues.
|
|
|
|
if (agc_render_queue_element_max_size_ <
|
|
new_agc_render_queue_element_max_size) {
|
|
agc_render_queue_element_max_size_ = new_agc_render_queue_element_max_size;
|
|
|
|
std::vector<int16_t> template_queue_element(
|
|
agc_render_queue_element_max_size_);
|
|
|
|
agc_render_signal_queue_.reset(
|
|
new SwapQueue<std::vector<int16_t>, RenderQueueItemVerifier<int16_t>>(
|
|
kMaxNumFramesToBuffer, template_queue_element,
|
|
RenderQueueItemVerifier<int16_t>(
|
|
agc_render_queue_element_max_size_)));
|
|
|
|
agc_render_queue_buffer_.resize(agc_render_queue_element_max_size_);
|
|
agc_capture_queue_buffer_.resize(agc_render_queue_element_max_size_);
|
|
} else {
|
|
agc_render_signal_queue_->Clear();
|
|
}
|
|
|
|
if (submodules_.echo_detector) {
|
|
if (red_render_queue_element_max_size_ <
|
|
new_red_render_queue_element_max_size) {
|
|
red_render_queue_element_max_size_ =
|
|
new_red_render_queue_element_max_size;
|
|
|
|
std::vector<float> template_queue_element(
|
|
red_render_queue_element_max_size_);
|
|
|
|
red_render_signal_queue_.reset(
|
|
new SwapQueue<std::vector<float>, RenderQueueItemVerifier<float>>(
|
|
kMaxNumFramesToBuffer, template_queue_element,
|
|
RenderQueueItemVerifier<float>(
|
|
red_render_queue_element_max_size_)));
|
|
|
|
red_render_queue_buffer_.resize(red_render_queue_element_max_size_);
|
|
red_capture_queue_buffer_.resize(red_render_queue_element_max_size_);
|
|
} else {
|
|
red_render_signal_queue_->Clear();
|
|
}
|
|
}
|
|
}
|
|
|
|
void AudioProcessingImpl::EmptyQueuedRenderAudio() {
|
|
MutexLock lock_capture(&mutex_capture_);
|
|
EmptyQueuedRenderAudioLocked();
|
|
}
|
|
|
|
void AudioProcessingImpl::EmptyQueuedRenderAudioLocked() {
|
|
if (submodules_.echo_control_mobile) {
|
|
RTC_DCHECK(aecm_render_signal_queue_);
|
|
while (aecm_render_signal_queue_->Remove(&aecm_capture_queue_buffer_)) {
|
|
submodules_.echo_control_mobile->ProcessRenderAudio(
|
|
aecm_capture_queue_buffer_);
|
|
}
|
|
}
|
|
|
|
if (submodules_.gain_control) {
|
|
while (agc_render_signal_queue_->Remove(&agc_capture_queue_buffer_)) {
|
|
submodules_.gain_control->ProcessRenderAudio(agc_capture_queue_buffer_);
|
|
}
|
|
}
|
|
|
|
if (submodules_.echo_detector) {
|
|
while (red_render_signal_queue_->Remove(&red_capture_queue_buffer_)) {
|
|
submodules_.echo_detector->AnalyzeRenderAudio(red_capture_queue_buffer_);
|
|
}
|
|
}
|
|
}
|
|
|
|
int AudioProcessingImpl::ProcessStream(const int16_t* const src,
|
|
const StreamConfig& input_config,
|
|
const StreamConfig& output_config,
|
|
int16_t* const dest) {
|
|
TRACE_EVENT0("webrtc", "AudioProcessing::ProcessStream_AudioFrame");
|
|
|
|
RETURN_ON_ERR(
|
|
HandleUnsupportedAudioFormats(src, input_config, output_config, dest));
|
|
MaybeInitializeCapture(input_config, output_config);
|
|
|
|
MutexLock lock_capture(&mutex_capture_);
|
|
DenormalDisabler denormal_disabler;
|
|
|
|
if (aec_dump_) {
|
|
RecordUnprocessedCaptureStream(src, input_config);
|
|
}
|
|
|
|
capture_.capture_audio->CopyFrom(src, input_config);
|
|
if (capture_.capture_fullband_audio) {
|
|
capture_.capture_fullband_audio->CopyFrom(src, input_config);
|
|
}
|
|
RETURN_ON_ERR(ProcessCaptureStreamLocked());
|
|
if (submodule_states_.CaptureMultiBandProcessingPresent() ||
|
|
submodule_states_.CaptureFullBandProcessingActive()) {
|
|
if (capture_.capture_fullband_audio) {
|
|
capture_.capture_fullband_audio->CopyTo(output_config, dest);
|
|
} else {
|
|
capture_.capture_audio->CopyTo(output_config, dest);
|
|
}
|
|
}
|
|
|
|
if (aec_dump_) {
|
|
RecordProcessedCaptureStream(dest, output_config);
|
|
}
|
|
return kNoError;
|
|
}
|
|
|
|
int AudioProcessingImpl::ProcessCaptureStreamLocked() {
|
|
EmptyQueuedRenderAudioLocked();
|
|
HandleCaptureRuntimeSettings();
|
|
DenormalDisabler denormal_disabler;
|
|
|
|
// Ensure that not both the AEC and AECM are active at the same time.
|
|
// TODO(peah): Simplify once the public API Enable functions for these
|
|
// are moved to APM.
|
|
RTC_DCHECK_LE(
|
|
!!submodules_.echo_controller + !!submodules_.echo_control_mobile, 1);
|
|
|
|
data_dumper_->DumpRaw(
|
|
"applied_input_volume",
|
|
capture_.applied_input_volume.value_or(kUnspecifiedDataDumpInputVolume));
|
|
|
|
AudioBuffer* capture_buffer = capture_.capture_audio.get(); // For brevity.
|
|
AudioBuffer* linear_aec_buffer = capture_.linear_aec_output.get();
|
|
|
|
if (submodules_.high_pass_filter &&
|
|
config_.high_pass_filter.apply_in_full_band &&
|
|
!constants_.enforce_split_band_hpf) {
|
|
submodules_.high_pass_filter->Process(capture_buffer,
|
|
/*use_split_band_data=*/false);
|
|
}
|
|
|
|
if (submodules_.capture_levels_adjuster) {
|
|
if (config_.capture_level_adjustment.analog_mic_gain_emulation.enabled) {
|
|
// When the input volume is emulated, retrieve the volume applied to the
|
|
// input audio and notify that to APM so that the volume is passed to the
|
|
// active AGC.
|
|
set_stream_analog_level_locked(
|
|
submodules_.capture_levels_adjuster->GetAnalogMicGainLevel());
|
|
}
|
|
submodules_.capture_levels_adjuster->ApplyPreLevelAdjustment(
|
|
*capture_buffer);
|
|
}
|
|
|
|
capture_input_rms_.Analyze(rtc::ArrayView<const float>(
|
|
capture_buffer->channels_const()[0],
|
|
capture_nonlocked_.capture_processing_format.num_frames()));
|
|
const bool log_rms = ++capture_rms_interval_counter_ >= 1000;
|
|
if (log_rms) {
|
|
capture_rms_interval_counter_ = 0;
|
|
RmsLevel::Levels levels = capture_input_rms_.AverageAndPeak();
|
|
RTC_HISTOGRAM_COUNTS_LINEAR("WebRTC.Audio.ApmCaptureInputLevelAverageRms",
|
|
levels.average, 1, RmsLevel::kMinLevelDb, 64);
|
|
RTC_HISTOGRAM_COUNTS_LINEAR("WebRTC.Audio.ApmCaptureInputLevelPeakRms",
|
|
levels.peak, 1, RmsLevel::kMinLevelDb, 64);
|
|
}
|
|
|
|
if (capture_.applied_input_volume.has_value()) {
|
|
applied_input_volume_stats_reporter_.UpdateStatistics(
|
|
*capture_.applied_input_volume);
|
|
}
|
|
|
|
if (submodules_.echo_controller) {
|
|
// Determine if the echo path gain has changed by checking all the gains
|
|
// applied before AEC.
|
|
capture_.echo_path_gain_change = capture_.applied_input_volume_changed;
|
|
|
|
// Detect and flag any change in the capture level adjustment pre-gain.
|
|
if (submodules_.capture_levels_adjuster) {
|
|
float pre_adjustment_gain =
|
|
submodules_.capture_levels_adjuster->GetPreAdjustmentGain();
|
|
capture_.echo_path_gain_change =
|
|
capture_.echo_path_gain_change ||
|
|
(capture_.prev_pre_adjustment_gain != pre_adjustment_gain &&
|
|
capture_.prev_pre_adjustment_gain >= 0.0f);
|
|
capture_.prev_pre_adjustment_gain = pre_adjustment_gain;
|
|
}
|
|
|
|
// Detect volume change.
|
|
capture_.echo_path_gain_change =
|
|
capture_.echo_path_gain_change ||
|
|
(capture_.prev_playout_volume != capture_.playout_volume &&
|
|
capture_.prev_playout_volume >= 0);
|
|
capture_.prev_playout_volume = capture_.playout_volume;
|
|
|
|
submodules_.echo_controller->AnalyzeCapture(capture_buffer);
|
|
}
|
|
|
|
if (submodules_.agc_manager) {
|
|
submodules_.agc_manager->AnalyzePreProcess(*capture_buffer);
|
|
}
|
|
|
|
if (submodules_.gain_controller2 &&
|
|
config_.gain_controller2.input_volume_controller.enabled) {
|
|
// Expect the volume to be available if the input controller is enabled.
|
|
RTC_DCHECK(capture_.applied_input_volume.has_value());
|
|
if (capture_.applied_input_volume.has_value()) {
|
|
submodules_.gain_controller2->Analyze(*capture_.applied_input_volume,
|
|
*capture_buffer);
|
|
}
|
|
}
|
|
|
|
if (submodule_states_.CaptureMultiBandSubModulesActive() &&
|
|
SampleRateSupportsMultiBand(
|
|
capture_nonlocked_.capture_processing_format.sample_rate_hz())) {
|
|
capture_buffer->SplitIntoFrequencyBands();
|
|
}
|
|
|
|
const bool multi_channel_capture = config_.pipeline.multi_channel_capture &&
|
|
constants_.multi_channel_capture_support;
|
|
if (submodules_.echo_controller && !multi_channel_capture) {
|
|
// Force down-mixing of the number of channels after the detection of
|
|
// capture signal saturation.
|
|
// TODO(peah): Look into ensuring that this kind of tampering with the
|
|
// AudioBuffer functionality should not be needed.
|
|
capture_buffer->set_num_channels(1);
|
|
}
|
|
|
|
if (submodules_.high_pass_filter &&
|
|
(!config_.high_pass_filter.apply_in_full_band ||
|
|
constants_.enforce_split_band_hpf)) {
|
|
submodules_.high_pass_filter->Process(capture_buffer,
|
|
/*use_split_band_data=*/true);
|
|
}
|
|
|
|
if (submodules_.gain_control) {
|
|
RETURN_ON_ERR(
|
|
submodules_.gain_control->AnalyzeCaptureAudio(*capture_buffer));
|
|
}
|
|
|
|
if ((!config_.noise_suppression.analyze_linear_aec_output_when_available ||
|
|
!linear_aec_buffer || submodules_.echo_control_mobile) &&
|
|
submodules_.noise_suppressor) {
|
|
submodules_.noise_suppressor->Analyze(*capture_buffer);
|
|
}
|
|
|
|
if (submodules_.echo_control_mobile) {
|
|
// Ensure that the stream delay was set before the call to the
|
|
// AECM ProcessCaptureAudio function.
|
|
if (!capture_.was_stream_delay_set) {
|
|
return AudioProcessing::kStreamParameterNotSetError;
|
|
}
|
|
|
|
if (submodules_.noise_suppressor) {
|
|
submodules_.noise_suppressor->Process(capture_buffer);
|
|
}
|
|
|
|
RETURN_ON_ERR(submodules_.echo_control_mobile->ProcessCaptureAudio(
|
|
capture_buffer, stream_delay_ms()));
|
|
} else {
|
|
if (submodules_.echo_controller) {
|
|
data_dumper_->DumpRaw("stream_delay", stream_delay_ms());
|
|
|
|
if (capture_.was_stream_delay_set) {
|
|
submodules_.echo_controller->SetAudioBufferDelay(stream_delay_ms());
|
|
}
|
|
|
|
submodules_.echo_controller->ProcessCapture(
|
|
capture_buffer, linear_aec_buffer, capture_.echo_path_gain_change);
|
|
}
|
|
|
|
if (config_.noise_suppression.analyze_linear_aec_output_when_available &&
|
|
linear_aec_buffer && submodules_.noise_suppressor) {
|
|
submodules_.noise_suppressor->Analyze(*linear_aec_buffer);
|
|
}
|
|
|
|
if (submodules_.noise_suppressor) {
|
|
submodules_.noise_suppressor->Process(capture_buffer);
|
|
}
|
|
}
|
|
|
|
if (submodules_.agc_manager) {
|
|
submodules_.agc_manager->Process(*capture_buffer);
|
|
|
|
absl::optional<int> new_digital_gain =
|
|
submodules_.agc_manager->GetDigitalComressionGain();
|
|
if (new_digital_gain && submodules_.gain_control) {
|
|
submodules_.gain_control->set_compression_gain_db(*new_digital_gain);
|
|
}
|
|
}
|
|
|
|
if (submodules_.gain_control) {
|
|
// TODO(peah): Add reporting from AEC3 whether there is echo.
|
|
RETURN_ON_ERR(submodules_.gain_control->ProcessCaptureAudio(
|
|
capture_buffer, /*stream_has_echo*/ false));
|
|
}
|
|
|
|
if (submodule_states_.CaptureMultiBandProcessingPresent() &&
|
|
SampleRateSupportsMultiBand(
|
|
capture_nonlocked_.capture_processing_format.sample_rate_hz())) {
|
|
capture_buffer->MergeFrequencyBands();
|
|
}
|
|
|
|
if (capture_.capture_output_used) {
|
|
if (capture_.capture_fullband_audio) {
|
|
const auto& ec = submodules_.echo_controller;
|
|
bool ec_active = ec ? ec->ActiveProcessing() : false;
|
|
// Only update the fullband buffer if the multiband processing has changed
|
|
// the signal. Keep the original signal otherwise.
|
|
if (submodule_states_.CaptureMultiBandProcessingActive(ec_active)) {
|
|
capture_buffer->CopyTo(capture_.capture_fullband_audio.get());
|
|
}
|
|
capture_buffer = capture_.capture_fullband_audio.get();
|
|
}
|
|
|
|
if (submodules_.echo_detector) {
|
|
submodules_.echo_detector->AnalyzeCaptureAudio(
|
|
rtc::ArrayView<const float>(capture_buffer->channels()[0],
|
|
capture_buffer->num_frames()));
|
|
}
|
|
|
|
absl::optional<float> voice_probability;
|
|
if (!!submodules_.voice_activity_detector) {
|
|
voice_probability = submodules_.voice_activity_detector->Analyze(
|
|
AudioFrameView<const float>(capture_buffer->channels(),
|
|
capture_buffer->num_channels(),
|
|
capture_buffer->num_frames()));
|
|
}
|
|
|
|
if (submodules_.transient_suppressor) {
|
|
float transient_suppressor_voice_probability = 1.0f;
|
|
switch (transient_suppressor_vad_mode_) {
|
|
case TransientSuppressor::VadMode::kDefault:
|
|
if (submodules_.agc_manager) {
|
|
transient_suppressor_voice_probability =
|
|
submodules_.agc_manager->voice_probability();
|
|
}
|
|
break;
|
|
case TransientSuppressor::VadMode::kRnnVad:
|
|
RTC_DCHECK(voice_probability.has_value());
|
|
transient_suppressor_voice_probability = *voice_probability;
|
|
break;
|
|
case TransientSuppressor::VadMode::kNoVad:
|
|
// The transient suppressor will ignore `voice_probability`.
|
|
break;
|
|
}
|
|
float delayed_voice_probability =
|
|
submodules_.transient_suppressor->Suppress(
|
|
capture_buffer->channels()[0], capture_buffer->num_frames(),
|
|
capture_buffer->num_channels(),
|
|
capture_buffer->split_bands_const(0)[kBand0To8kHz],
|
|
capture_buffer->num_frames_per_band(),
|
|
/*reference_data=*/nullptr, /*reference_length=*/0,
|
|
transient_suppressor_voice_probability, capture_.key_pressed);
|
|
if (voice_probability.has_value()) {
|
|
*voice_probability = delayed_voice_probability;
|
|
}
|
|
}
|
|
|
|
// Experimental APM sub-module that analyzes `capture_buffer`.
|
|
if (submodules_.capture_analyzer) {
|
|
submodules_.capture_analyzer->Analyze(capture_buffer);
|
|
}
|
|
|
|
if (submodules_.gain_controller2) {
|
|
// TODO(bugs.webrtc.org/7494): Let AGC2 detect applied input volume
|
|
// changes.
|
|
submodules_.gain_controller2->Process(
|
|
voice_probability, capture_.applied_input_volume_changed,
|
|
capture_buffer);
|
|
}
|
|
|
|
if (submodules_.capture_post_processor) {
|
|
submodules_.capture_post_processor->Process(capture_buffer);
|
|
}
|
|
|
|
capture_output_rms_.Analyze(rtc::ArrayView<const float>(
|
|
capture_buffer->channels_const()[0],
|
|
capture_nonlocked_.capture_processing_format.num_frames()));
|
|
if (log_rms) {
|
|
RmsLevel::Levels levels = capture_output_rms_.AverageAndPeak();
|
|
RTC_HISTOGRAM_COUNTS_LINEAR(
|
|
"WebRTC.Audio.ApmCaptureOutputLevelAverageRms", levels.average, 1,
|
|
RmsLevel::kMinLevelDb, 64);
|
|
RTC_HISTOGRAM_COUNTS_LINEAR("WebRTC.Audio.ApmCaptureOutputLevelPeakRms",
|
|
levels.peak, 1, RmsLevel::kMinLevelDb, 64);
|
|
}
|
|
|
|
// Compute echo-detector stats.
|
|
if (submodules_.echo_detector) {
|
|
auto ed_metrics = submodules_.echo_detector->GetMetrics();
|
|
capture_.stats.residual_echo_likelihood = ed_metrics.echo_likelihood;
|
|
capture_.stats.residual_echo_likelihood_recent_max =
|
|
ed_metrics.echo_likelihood_recent_max;
|
|
}
|
|
}
|
|
|
|
// Compute echo-controller stats.
|
|
if (submodules_.echo_controller) {
|
|
auto ec_metrics = submodules_.echo_controller->GetMetrics();
|
|
capture_.stats.echo_return_loss = ec_metrics.echo_return_loss;
|
|
capture_.stats.echo_return_loss_enhancement =
|
|
ec_metrics.echo_return_loss_enhancement;
|
|
capture_.stats.delay_ms = ec_metrics.delay_ms;
|
|
}
|
|
|
|
// Pass stats for reporting.
|
|
stats_reporter_.UpdateStatistics(capture_.stats);
|
|
|
|
UpdateRecommendedInputVolumeLocked();
|
|
if (capture_.recommended_input_volume.has_value()) {
|
|
recommended_input_volume_stats_reporter_.UpdateStatistics(
|
|
*capture_.recommended_input_volume);
|
|
}
|
|
|
|
if (submodules_.capture_levels_adjuster) {
|
|
submodules_.capture_levels_adjuster->ApplyPostLevelAdjustment(
|
|
*capture_buffer);
|
|
|
|
if (config_.capture_level_adjustment.analog_mic_gain_emulation.enabled) {
|
|
// If the input volume emulation is used, retrieve the recommended input
|
|
// volume and set that to emulate the input volume on the next processed
|
|
// audio frame.
|
|
RTC_DCHECK(capture_.recommended_input_volume.has_value());
|
|
submodules_.capture_levels_adjuster->SetAnalogMicGainLevel(
|
|
*capture_.recommended_input_volume);
|
|
}
|
|
}
|
|
|
|
// Temporarily set the output to zero after the stream has been unmuted
|
|
// (capture output is again used). The purpose of this is to avoid clicks and
|
|
// artefacts in the audio that results when the processing again is
|
|
// reactivated after unmuting.
|
|
if (!capture_.capture_output_used_last_frame &&
|
|
capture_.capture_output_used) {
|
|
for (size_t ch = 0; ch < capture_buffer->num_channels(); ++ch) {
|
|
rtc::ArrayView<float> channel_view(capture_buffer->channels()[ch],
|
|
capture_buffer->num_frames());
|
|
std::fill(channel_view.begin(), channel_view.end(), 0.f);
|
|
}
|
|
}
|
|
capture_.capture_output_used_last_frame = capture_.capture_output_used;
|
|
|
|
capture_.was_stream_delay_set = false;
|
|
|
|
data_dumper_->DumpRaw("recommended_input_volume",
|
|
capture_.recommended_input_volume.value_or(
|
|
kUnspecifiedDataDumpInputVolume));
|
|
|
|
return kNoError;
|
|
}
|
|
|
|
int AudioProcessingImpl::AnalyzeReverseStream(
|
|
const float* const* data,
|
|
const StreamConfig& reverse_config) {
|
|
TRACE_EVENT0("webrtc", "AudioProcessing::AnalyzeReverseStream_StreamConfig");
|
|
MutexLock lock(&mutex_render_);
|
|
DenormalDisabler denormal_disabler;
|
|
RTC_DCHECK(data);
|
|
for (size_t i = 0; i < reverse_config.num_channels(); ++i) {
|
|
RTC_DCHECK(data[i]);
|
|
}
|
|
RETURN_ON_ERR(
|
|
AudioFormatValidityToErrorCode(ValidateAudioFormat(reverse_config)));
|
|
|
|
MaybeInitializeRender(reverse_config, reverse_config);
|
|
return AnalyzeReverseStreamLocked(data, reverse_config, reverse_config);
|
|
}
|
|
|
|
int AudioProcessingImpl::ProcessReverseStream(const float* const* src,
|
|
const StreamConfig& input_config,
|
|
const StreamConfig& output_config,
|
|
float* const* dest) {
|
|
TRACE_EVENT0("webrtc", "AudioProcessing::ProcessReverseStream_StreamConfig");
|
|
MutexLock lock(&mutex_render_);
|
|
DenormalDisabler denormal_disabler;
|
|
RETURN_ON_ERR(
|
|
HandleUnsupportedAudioFormats(src, input_config, output_config, dest));
|
|
|
|
MaybeInitializeRender(input_config, output_config);
|
|
|
|
RETURN_ON_ERR(AnalyzeReverseStreamLocked(src, input_config, output_config));
|
|
|
|
if (submodule_states_.RenderMultiBandProcessingActive() ||
|
|
submodule_states_.RenderFullBandProcessingActive()) {
|
|
render_.render_audio->CopyTo(formats_.api_format.reverse_output_stream(),
|
|
dest);
|
|
} else if (formats_.api_format.reverse_input_stream() !=
|
|
formats_.api_format.reverse_output_stream()) {
|
|
render_.render_converter->Convert(src, input_config.num_samples(), dest,
|
|
output_config.num_samples());
|
|
} else {
|
|
CopyAudioIfNeeded(src, input_config.num_frames(),
|
|
input_config.num_channels(), dest);
|
|
}
|
|
|
|
return kNoError;
|
|
}
|
|
|
|
int AudioProcessingImpl::AnalyzeReverseStreamLocked(
|
|
const float* const* src,
|
|
const StreamConfig& input_config,
|
|
const StreamConfig& output_config) {
|
|
if (aec_dump_) {
|
|
const size_t channel_size =
|
|
formats_.api_format.reverse_input_stream().num_frames();
|
|
const size_t num_channels =
|
|
formats_.api_format.reverse_input_stream().num_channels();
|
|
aec_dump_->WriteRenderStreamMessage(
|
|
AudioFrameView<const float>(src, num_channels, channel_size));
|
|
}
|
|
render_.render_audio->CopyFrom(src,
|
|
formats_.api_format.reverse_input_stream());
|
|
return ProcessRenderStreamLocked();
|
|
}
|
|
|
|
int AudioProcessingImpl::ProcessReverseStream(const int16_t* const src,
|
|
const StreamConfig& input_config,
|
|
const StreamConfig& output_config,
|
|
int16_t* const dest) {
|
|
TRACE_EVENT0("webrtc", "AudioProcessing::ProcessReverseStream_AudioFrame");
|
|
|
|
MutexLock lock(&mutex_render_);
|
|
DenormalDisabler denormal_disabler;
|
|
|
|
RETURN_ON_ERR(
|
|
HandleUnsupportedAudioFormats(src, input_config, output_config, dest));
|
|
MaybeInitializeRender(input_config, output_config);
|
|
|
|
if (aec_dump_) {
|
|
aec_dump_->WriteRenderStreamMessage(src, input_config.num_frames(),
|
|
input_config.num_channels());
|
|
}
|
|
|
|
render_.render_audio->CopyFrom(src, input_config);
|
|
RETURN_ON_ERR(ProcessRenderStreamLocked());
|
|
if (submodule_states_.RenderMultiBandProcessingActive() ||
|
|
submodule_states_.RenderFullBandProcessingActive()) {
|
|
render_.render_audio->CopyTo(output_config, dest);
|
|
}
|
|
return kNoError;
|
|
}
|
|
|
|
int AudioProcessingImpl::ProcessRenderStreamLocked() {
|
|
AudioBuffer* render_buffer = render_.render_audio.get(); // For brevity.
|
|
|
|
HandleRenderRuntimeSettings();
|
|
DenormalDisabler denormal_disabler;
|
|
|
|
if (submodules_.render_pre_processor) {
|
|
submodules_.render_pre_processor->Process(render_buffer);
|
|
}
|
|
|
|
QueueNonbandedRenderAudio(render_buffer);
|
|
|
|
if (submodule_states_.RenderMultiBandSubModulesActive() &&
|
|
SampleRateSupportsMultiBand(
|
|
formats_.render_processing_format.sample_rate_hz())) {
|
|
render_buffer->SplitIntoFrequencyBands();
|
|
}
|
|
|
|
if (submodule_states_.RenderMultiBandSubModulesActive()) {
|
|
QueueBandedRenderAudio(render_buffer);
|
|
}
|
|
|
|
// TODO(peah): Perform the queuing inside QueueRenderAudiuo().
|
|
if (submodules_.echo_controller) {
|
|
submodules_.echo_controller->AnalyzeRender(render_buffer);
|
|
}
|
|
|
|
if (submodule_states_.RenderMultiBandProcessingActive() &&
|
|
SampleRateSupportsMultiBand(
|
|
formats_.render_processing_format.sample_rate_hz())) {
|
|
render_buffer->MergeFrequencyBands();
|
|
}
|
|
|
|
return kNoError;
|
|
}
|
|
|
|
int AudioProcessingImpl::set_stream_delay_ms(int delay) {
|
|
MutexLock lock(&mutex_capture_);
|
|
Error retval = kNoError;
|
|
capture_.was_stream_delay_set = true;
|
|
|
|
if (delay < 0) {
|
|
delay = 0;
|
|
retval = kBadStreamParameterWarning;
|
|
}
|
|
|
|
// TODO(ajm): the max is rather arbitrarily chosen; investigate.
|
|
if (delay > 500) {
|
|
delay = 500;
|
|
retval = kBadStreamParameterWarning;
|
|
}
|
|
|
|
capture_nonlocked_.stream_delay_ms = delay;
|
|
return retval;
|
|
}
|
|
|
|
bool AudioProcessingImpl::GetLinearAecOutput(
|
|
rtc::ArrayView<std::array<float, 160>> linear_output) const {
|
|
MutexLock lock(&mutex_capture_);
|
|
AudioBuffer* linear_aec_buffer = capture_.linear_aec_output.get();
|
|
|
|
RTC_DCHECK(linear_aec_buffer);
|
|
if (linear_aec_buffer) {
|
|
RTC_DCHECK_EQ(1, linear_aec_buffer->num_bands());
|
|
RTC_DCHECK_EQ(linear_output.size(), linear_aec_buffer->num_channels());
|
|
|
|
for (size_t ch = 0; ch < linear_aec_buffer->num_channels(); ++ch) {
|
|
RTC_DCHECK_EQ(linear_output[ch].size(), linear_aec_buffer->num_frames());
|
|
rtc::ArrayView<const float> channel_view =
|
|
rtc::ArrayView<const float>(linear_aec_buffer->channels_const()[ch],
|
|
linear_aec_buffer->num_frames());
|
|
FloatS16ToFloat(channel_view.data(), channel_view.size(),
|
|
linear_output[ch].data());
|
|
}
|
|
return true;
|
|
}
|
|
RTC_LOG(LS_ERROR) << "No linear AEC output available";
|
|
RTC_DCHECK_NOTREACHED();
|
|
return false;
|
|
}
|
|
|
|
int AudioProcessingImpl::stream_delay_ms() const {
|
|
// Used as callback from submodules, hence locking is not allowed.
|
|
return capture_nonlocked_.stream_delay_ms;
|
|
}
|
|
|
|
void AudioProcessingImpl::set_stream_key_pressed(bool key_pressed) {
|
|
MutexLock lock(&mutex_capture_);
|
|
capture_.key_pressed = key_pressed;
|
|
}
|
|
|
|
void AudioProcessingImpl::set_stream_analog_level(int level) {
|
|
MutexLock lock_capture(&mutex_capture_);
|
|
set_stream_analog_level_locked(level);
|
|
}
|
|
|
|
void AudioProcessingImpl::set_stream_analog_level_locked(int level) {
|
|
capture_.applied_input_volume_changed =
|
|
capture_.applied_input_volume.has_value() &&
|
|
*capture_.applied_input_volume != level;
|
|
capture_.applied_input_volume = level;
|
|
|
|
// Invalidate any previously recommended input volume which will be updated by
|
|
// `ProcessStream()`.
|
|
capture_.recommended_input_volume = absl::nullopt;
|
|
|
|
if (submodules_.agc_manager) {
|
|
submodules_.agc_manager->set_stream_analog_level(level);
|
|
return;
|
|
}
|
|
|
|
if (submodules_.gain_control) {
|
|
int error = submodules_.gain_control->set_stream_analog_level(level);
|
|
RTC_DCHECK_EQ(kNoError, error);
|
|
return;
|
|
}
|
|
}
|
|
|
|
int AudioProcessingImpl::recommended_stream_analog_level() const {
|
|
MutexLock lock_capture(&mutex_capture_);
|
|
if (!capture_.applied_input_volume.has_value()) {
|
|
RTC_LOG(LS_ERROR) << "set_stream_analog_level has not been called";
|
|
}
|
|
// Input volume to recommend when `set_stream_analog_level()` is not called.
|
|
constexpr int kFallBackInputVolume = 255;
|
|
// When APM has no input volume to recommend, return the latest applied input
|
|
// volume that has been observed in order to possibly produce no input volume
|
|
// change. If no applied input volume has been observed, return a fall-back
|
|
// value.
|
|
return capture_.recommended_input_volume.value_or(
|
|
capture_.applied_input_volume.value_or(kFallBackInputVolume));
|
|
}
|
|
|
|
void AudioProcessingImpl::UpdateRecommendedInputVolumeLocked() {
|
|
if (!capture_.applied_input_volume.has_value()) {
|
|
// When `set_stream_analog_level()` is not called, no input level can be
|
|
// recommended.
|
|
capture_.recommended_input_volume = absl::nullopt;
|
|
return;
|
|
}
|
|
|
|
if (submodules_.agc_manager) {
|
|
capture_.recommended_input_volume =
|
|
submodules_.agc_manager->recommended_analog_level();
|
|
return;
|
|
}
|
|
|
|
if (submodules_.gain_control) {
|
|
capture_.recommended_input_volume =
|
|
submodules_.gain_control->stream_analog_level();
|
|
return;
|
|
}
|
|
|
|
if (submodules_.gain_controller2 &&
|
|
config_.gain_controller2.input_volume_controller.enabled) {
|
|
capture_.recommended_input_volume =
|
|
submodules_.gain_controller2->recommended_input_volume();
|
|
return;
|
|
}
|
|
|
|
capture_.recommended_input_volume = capture_.applied_input_volume;
|
|
}
|
|
|
|
bool AudioProcessingImpl::CreateAndAttachAecDump(absl::string_view file_name,
|
|
int64_t max_log_size_bytes,
|
|
rtc::TaskQueue* worker_queue) {
|
|
std::unique_ptr<AecDump> aec_dump =
|
|
AecDumpFactory::Create(file_name, max_log_size_bytes, worker_queue);
|
|
if (!aec_dump) {
|
|
return false;
|
|
}
|
|
|
|
AttachAecDump(std::move(aec_dump));
|
|
return true;
|
|
}
|
|
|
|
bool AudioProcessingImpl::CreateAndAttachAecDump(FILE* handle,
|
|
int64_t max_log_size_bytes,
|
|
rtc::TaskQueue* worker_queue) {
|
|
std::unique_ptr<AecDump> aec_dump =
|
|
AecDumpFactory::Create(handle, max_log_size_bytes, worker_queue);
|
|
if (!aec_dump) {
|
|
return false;
|
|
}
|
|
|
|
AttachAecDump(std::move(aec_dump));
|
|
return true;
|
|
}
|
|
|
|
void AudioProcessingImpl::AttachAecDump(std::unique_ptr<AecDump> aec_dump) {
|
|
RTC_DCHECK(aec_dump);
|
|
MutexLock lock_render(&mutex_render_);
|
|
MutexLock lock_capture(&mutex_capture_);
|
|
|
|
// The previously attached AecDump will be destroyed with the
|
|
// 'aec_dump' parameter, which is after locks are released.
|
|
aec_dump_.swap(aec_dump);
|
|
WriteAecDumpConfigMessage(true);
|
|
aec_dump_->WriteInitMessage(formats_.api_format, rtc::TimeUTCMillis());
|
|
}
|
|
|
|
void AudioProcessingImpl::DetachAecDump() {
|
|
// The d-tor of a task-queue based AecDump blocks until all pending
|
|
// tasks are done. This construction avoids blocking while holding
|
|
// the render and capture locks.
|
|
std::unique_ptr<AecDump> aec_dump = nullptr;
|
|
{
|
|
MutexLock lock_render(&mutex_render_);
|
|
MutexLock lock_capture(&mutex_capture_);
|
|
aec_dump = std::move(aec_dump_);
|
|
}
|
|
}
|
|
|
|
AudioProcessing::Config AudioProcessingImpl::GetConfig() const {
|
|
MutexLock lock_render(&mutex_render_);
|
|
MutexLock lock_capture(&mutex_capture_);
|
|
return config_;
|
|
}
|
|
|
|
bool AudioProcessingImpl::UpdateActiveSubmoduleStates() {
|
|
return submodule_states_.Update(
|
|
config_.high_pass_filter.enabled, !!submodules_.echo_control_mobile,
|
|
!!submodules_.noise_suppressor, !!submodules_.gain_control,
|
|
!!submodules_.gain_controller2, !!submodules_.voice_activity_detector,
|
|
config_.pre_amplifier.enabled || config_.capture_level_adjustment.enabled,
|
|
capture_nonlocked_.echo_controller_enabled,
|
|
!!submodules_.transient_suppressor);
|
|
}
|
|
|
|
void AudioProcessingImpl::InitializeTransientSuppressor() {
|
|
// Choose the VAD mode for TS and detect a VAD mode change.
|
|
const TransientSuppressor::VadMode previous_vad_mode =
|
|
transient_suppressor_vad_mode_;
|
|
transient_suppressor_vad_mode_ = TransientSuppressor::VadMode::kDefault;
|
|
if (UseApmVadSubModule(config_, gain_controller2_experiment_params_)) {
|
|
transient_suppressor_vad_mode_ = TransientSuppressor::VadMode::kRnnVad;
|
|
}
|
|
const bool vad_mode_changed =
|
|
previous_vad_mode != transient_suppressor_vad_mode_;
|
|
|
|
if (config_.transient_suppression.enabled &&
|
|
!constants_.transient_suppressor_forced_off) {
|
|
// Attempt to create a transient suppressor, if one is not already created.
|
|
if (!submodules_.transient_suppressor || vad_mode_changed) {
|
|
submodules_.transient_suppressor = CreateTransientSuppressor(
|
|
submodule_creation_overrides_, transient_suppressor_vad_mode_,
|
|
proc_fullband_sample_rate_hz(), capture_nonlocked_.split_rate,
|
|
num_proc_channels());
|
|
if (!submodules_.transient_suppressor) {
|
|
RTC_LOG(LS_WARNING)
|
|
<< "No transient suppressor created (probably disabled)";
|
|
}
|
|
} else {
|
|
submodules_.transient_suppressor->Initialize(
|
|
proc_fullband_sample_rate_hz(), capture_nonlocked_.split_rate,
|
|
num_proc_channels());
|
|
}
|
|
} else {
|
|
submodules_.transient_suppressor.reset();
|
|
}
|
|
}
|
|
|
|
void AudioProcessingImpl::InitializeHighPassFilter(bool forced_reset) {
|
|
bool high_pass_filter_needed_by_aec =
|
|
config_.echo_canceller.enabled &&
|
|
config_.echo_canceller.enforce_high_pass_filtering &&
|
|
!config_.echo_canceller.mobile_mode;
|
|
if (submodule_states_.HighPassFilteringRequired() ||
|
|
high_pass_filter_needed_by_aec) {
|
|
bool use_full_band = config_.high_pass_filter.apply_in_full_band &&
|
|
!constants_.enforce_split_band_hpf;
|
|
int rate = use_full_band ? proc_fullband_sample_rate_hz()
|
|
: proc_split_sample_rate_hz();
|
|
size_t num_channels =
|
|
use_full_band ? num_output_channels() : num_proc_channels();
|
|
|
|
if (!submodules_.high_pass_filter ||
|
|
rate != submodules_.high_pass_filter->sample_rate_hz() ||
|
|
forced_reset ||
|
|
num_channels != submodules_.high_pass_filter->num_channels()) {
|
|
submodules_.high_pass_filter.reset(
|
|
new HighPassFilter(rate, num_channels));
|
|
}
|
|
} else {
|
|
submodules_.high_pass_filter.reset();
|
|
}
|
|
}
|
|
|
|
void AudioProcessingImpl::InitializeEchoController() {
|
|
bool use_echo_controller =
|
|
echo_control_factory_ ||
|
|
(config_.echo_canceller.enabled && !config_.echo_canceller.mobile_mode);
|
|
|
|
if (use_echo_controller) {
|
|
// Create and activate the echo controller.
|
|
if (echo_control_factory_) {
|
|
submodules_.echo_controller = echo_control_factory_->Create(
|
|
proc_sample_rate_hz(), num_reverse_channels(), num_proc_channels());
|
|
RTC_DCHECK(submodules_.echo_controller);
|
|
} else {
|
|
EchoCanceller3Config config;
|
|
absl::optional<EchoCanceller3Config> multichannel_config;
|
|
if (use_setup_specific_default_aec3_config_) {
|
|
multichannel_config = EchoCanceller3::CreateDefaultMultichannelConfig();
|
|
}
|
|
submodules_.echo_controller = std::make_unique<EchoCanceller3>(
|
|
config, multichannel_config, proc_sample_rate_hz(),
|
|
num_reverse_channels(), num_proc_channels());
|
|
}
|
|
|
|
// Setup the storage for returning the linear AEC output.
|
|
if (config_.echo_canceller.export_linear_aec_output) {
|
|
constexpr int kLinearOutputRateHz = 16000;
|
|
capture_.linear_aec_output = std::make_unique<AudioBuffer>(
|
|
kLinearOutputRateHz, num_proc_channels(), kLinearOutputRateHz,
|
|
num_proc_channels(), kLinearOutputRateHz, num_proc_channels());
|
|
} else {
|
|
capture_.linear_aec_output.reset();
|
|
}
|
|
|
|
capture_nonlocked_.echo_controller_enabled = true;
|
|
|
|
submodules_.echo_control_mobile.reset();
|
|
aecm_render_signal_queue_.reset();
|
|
return;
|
|
}
|
|
|
|
submodules_.echo_controller.reset();
|
|
capture_nonlocked_.echo_controller_enabled = false;
|
|
capture_.linear_aec_output.reset();
|
|
|
|
if (!config_.echo_canceller.enabled) {
|
|
submodules_.echo_control_mobile.reset();
|
|
aecm_render_signal_queue_.reset();
|
|
return;
|
|
}
|
|
|
|
if (config_.echo_canceller.mobile_mode) {
|
|
// Create and activate AECM.
|
|
size_t max_element_size =
|
|
std::max(static_cast<size_t>(1),
|
|
kMaxAllowedValuesOfSamplesPerBand *
|
|
EchoControlMobileImpl::NumCancellersRequired(
|
|
num_output_channels(), num_reverse_channels()));
|
|
|
|
std::vector<int16_t> template_queue_element(max_element_size);
|
|
|
|
aecm_render_signal_queue_.reset(
|
|
new SwapQueue<std::vector<int16_t>, RenderQueueItemVerifier<int16_t>>(
|
|
kMaxNumFramesToBuffer, template_queue_element,
|
|
RenderQueueItemVerifier<int16_t>(max_element_size)));
|
|
|
|
aecm_render_queue_buffer_.resize(max_element_size);
|
|
aecm_capture_queue_buffer_.resize(max_element_size);
|
|
|
|
submodules_.echo_control_mobile.reset(new EchoControlMobileImpl());
|
|
|
|
submodules_.echo_control_mobile->Initialize(proc_split_sample_rate_hz(),
|
|
num_reverse_channels(),
|
|
num_output_channels());
|
|
return;
|
|
}
|
|
|
|
submodules_.echo_control_mobile.reset();
|
|
aecm_render_signal_queue_.reset();
|
|
}
|
|
|
|
void AudioProcessingImpl::InitializeGainController1() {
|
|
if (config_.gain_controller2.enabled &&
|
|
config_.gain_controller2.input_volume_controller.enabled &&
|
|
config_.gain_controller1.enabled &&
|
|
(config_.gain_controller1.mode ==
|
|
AudioProcessing::Config::GainController1::kAdaptiveAnalog ||
|
|
config_.gain_controller1.analog_gain_controller.enabled)) {
|
|
RTC_LOG(LS_ERROR) << "APM configuration not valid: "
|
|
<< "Multiple input volume controllers enabled.";
|
|
}
|
|
|
|
if (!config_.gain_controller1.enabled) {
|
|
submodules_.agc_manager.reset();
|
|
submodules_.gain_control.reset();
|
|
return;
|
|
}
|
|
|
|
RTC_HISTOGRAM_BOOLEAN(
|
|
"WebRTC.Audio.GainController.Analog.Enabled",
|
|
config_.gain_controller1.analog_gain_controller.enabled);
|
|
|
|
if (!submodules_.gain_control) {
|
|
submodules_.gain_control.reset(new GainControlImpl());
|
|
}
|
|
|
|
submodules_.gain_control->Initialize(num_proc_channels(),
|
|
proc_sample_rate_hz());
|
|
if (!config_.gain_controller1.analog_gain_controller.enabled) {
|
|
int error = submodules_.gain_control->set_mode(
|
|
Agc1ConfigModeToInterfaceMode(config_.gain_controller1.mode));
|
|
RTC_DCHECK_EQ(kNoError, error);
|
|
error = submodules_.gain_control->set_target_level_dbfs(
|
|
config_.gain_controller1.target_level_dbfs);
|
|
RTC_DCHECK_EQ(kNoError, error);
|
|
error = submodules_.gain_control->set_compression_gain_db(
|
|
config_.gain_controller1.compression_gain_db);
|
|
RTC_DCHECK_EQ(kNoError, error);
|
|
error = submodules_.gain_control->enable_limiter(
|
|
config_.gain_controller1.enable_limiter);
|
|
RTC_DCHECK_EQ(kNoError, error);
|
|
constexpr int kAnalogLevelMinimum = 0;
|
|
constexpr int kAnalogLevelMaximum = 255;
|
|
error = submodules_.gain_control->set_analog_level_limits(
|
|
kAnalogLevelMinimum, kAnalogLevelMaximum);
|
|
RTC_DCHECK_EQ(kNoError, error);
|
|
|
|
submodules_.agc_manager.reset();
|
|
return;
|
|
}
|
|
|
|
if (!submodules_.agc_manager.get() ||
|
|
submodules_.agc_manager->num_channels() !=
|
|
static_cast<int>(num_proc_channels())) {
|
|
int stream_analog_level = -1;
|
|
const bool re_creation = !!submodules_.agc_manager;
|
|
if (re_creation) {
|
|
stream_analog_level = submodules_.agc_manager->recommended_analog_level();
|
|
}
|
|
submodules_.agc_manager.reset(new AgcManagerDirect(
|
|
num_proc_channels(), config_.gain_controller1.analog_gain_controller));
|
|
if (re_creation) {
|
|
submodules_.agc_manager->set_stream_analog_level(stream_analog_level);
|
|
}
|
|
}
|
|
submodules_.agc_manager->Initialize();
|
|
submodules_.agc_manager->SetupDigitalGainControl(*submodules_.gain_control);
|
|
submodules_.agc_manager->HandleCaptureOutputUsedChange(
|
|
capture_.capture_output_used);
|
|
}
|
|
|
|
void AudioProcessingImpl::InitializeGainController2() {
|
|
if (!config_.gain_controller2.enabled) {
|
|
submodules_.gain_controller2.reset();
|
|
return;
|
|
}
|
|
// Override the input volume controller configuration if the AGC2 experiment
|
|
// is running and its parameters require to fully switch the gain control to
|
|
// AGC2.
|
|
const bool input_volume_controller_config_overridden =
|
|
gain_controller2_experiment_params_.has_value() &&
|
|
gain_controller2_experiment_params_->agc2_config.has_value();
|
|
const InputVolumeController::Config input_volume_controller_config =
|
|
input_volume_controller_config_overridden
|
|
? gain_controller2_experiment_params_->agc2_config
|
|
->input_volume_controller
|
|
: InputVolumeController::Config{};
|
|
// If the APM VAD sub-module is not used, let AGC2 use its internal VAD.
|
|
const bool use_internal_vad =
|
|
!UseApmVadSubModule(config_, gain_controller2_experiment_params_);
|
|
submodules_.gain_controller2 = std::make_unique<GainController2>(
|
|
config_.gain_controller2, input_volume_controller_config,
|
|
proc_fullband_sample_rate_hz(), num_proc_channels(), use_internal_vad);
|
|
submodules_.gain_controller2->SetCaptureOutputUsed(
|
|
capture_.capture_output_used);
|
|
}
|
|
|
|
void AudioProcessingImpl::InitializeVoiceActivityDetector() {
|
|
if (!UseApmVadSubModule(config_, gain_controller2_experiment_params_)) {
|
|
submodules_.voice_activity_detector.reset();
|
|
return;
|
|
}
|
|
|
|
if (!submodules_.voice_activity_detector) {
|
|
RTC_DCHECK(!!submodules_.gain_controller2);
|
|
// TODO(bugs.webrtc.org/13663): Cache CPU features in APM and use here.
|
|
submodules_.voice_activity_detector =
|
|
std::make_unique<VoiceActivityDetectorWrapper>(
|
|
submodules_.gain_controller2->GetCpuFeatures(),
|
|
proc_fullband_sample_rate_hz());
|
|
} else {
|
|
submodules_.voice_activity_detector->Initialize(
|
|
proc_fullband_sample_rate_hz());
|
|
}
|
|
}
|
|
|
|
void AudioProcessingImpl::InitializeNoiseSuppressor() {
|
|
submodules_.noise_suppressor.reset();
|
|
|
|
if (config_.noise_suppression.enabled) {
|
|
auto map_level =
|
|
[](AudioProcessing::Config::NoiseSuppression::Level level) {
|
|
using NoiseSuppresionConfig =
|
|
AudioProcessing::Config::NoiseSuppression;
|
|
switch (level) {
|
|
case NoiseSuppresionConfig::kLow:
|
|
return NsConfig::SuppressionLevel::k6dB;
|
|
case NoiseSuppresionConfig::kModerate:
|
|
return NsConfig::SuppressionLevel::k12dB;
|
|
case NoiseSuppresionConfig::kHigh:
|
|
return NsConfig::SuppressionLevel::k18dB;
|
|
case NoiseSuppresionConfig::kVeryHigh:
|
|
return NsConfig::SuppressionLevel::k21dB;
|
|
}
|
|
RTC_CHECK_NOTREACHED();
|
|
};
|
|
|
|
NsConfig cfg;
|
|
cfg.target_level = map_level(config_.noise_suppression.level);
|
|
submodules_.noise_suppressor = std::make_unique<NoiseSuppressor>(
|
|
cfg, proc_sample_rate_hz(), num_proc_channels());
|
|
}
|
|
}
|
|
|
|
void AudioProcessingImpl::InitializeCaptureLevelsAdjuster() {
|
|
if (config_.pre_amplifier.enabled ||
|
|
config_.capture_level_adjustment.enabled) {
|
|
// Use both the pre-amplifier and the capture level adjustment gains as
|
|
// pre-gains.
|
|
float pre_gain = 1.f;
|
|
if (config_.pre_amplifier.enabled) {
|
|
pre_gain *= config_.pre_amplifier.fixed_gain_factor;
|
|
}
|
|
if (config_.capture_level_adjustment.enabled) {
|
|
pre_gain *= config_.capture_level_adjustment.pre_gain_factor;
|
|
}
|
|
|
|
submodules_.capture_levels_adjuster =
|
|
std::make_unique<CaptureLevelsAdjuster>(
|
|
config_.capture_level_adjustment.analog_mic_gain_emulation.enabled,
|
|
config_.capture_level_adjustment.analog_mic_gain_emulation
|
|
.initial_level,
|
|
pre_gain, config_.capture_level_adjustment.post_gain_factor);
|
|
} else {
|
|
submodules_.capture_levels_adjuster.reset();
|
|
}
|
|
}
|
|
|
|
void AudioProcessingImpl::InitializeResidualEchoDetector() {
|
|
if (submodules_.echo_detector) {
|
|
submodules_.echo_detector->Initialize(
|
|
proc_fullband_sample_rate_hz(), 1,
|
|
formats_.render_processing_format.sample_rate_hz(), 1);
|
|
}
|
|
}
|
|
|
|
void AudioProcessingImpl::InitializeAnalyzer() {
|
|
if (submodules_.capture_analyzer) {
|
|
submodules_.capture_analyzer->Initialize(proc_fullband_sample_rate_hz(),
|
|
num_proc_channels());
|
|
}
|
|
}
|
|
|
|
void AudioProcessingImpl::InitializePostProcessor() {
|
|
if (submodules_.capture_post_processor) {
|
|
submodules_.capture_post_processor->Initialize(
|
|
proc_fullband_sample_rate_hz(), num_proc_channels());
|
|
}
|
|
}
|
|
|
|
void AudioProcessingImpl::InitializePreProcessor() {
|
|
if (submodules_.render_pre_processor) {
|
|
submodules_.render_pre_processor->Initialize(
|
|
formats_.render_processing_format.sample_rate_hz(),
|
|
formats_.render_processing_format.num_channels());
|
|
}
|
|
}
|
|
|
|
void AudioProcessingImpl::WriteAecDumpConfigMessage(bool forced) {
|
|
if (!aec_dump_) {
|
|
return;
|
|
}
|
|
|
|
std::string experiments_description = "";
|
|
// TODO(peah): Add semicolon-separated concatenations of experiment
|
|
// descriptions for other submodules.
|
|
if (!!submodules_.capture_post_processor) {
|
|
experiments_description += "CapturePostProcessor;";
|
|
}
|
|
if (!!submodules_.render_pre_processor) {
|
|
experiments_description += "RenderPreProcessor;";
|
|
}
|
|
if (capture_nonlocked_.echo_controller_enabled) {
|
|
experiments_description += "EchoController;";
|
|
}
|
|
if (config_.gain_controller2.enabled) {
|
|
experiments_description += "GainController2;";
|
|
}
|
|
|
|
InternalAPMConfig apm_config;
|
|
|
|
apm_config.aec_enabled = config_.echo_canceller.enabled;
|
|
apm_config.aec_delay_agnostic_enabled = false;
|
|
apm_config.aec_extended_filter_enabled = false;
|
|
apm_config.aec_suppression_level = 0;
|
|
|
|
apm_config.aecm_enabled = !!submodules_.echo_control_mobile;
|
|
apm_config.aecm_comfort_noise_enabled =
|
|
submodules_.echo_control_mobile &&
|
|
submodules_.echo_control_mobile->is_comfort_noise_enabled();
|
|
apm_config.aecm_routing_mode =
|
|
submodules_.echo_control_mobile
|
|
? static_cast<int>(submodules_.echo_control_mobile->routing_mode())
|
|
: 0;
|
|
|
|
apm_config.agc_enabled = !!submodules_.gain_control;
|
|
|
|
apm_config.agc_mode = submodules_.gain_control
|
|
? static_cast<int>(submodules_.gain_control->mode())
|
|
: GainControl::kAdaptiveAnalog;
|
|
apm_config.agc_limiter_enabled =
|
|
submodules_.gain_control ? submodules_.gain_control->is_limiter_enabled()
|
|
: false;
|
|
apm_config.noise_robust_agc_enabled = !!submodules_.agc_manager;
|
|
|
|
apm_config.hpf_enabled = config_.high_pass_filter.enabled;
|
|
|
|
apm_config.ns_enabled = config_.noise_suppression.enabled;
|
|
apm_config.ns_level = static_cast<int>(config_.noise_suppression.level);
|
|
|
|
apm_config.transient_suppression_enabled =
|
|
config_.transient_suppression.enabled;
|
|
apm_config.experiments_description = experiments_description;
|
|
apm_config.pre_amplifier_enabled = config_.pre_amplifier.enabled;
|
|
apm_config.pre_amplifier_fixed_gain_factor =
|
|
config_.pre_amplifier.fixed_gain_factor;
|
|
|
|
if (!forced && apm_config == apm_config_for_aec_dump_) {
|
|
return;
|
|
}
|
|
aec_dump_->WriteConfig(apm_config);
|
|
apm_config_for_aec_dump_ = apm_config;
|
|
}
|
|
|
|
void AudioProcessingImpl::RecordUnprocessedCaptureStream(
|
|
const float* const* src) {
|
|
RTC_DCHECK(aec_dump_);
|
|
WriteAecDumpConfigMessage(false);
|
|
|
|
const size_t channel_size = formats_.api_format.input_stream().num_frames();
|
|
const size_t num_channels = formats_.api_format.input_stream().num_channels();
|
|
aec_dump_->AddCaptureStreamInput(
|
|
AudioFrameView<const float>(src, num_channels, channel_size));
|
|
RecordAudioProcessingState();
|
|
}
|
|
|
|
void AudioProcessingImpl::RecordUnprocessedCaptureStream(
|
|
const int16_t* const data,
|
|
const StreamConfig& config) {
|
|
RTC_DCHECK(aec_dump_);
|
|
WriteAecDumpConfigMessage(false);
|
|
|
|
aec_dump_->AddCaptureStreamInput(data, config.num_channels(),
|
|
config.num_frames());
|
|
RecordAudioProcessingState();
|
|
}
|
|
|
|
void AudioProcessingImpl::RecordProcessedCaptureStream(
|
|
const float* const* processed_capture_stream) {
|
|
RTC_DCHECK(aec_dump_);
|
|
|
|
const size_t channel_size = formats_.api_format.output_stream().num_frames();
|
|
const size_t num_channels =
|
|
formats_.api_format.output_stream().num_channels();
|
|
aec_dump_->AddCaptureStreamOutput(AudioFrameView<const float>(
|
|
processed_capture_stream, num_channels, channel_size));
|
|
aec_dump_->WriteCaptureStreamMessage();
|
|
}
|
|
|
|
void AudioProcessingImpl::RecordProcessedCaptureStream(
|
|
const int16_t* const data,
|
|
const StreamConfig& config) {
|
|
RTC_DCHECK(aec_dump_);
|
|
|
|
aec_dump_->AddCaptureStreamOutput(data, config.num_channels(),
|
|
config.num_frames());
|
|
aec_dump_->WriteCaptureStreamMessage();
|
|
}
|
|
|
|
void AudioProcessingImpl::RecordAudioProcessingState() {
|
|
RTC_DCHECK(aec_dump_);
|
|
AecDump::AudioProcessingState audio_proc_state;
|
|
audio_proc_state.delay = capture_nonlocked_.stream_delay_ms;
|
|
audio_proc_state.drift = 0;
|
|
audio_proc_state.applied_input_volume = capture_.applied_input_volume;
|
|
audio_proc_state.keypress = capture_.key_pressed;
|
|
aec_dump_->AddAudioProcessingState(audio_proc_state);
|
|
}
|
|
|
|
AudioProcessingImpl::ApmCaptureState::ApmCaptureState()
|
|
: was_stream_delay_set(false),
|
|
capture_output_used(true),
|
|
capture_output_used_last_frame(true),
|
|
key_pressed(false),
|
|
capture_processing_format(kSampleRate16kHz),
|
|
split_rate(kSampleRate16kHz),
|
|
echo_path_gain_change(false),
|
|
prev_pre_adjustment_gain(-1.0f),
|
|
playout_volume(-1),
|
|
prev_playout_volume(-1),
|
|
applied_input_volume_changed(false) {}
|
|
|
|
AudioProcessingImpl::ApmCaptureState::~ApmCaptureState() = default;
|
|
|
|
AudioProcessingImpl::ApmRenderState::ApmRenderState() = default;
|
|
|
|
AudioProcessingImpl::ApmRenderState::~ApmRenderState() = default;
|
|
|
|
AudioProcessingImpl::ApmStatsReporter::ApmStatsReporter()
|
|
: stats_message_queue_(1) {}
|
|
|
|
AudioProcessingImpl::ApmStatsReporter::~ApmStatsReporter() = default;
|
|
|
|
AudioProcessingStats AudioProcessingImpl::ApmStatsReporter::GetStatistics() {
|
|
MutexLock lock_stats(&mutex_stats_);
|
|
bool new_stats_available = stats_message_queue_.Remove(&cached_stats_);
|
|
// If the message queue is full, return the cached stats.
|
|
static_cast<void>(new_stats_available);
|
|
|
|
return cached_stats_;
|
|
}
|
|
|
|
void AudioProcessingImpl::ApmStatsReporter::UpdateStatistics(
|
|
const AudioProcessingStats& new_stats) {
|
|
AudioProcessingStats stats_to_queue = new_stats;
|
|
bool stats_message_passed = stats_message_queue_.Insert(&stats_to_queue);
|
|
// If the message queue is full, discard the new stats.
|
|
static_cast<void>(stats_message_passed);
|
|
}
|
|
|
|
} // namespace webrtc
|