webrtc/modules/audio_processing/aec3/erle_estimator.cc
Gustaf Ullberg 437d129ef5 AEC3: Avoid overcompensating for render onsets during dominant nearend
The ERLE is used to estimate residual echo for echo suppression. The
ERLE is reduced during far-end offset to avoid echo leakage. When there
is a strong near-end present this can cause unnecessary transparency loss.

This change adds an ERLE estimation that does not compensate for onsets and
uses it for residual echo estimation when the suppressor considers the near-end to be dominant.

Bug: webrtc:12686
Change-Id: Ida78eeacf1f95c6e62403f86ba3f2ff055898a84
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/215323
Commit-Queue: Gustaf Ullberg <gustaf@webrtc.org>
Reviewed-by: Jesus de Vicente Pena <devicentepena@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#33786}
2021-04-20 12:33:02 +00:00

89 lines
3.2 KiB
C++

/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/erle_estimator.h"
#include "modules/audio_processing/aec3/aec3_common.h"
#include "rtc_base/checks.h"
namespace webrtc {
ErleEstimator::ErleEstimator(size_t startup_phase_length_blocks,
const EchoCanceller3Config& config,
size_t num_capture_channels)
: startup_phase_length_blocks_(startup_phase_length_blocks),
fullband_erle_estimator_(config.erle, num_capture_channels),
subband_erle_estimator_(config, num_capture_channels) {
if (config.erle.num_sections > 1) {
signal_dependent_erle_estimator_ =
std::make_unique<SignalDependentErleEstimator>(config,
num_capture_channels);
}
Reset(true);
}
ErleEstimator::~ErleEstimator() = default;
void ErleEstimator::Reset(bool delay_change) {
fullband_erle_estimator_.Reset();
subband_erle_estimator_.Reset();
if (signal_dependent_erle_estimator_) {
signal_dependent_erle_estimator_->Reset();
}
if (delay_change) {
blocks_since_reset_ = 0;
}
}
void ErleEstimator::Update(
const RenderBuffer& render_buffer,
rtc::ArrayView<const std::vector<std::array<float, kFftLengthBy2Plus1>>>
filter_frequency_responses,
rtc::ArrayView<const float, kFftLengthBy2Plus1>
avg_render_spectrum_with_reverb,
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> capture_spectra,
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>>
subtractor_spectra,
const std::vector<bool>& converged_filters) {
RTC_DCHECK_EQ(subband_erle_estimator_.Erle(/*onset_compensated=*/true).size(),
capture_spectra.size());
RTC_DCHECK_EQ(subband_erle_estimator_.Erle(/*onset_compensated=*/true).size(),
subtractor_spectra.size());
const auto& X2_reverb = avg_render_spectrum_with_reverb;
const auto& Y2 = capture_spectra;
const auto& E2 = subtractor_spectra;
if (++blocks_since_reset_ < startup_phase_length_blocks_) {
return;
}
subband_erle_estimator_.Update(X2_reverb, Y2, E2, converged_filters);
if (signal_dependent_erle_estimator_) {
signal_dependent_erle_estimator_->Update(
render_buffer, filter_frequency_responses, X2_reverb, Y2, E2,
subband_erle_estimator_.Erle(/*onset_compensated=*/false),
subband_erle_estimator_.Erle(/*onset_compensated=*/true),
converged_filters);
}
fullband_erle_estimator_.Update(X2_reverb, Y2, E2, converged_filters);
}
void ErleEstimator::Dump(
const std::unique_ptr<ApmDataDumper>& data_dumper) const {
fullband_erle_estimator_.Dump(data_dumper);
subband_erle_estimator_.Dump(data_dumper);
if (signal_dependent_erle_estimator_) {
signal_dependent_erle_estimator_->Dump(data_dumper);
}
}
} // namespace webrtc