mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-14 06:10:40 +01:00

The ERLE is used to estimate residual echo for echo suppression. The ERLE is reduced during far-end offset to avoid echo leakage. When there is a strong near-end present this can cause unnecessary transparency loss. This change adds an ERLE estimation that does not compensate for onsets and uses it for residual echo estimation when the suppressor considers the near-end to be dominant. Bug: webrtc:12686 Change-Id: Ida78eeacf1f95c6e62403f86ba3f2ff055898a84 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/215323 Commit-Queue: Gustaf Ullberg <gustaf@webrtc.org> Reviewed-by: Jesus de Vicente Pena <devicentepena@webrtc.org> Cr-Commit-Position: refs/heads/master@{#33786}
416 lines
18 KiB
C++
416 lines
18 KiB
C++
/*
|
|
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/audio_processing/aec3/signal_dependent_erle_estimator.h"
|
|
|
|
#include <algorithm>
|
|
#include <functional>
|
|
#include <numeric>
|
|
|
|
#include "modules/audio_processing/aec3/spectrum_buffer.h"
|
|
#include "rtc_base/numerics/safe_minmax.h"
|
|
|
|
namespace webrtc {
|
|
|
|
namespace {
|
|
|
|
constexpr std::array<size_t, SignalDependentErleEstimator::kSubbands + 1>
|
|
kBandBoundaries = {1, 8, 16, 24, 32, 48, kFftLengthBy2Plus1};
|
|
|
|
std::array<size_t, kFftLengthBy2Plus1> FormSubbandMap() {
|
|
std::array<size_t, kFftLengthBy2Plus1> map_band_to_subband;
|
|
size_t subband = 1;
|
|
for (size_t k = 0; k < map_band_to_subband.size(); ++k) {
|
|
RTC_DCHECK_LT(subband, kBandBoundaries.size());
|
|
if (k >= kBandBoundaries[subband]) {
|
|
subband++;
|
|
RTC_DCHECK_LT(k, kBandBoundaries[subband]);
|
|
}
|
|
map_band_to_subband[k] = subband - 1;
|
|
}
|
|
return map_band_to_subband;
|
|
}
|
|
|
|
// Defines the size in blocks of the sections that are used for dividing the
|
|
// linear filter. The sections are split in a non-linear manner so that lower
|
|
// sections that typically represent the direct path have a larger resolution
|
|
// than the higher sections which typically represent more reverberant acoustic
|
|
// paths.
|
|
std::vector<size_t> DefineFilterSectionSizes(size_t delay_headroom_blocks,
|
|
size_t num_blocks,
|
|
size_t num_sections) {
|
|
size_t filter_length_blocks = num_blocks - delay_headroom_blocks;
|
|
std::vector<size_t> section_sizes(num_sections);
|
|
size_t remaining_blocks = filter_length_blocks;
|
|
size_t remaining_sections = num_sections;
|
|
size_t estimator_size = 2;
|
|
size_t idx = 0;
|
|
while (remaining_sections > 1 &&
|
|
remaining_blocks > estimator_size * remaining_sections) {
|
|
RTC_DCHECK_LT(idx, section_sizes.size());
|
|
section_sizes[idx] = estimator_size;
|
|
remaining_blocks -= estimator_size;
|
|
remaining_sections--;
|
|
estimator_size *= 2;
|
|
idx++;
|
|
}
|
|
|
|
size_t last_groups_size = remaining_blocks / remaining_sections;
|
|
for (; idx < num_sections; idx++) {
|
|
section_sizes[idx] = last_groups_size;
|
|
}
|
|
section_sizes[num_sections - 1] +=
|
|
remaining_blocks - last_groups_size * remaining_sections;
|
|
return section_sizes;
|
|
}
|
|
|
|
// Forms the limits in blocks for each filter section. Those sections
|
|
// are used for analyzing the echo estimates and investigating which
|
|
// linear filter sections contribute most to the echo estimate energy.
|
|
std::vector<size_t> SetSectionsBoundaries(size_t delay_headroom_blocks,
|
|
size_t num_blocks,
|
|
size_t num_sections) {
|
|
std::vector<size_t> estimator_boundaries_blocks(num_sections + 1);
|
|
if (estimator_boundaries_blocks.size() == 2) {
|
|
estimator_boundaries_blocks[0] = 0;
|
|
estimator_boundaries_blocks[1] = num_blocks;
|
|
return estimator_boundaries_blocks;
|
|
}
|
|
RTC_DCHECK_GT(estimator_boundaries_blocks.size(), 2);
|
|
const std::vector<size_t> section_sizes =
|
|
DefineFilterSectionSizes(delay_headroom_blocks, num_blocks,
|
|
estimator_boundaries_blocks.size() - 1);
|
|
|
|
size_t idx = 0;
|
|
size_t current_size_block = 0;
|
|
RTC_DCHECK_EQ(section_sizes.size() + 1, estimator_boundaries_blocks.size());
|
|
estimator_boundaries_blocks[0] = delay_headroom_blocks;
|
|
for (size_t k = delay_headroom_blocks; k < num_blocks; ++k) {
|
|
current_size_block++;
|
|
if (current_size_block >= section_sizes[idx]) {
|
|
idx = idx + 1;
|
|
if (idx == section_sizes.size()) {
|
|
break;
|
|
}
|
|
estimator_boundaries_blocks[idx] = k + 1;
|
|
current_size_block = 0;
|
|
}
|
|
}
|
|
estimator_boundaries_blocks[section_sizes.size()] = num_blocks;
|
|
return estimator_boundaries_blocks;
|
|
}
|
|
|
|
std::array<float, SignalDependentErleEstimator::kSubbands>
|
|
SetMaxErleSubbands(float max_erle_l, float max_erle_h, size_t limit_subband_l) {
|
|
std::array<float, SignalDependentErleEstimator::kSubbands> max_erle;
|
|
std::fill(max_erle.begin(), max_erle.begin() + limit_subband_l, max_erle_l);
|
|
std::fill(max_erle.begin() + limit_subband_l, max_erle.end(), max_erle_h);
|
|
return max_erle;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
SignalDependentErleEstimator::SignalDependentErleEstimator(
|
|
const EchoCanceller3Config& config,
|
|
size_t num_capture_channels)
|
|
: min_erle_(config.erle.min),
|
|
num_sections_(config.erle.num_sections),
|
|
num_blocks_(config.filter.refined.length_blocks),
|
|
delay_headroom_blocks_(config.delay.delay_headroom_samples / kBlockSize),
|
|
band_to_subband_(FormSubbandMap()),
|
|
max_erle_(SetMaxErleSubbands(config.erle.max_l,
|
|
config.erle.max_h,
|
|
band_to_subband_[kFftLengthBy2 / 2])),
|
|
section_boundaries_blocks_(SetSectionsBoundaries(delay_headroom_blocks_,
|
|
num_blocks_,
|
|
num_sections_)),
|
|
use_onset_detection_(config.erle.onset_detection),
|
|
erle_(num_capture_channels),
|
|
erle_onset_compensated_(num_capture_channels),
|
|
S2_section_accum_(
|
|
num_capture_channels,
|
|
std::vector<std::array<float, kFftLengthBy2Plus1>>(num_sections_)),
|
|
erle_estimators_(
|
|
num_capture_channels,
|
|
std::vector<std::array<float, kSubbands>>(num_sections_)),
|
|
erle_ref_(num_capture_channels),
|
|
correction_factors_(
|
|
num_capture_channels,
|
|
std::vector<std::array<float, kSubbands>>(num_sections_)),
|
|
num_updates_(num_capture_channels),
|
|
n_active_sections_(num_capture_channels) {
|
|
RTC_DCHECK_LE(num_sections_, num_blocks_);
|
|
RTC_DCHECK_GE(num_sections_, 1);
|
|
Reset();
|
|
}
|
|
|
|
SignalDependentErleEstimator::~SignalDependentErleEstimator() = default;
|
|
|
|
void SignalDependentErleEstimator::Reset() {
|
|
for (size_t ch = 0; ch < erle_.size(); ++ch) {
|
|
erle_[ch].fill(min_erle_);
|
|
erle_onset_compensated_[ch].fill(min_erle_);
|
|
for (auto& erle_estimator : erle_estimators_[ch]) {
|
|
erle_estimator.fill(min_erle_);
|
|
}
|
|
erle_ref_[ch].fill(min_erle_);
|
|
for (auto& factor : correction_factors_[ch]) {
|
|
factor.fill(1.0f);
|
|
}
|
|
num_updates_[ch].fill(0);
|
|
n_active_sections_[ch].fill(0);
|
|
}
|
|
}
|
|
|
|
// Updates the Erle estimate by analyzing the current input signals. It takes
|
|
// the render buffer and the filter frequency response in order to do an
|
|
// estimation of the number of sections of the linear filter that are needed
|
|
// for getting the majority of the energy in the echo estimate. Based on that
|
|
// number of sections, it updates the erle estimation by introducing a
|
|
// correction factor to the erle that is given as an input to this method.
|
|
void SignalDependentErleEstimator::Update(
|
|
const RenderBuffer& render_buffer,
|
|
rtc::ArrayView<const std::vector<std::array<float, kFftLengthBy2Plus1>>>
|
|
filter_frequency_responses,
|
|
rtc::ArrayView<const float, kFftLengthBy2Plus1> X2,
|
|
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> Y2,
|
|
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> E2,
|
|
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> average_erle,
|
|
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>>
|
|
average_erle_onset_compensated,
|
|
const std::vector<bool>& converged_filters) {
|
|
RTC_DCHECK_GT(num_sections_, 1);
|
|
|
|
// Gets the number of filter sections that are needed for achieving 90 %
|
|
// of the power spectrum energy of the echo estimate.
|
|
ComputeNumberOfActiveFilterSections(render_buffer,
|
|
filter_frequency_responses);
|
|
|
|
// Updates the correction factors that is used for correcting the erle and
|
|
// adapt it to the particular characteristics of the input signal.
|
|
UpdateCorrectionFactors(X2, Y2, E2, converged_filters);
|
|
|
|
// Applies the correction factor to the input erle for getting a more refined
|
|
// erle estimation for the current input signal.
|
|
for (size_t ch = 0; ch < erle_.size(); ++ch) {
|
|
for (size_t k = 0; k < kFftLengthBy2; ++k) {
|
|
RTC_DCHECK_GT(correction_factors_[ch].size(), n_active_sections_[ch][k]);
|
|
float correction_factor =
|
|
correction_factors_[ch][n_active_sections_[ch][k]]
|
|
[band_to_subband_[k]];
|
|
erle_[ch][k] = rtc::SafeClamp(average_erle[ch][k] * correction_factor,
|
|
min_erle_, max_erle_[band_to_subband_[k]]);
|
|
if (use_onset_detection_) {
|
|
erle_onset_compensated_[ch][k] = rtc::SafeClamp(
|
|
average_erle_onset_compensated[ch][k] * correction_factor,
|
|
min_erle_, max_erle_[band_to_subband_[k]]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void SignalDependentErleEstimator::Dump(
|
|
const std::unique_ptr<ApmDataDumper>& data_dumper) const {
|
|
for (auto& erle : erle_estimators_[0]) {
|
|
data_dumper->DumpRaw("aec3_all_erle", erle);
|
|
}
|
|
data_dumper->DumpRaw("aec3_ref_erle", erle_ref_[0]);
|
|
for (auto& factor : correction_factors_[0]) {
|
|
data_dumper->DumpRaw("aec3_erle_correction_factor", factor);
|
|
}
|
|
}
|
|
|
|
// Estimates for each band the smallest number of sections in the filter that
|
|
// together constitute 90% of the estimated echo energy.
|
|
void SignalDependentErleEstimator::ComputeNumberOfActiveFilterSections(
|
|
const RenderBuffer& render_buffer,
|
|
rtc::ArrayView<const std::vector<std::array<float, kFftLengthBy2Plus1>>>
|
|
filter_frequency_responses) {
|
|
RTC_DCHECK_GT(num_sections_, 1);
|
|
// Computes an approximation of the power spectrum if the filter would have
|
|
// been limited to a certain number of filter sections.
|
|
ComputeEchoEstimatePerFilterSection(render_buffer,
|
|
filter_frequency_responses);
|
|
// For each band, computes the number of filter sections that are needed for
|
|
// achieving the 90 % energy in the echo estimate.
|
|
ComputeActiveFilterSections();
|
|
}
|
|
|
|
void SignalDependentErleEstimator::UpdateCorrectionFactors(
|
|
rtc::ArrayView<const float, kFftLengthBy2Plus1> X2,
|
|
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> Y2,
|
|
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> E2,
|
|
const std::vector<bool>& converged_filters) {
|
|
for (size_t ch = 0; ch < converged_filters.size(); ++ch) {
|
|
if (converged_filters[ch]) {
|
|
constexpr float kX2BandEnergyThreshold = 44015068.0f;
|
|
constexpr float kSmthConstantDecreases = 0.1f;
|
|
constexpr float kSmthConstantIncreases = kSmthConstantDecreases / 2.f;
|
|
auto subband_powers = [](rtc::ArrayView<const float> power_spectrum,
|
|
rtc::ArrayView<float> power_spectrum_subbands) {
|
|
for (size_t subband = 0; subband < kSubbands; ++subband) {
|
|
RTC_DCHECK_LE(kBandBoundaries[subband + 1], power_spectrum.size());
|
|
power_spectrum_subbands[subband] = std::accumulate(
|
|
power_spectrum.begin() + kBandBoundaries[subband],
|
|
power_spectrum.begin() + kBandBoundaries[subband + 1], 0.f);
|
|
}
|
|
};
|
|
|
|
std::array<float, kSubbands> X2_subbands, E2_subbands, Y2_subbands;
|
|
subband_powers(X2, X2_subbands);
|
|
subband_powers(E2[ch], E2_subbands);
|
|
subband_powers(Y2[ch], Y2_subbands);
|
|
std::array<size_t, kSubbands> idx_subbands;
|
|
for (size_t subband = 0; subband < kSubbands; ++subband) {
|
|
// When aggregating the number of active sections in the filter for
|
|
// different bands we choose to take the minimum of all of them. As an
|
|
// example, if for one of the bands it is the direct path its refined
|
|
// contributor to the final echo estimate, we consider the direct path
|
|
// is as well the refined contributor for the subband that contains that
|
|
// particular band. That aggregate number of sections will be later used
|
|
// as the identifier of the erle estimator that needs to be updated.
|
|
RTC_DCHECK_LE(kBandBoundaries[subband + 1],
|
|
n_active_sections_[ch].size());
|
|
idx_subbands[subband] = *std::min_element(
|
|
n_active_sections_[ch].begin() + kBandBoundaries[subband],
|
|
n_active_sections_[ch].begin() + kBandBoundaries[subband + 1]);
|
|
}
|
|
|
|
std::array<float, kSubbands> new_erle;
|
|
std::array<bool, kSubbands> is_erle_updated;
|
|
is_erle_updated.fill(false);
|
|
new_erle.fill(0.f);
|
|
for (size_t subband = 0; subband < kSubbands; ++subband) {
|
|
if (X2_subbands[subband] > kX2BandEnergyThreshold &&
|
|
E2_subbands[subband] > 0) {
|
|
new_erle[subband] = Y2_subbands[subband] / E2_subbands[subband];
|
|
RTC_DCHECK_GT(new_erle[subband], 0);
|
|
is_erle_updated[subband] = true;
|
|
++num_updates_[ch][subband];
|
|
}
|
|
}
|
|
|
|
for (size_t subband = 0; subband < kSubbands; ++subband) {
|
|
const size_t idx = idx_subbands[subband];
|
|
RTC_DCHECK_LT(idx, erle_estimators_[ch].size());
|
|
float alpha = new_erle[subband] > erle_estimators_[ch][idx][subband]
|
|
? kSmthConstantIncreases
|
|
: kSmthConstantDecreases;
|
|
alpha = static_cast<float>(is_erle_updated[subband]) * alpha;
|
|
erle_estimators_[ch][idx][subband] +=
|
|
alpha * (new_erle[subband] - erle_estimators_[ch][idx][subband]);
|
|
erle_estimators_[ch][idx][subband] = rtc::SafeClamp(
|
|
erle_estimators_[ch][idx][subband], min_erle_, max_erle_[subband]);
|
|
}
|
|
|
|
for (size_t subband = 0; subband < kSubbands; ++subband) {
|
|
float alpha = new_erle[subband] > erle_ref_[ch][subband]
|
|
? kSmthConstantIncreases
|
|
: kSmthConstantDecreases;
|
|
alpha = static_cast<float>(is_erle_updated[subband]) * alpha;
|
|
erle_ref_[ch][subband] +=
|
|
alpha * (new_erle[subband] - erle_ref_[ch][subband]);
|
|
erle_ref_[ch][subband] = rtc::SafeClamp(erle_ref_[ch][subband],
|
|
min_erle_, max_erle_[subband]);
|
|
}
|
|
|
|
for (size_t subband = 0; subband < kSubbands; ++subband) {
|
|
constexpr int kNumUpdateThr = 50;
|
|
if (is_erle_updated[subband] &&
|
|
num_updates_[ch][subband] > kNumUpdateThr) {
|
|
const size_t idx = idx_subbands[subband];
|
|
RTC_DCHECK_GT(erle_ref_[ch][subband], 0.f);
|
|
// Computes the ratio between the erle that is updated using all the
|
|
// points and the erle that is updated only on signals that share the
|
|
// same number of active filter sections.
|
|
float new_correction_factor =
|
|
erle_estimators_[ch][idx][subband] / erle_ref_[ch][subband];
|
|
|
|
correction_factors_[ch][idx][subband] +=
|
|
0.1f *
|
|
(new_correction_factor - correction_factors_[ch][idx][subband]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void SignalDependentErleEstimator::ComputeEchoEstimatePerFilterSection(
|
|
const RenderBuffer& render_buffer,
|
|
rtc::ArrayView<const std::vector<std::array<float, kFftLengthBy2Plus1>>>
|
|
filter_frequency_responses) {
|
|
const SpectrumBuffer& spectrum_render_buffer =
|
|
render_buffer.GetSpectrumBuffer();
|
|
const size_t num_render_channels = spectrum_render_buffer.buffer[0].size();
|
|
const size_t num_capture_channels = S2_section_accum_.size();
|
|
const float one_by_num_render_channels = 1.f / num_render_channels;
|
|
|
|
RTC_DCHECK_EQ(S2_section_accum_.size(), filter_frequency_responses.size());
|
|
|
|
for (size_t capture_ch = 0; capture_ch < num_capture_channels; ++capture_ch) {
|
|
RTC_DCHECK_EQ(S2_section_accum_[capture_ch].size() + 1,
|
|
section_boundaries_blocks_.size());
|
|
size_t idx_render = render_buffer.Position();
|
|
idx_render = spectrum_render_buffer.OffsetIndex(
|
|
idx_render, section_boundaries_blocks_[0]);
|
|
|
|
for (size_t section = 0; section < num_sections_; ++section) {
|
|
std::array<float, kFftLengthBy2Plus1> X2_section;
|
|
std::array<float, kFftLengthBy2Plus1> H2_section;
|
|
X2_section.fill(0.f);
|
|
H2_section.fill(0.f);
|
|
const size_t block_limit =
|
|
std::min(section_boundaries_blocks_[section + 1],
|
|
filter_frequency_responses[capture_ch].size());
|
|
for (size_t block = section_boundaries_blocks_[section];
|
|
block < block_limit; ++block) {
|
|
for (size_t render_ch = 0;
|
|
render_ch < spectrum_render_buffer.buffer[idx_render].size();
|
|
++render_ch) {
|
|
for (size_t k = 0; k < X2_section.size(); ++k) {
|
|
X2_section[k] +=
|
|
spectrum_render_buffer.buffer[idx_render][render_ch][k] *
|
|
one_by_num_render_channels;
|
|
}
|
|
}
|
|
std::transform(H2_section.begin(), H2_section.end(),
|
|
filter_frequency_responses[capture_ch][block].begin(),
|
|
H2_section.begin(), std::plus<float>());
|
|
idx_render = spectrum_render_buffer.IncIndex(idx_render);
|
|
}
|
|
|
|
std::transform(X2_section.begin(), X2_section.end(), H2_section.begin(),
|
|
S2_section_accum_[capture_ch][section].begin(),
|
|
std::multiplies<float>());
|
|
}
|
|
|
|
for (size_t section = 1; section < num_sections_; ++section) {
|
|
std::transform(S2_section_accum_[capture_ch][section - 1].begin(),
|
|
S2_section_accum_[capture_ch][section - 1].end(),
|
|
S2_section_accum_[capture_ch][section].begin(),
|
|
S2_section_accum_[capture_ch][section].begin(),
|
|
std::plus<float>());
|
|
}
|
|
}
|
|
}
|
|
|
|
void SignalDependentErleEstimator::ComputeActiveFilterSections() {
|
|
for (size_t ch = 0; ch < n_active_sections_.size(); ++ch) {
|
|
std::fill(n_active_sections_[ch].begin(), n_active_sections_[ch].end(), 0);
|
|
for (size_t k = 0; k < kFftLengthBy2Plus1; ++k) {
|
|
size_t section = num_sections_;
|
|
float target = 0.9f * S2_section_accum_[ch][num_sections_ - 1][k];
|
|
while (section > 0 && S2_section_accum_[ch][section - 1][k] >= target) {
|
|
n_active_sections_[ch][k] = --section;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} // namespace webrtc
|