mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-13 22:00:47 +01:00

Bug: webrtc:12338 Change-Id: I85bff694dd2ead83c939c4d1945eff82e1296001 No-Presubmit: True Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/227161 Commit-Queue: Artem Titov <titovartem@webrtc.org> Reviewed-by: Harald Alvestrand <hta@webrtc.org> Cr-Commit-Position: refs/heads/master@{#34690}
168 lines
4.7 KiB
C++
168 lines
4.7 KiB
C++
/*
|
|
* Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/audio_processing/vad/voice_activity_detector.h"
|
|
|
|
#include <algorithm>
|
|
#include <vector>
|
|
|
|
#include "test/gtest.h"
|
|
#include "test/testsupport/file_utils.h"
|
|
|
|
namespace webrtc {
|
|
namespace {
|
|
|
|
const int kStartTimeSec = 16;
|
|
const float kMeanSpeechProbability = 0.3f;
|
|
const float kMaxNoiseProbability = 0.1f;
|
|
const size_t kNumChunks = 300u;
|
|
const size_t kNumChunksPerIsacBlock = 3;
|
|
|
|
void GenerateNoise(std::vector<int16_t>* data) {
|
|
for (size_t i = 0; i < data->size(); ++i) {
|
|
// std::rand returns between 0 and RAND_MAX, but this will work because it
|
|
// wraps into some random place.
|
|
(*data)[i] = std::rand();
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
TEST(VoiceActivityDetectorTest, ConstructorSetsDefaultValues) {
|
|
const float kDefaultVoiceValue = 1.f;
|
|
|
|
VoiceActivityDetector vad;
|
|
|
|
std::vector<double> p = vad.chunkwise_voice_probabilities();
|
|
std::vector<double> rms = vad.chunkwise_rms();
|
|
|
|
EXPECT_EQ(p.size(), 0u);
|
|
EXPECT_EQ(rms.size(), 0u);
|
|
|
|
EXPECT_FLOAT_EQ(vad.last_voice_probability(), kDefaultVoiceValue);
|
|
}
|
|
|
|
TEST(VoiceActivityDetectorTest, Speech16kHzHasHighVoiceProbabilities) {
|
|
const int kSampleRateHz = 16000;
|
|
const int kLength10Ms = kSampleRateHz / 100;
|
|
|
|
VoiceActivityDetector vad;
|
|
|
|
std::vector<int16_t> data(kLength10Ms);
|
|
float mean_probability = 0.f;
|
|
|
|
FILE* pcm_file =
|
|
fopen(test::ResourcePath("audio_processing/transient/audio16kHz", "pcm")
|
|
.c_str(),
|
|
"rb");
|
|
ASSERT_TRUE(pcm_file != nullptr);
|
|
// The silences in the file are skipped to get a more robust voice probability
|
|
// for speech.
|
|
ASSERT_EQ(fseek(pcm_file, kStartTimeSec * kSampleRateHz * sizeof(data[0]),
|
|
SEEK_SET),
|
|
0);
|
|
|
|
size_t num_chunks = 0;
|
|
while (fread(&data[0], sizeof(data[0]), data.size(), pcm_file) ==
|
|
data.size()) {
|
|
vad.ProcessChunk(&data[0], data.size(), kSampleRateHz);
|
|
|
|
mean_probability += vad.last_voice_probability();
|
|
|
|
++num_chunks;
|
|
}
|
|
|
|
mean_probability /= num_chunks;
|
|
|
|
EXPECT_GT(mean_probability, kMeanSpeechProbability);
|
|
}
|
|
|
|
TEST(VoiceActivityDetectorTest, Speech32kHzHasHighVoiceProbabilities) {
|
|
const int kSampleRateHz = 32000;
|
|
const int kLength10Ms = kSampleRateHz / 100;
|
|
|
|
VoiceActivityDetector vad;
|
|
|
|
std::vector<int16_t> data(kLength10Ms);
|
|
float mean_probability = 0.f;
|
|
|
|
FILE* pcm_file =
|
|
fopen(test::ResourcePath("audio_processing/transient/audio32kHz", "pcm")
|
|
.c_str(),
|
|
"rb");
|
|
ASSERT_TRUE(pcm_file != nullptr);
|
|
// The silences in the file are skipped to get a more robust voice probability
|
|
// for speech.
|
|
ASSERT_EQ(fseek(pcm_file, kStartTimeSec * kSampleRateHz * sizeof(data[0]),
|
|
SEEK_SET),
|
|
0);
|
|
|
|
size_t num_chunks = 0;
|
|
while (fread(&data[0], sizeof(data[0]), data.size(), pcm_file) ==
|
|
data.size()) {
|
|
vad.ProcessChunk(&data[0], data.size(), kSampleRateHz);
|
|
|
|
mean_probability += vad.last_voice_probability();
|
|
|
|
++num_chunks;
|
|
}
|
|
|
|
mean_probability /= num_chunks;
|
|
|
|
EXPECT_GT(mean_probability, kMeanSpeechProbability);
|
|
}
|
|
|
|
TEST(VoiceActivityDetectorTest, Noise16kHzHasLowVoiceProbabilities) {
|
|
VoiceActivityDetector vad;
|
|
|
|
std::vector<int16_t> data(kLength10Ms);
|
|
float max_probability = 0.f;
|
|
|
|
std::srand(42);
|
|
|
|
for (size_t i = 0; i < kNumChunks; ++i) {
|
|
GenerateNoise(&data);
|
|
|
|
vad.ProcessChunk(&data[0], data.size(), kSampleRateHz);
|
|
|
|
// Before the |vad has enough data to process an ISAC block it will return
|
|
// the default value, 1.f, which would ruin the `max_probability` value.
|
|
if (i > kNumChunksPerIsacBlock) {
|
|
max_probability = std::max(max_probability, vad.last_voice_probability());
|
|
}
|
|
}
|
|
|
|
EXPECT_LT(max_probability, kMaxNoiseProbability);
|
|
}
|
|
|
|
TEST(VoiceActivityDetectorTest, Noise32kHzHasLowVoiceProbabilities) {
|
|
VoiceActivityDetector vad;
|
|
|
|
std::vector<int16_t> data(2 * kLength10Ms);
|
|
float max_probability = 0.f;
|
|
|
|
std::srand(42);
|
|
|
|
for (size_t i = 0; i < kNumChunks; ++i) {
|
|
GenerateNoise(&data);
|
|
|
|
vad.ProcessChunk(&data[0], data.size(), 2 * kSampleRateHz);
|
|
|
|
// Before the |vad has enough data to process an ISAC block it will return
|
|
// the default value, 1.f, which would ruin the `max_probability` value.
|
|
if (i > kNumChunksPerIsacBlock) {
|
|
max_probability = std::max(max_probability, vad.last_voice_probability());
|
|
}
|
|
}
|
|
|
|
EXPECT_LT(max_probability, kMaxNoiseProbability);
|
|
}
|
|
|
|
} // namespace webrtc
|