webrtc/modules/pacing/prioritized_packet_queue.cc
Henrik Boström ef241167a5 [SlackedPacer] Don't slack while retransmissions or audio is in queue.
This CL introduces PacketQueue::SizeInPacketsPerRtpPacketMediaType
keeping track of the number of packets in the queue per
RtpPacketMediaType.

The TaskQueuePacedSender is updated not to apply slack if the queue
contains any kRetransmission or kAudio packets. The hope is that not
slacking retransmissions will make the NACK/retransmission regression
of the SlackedPacer experiment go away. Wanting to not slack audio
packets is unrelated to the regression but a sensible thing to due
since audio is highest priority.

This CL does not change anything when the SlackedPacer experiment is
not running, since if its not running then none of the packets are
slacked.

Bug: webrtc:14161
Change-Id: I1e588599b6b64ebfd7d890706b6afd0b84fd746d
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/265160
Reviewed-by: Erik Språng <sprang@webrtc.org>
Commit-Queue: Henrik Boström <hbos@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#37139}
2022-06-07 12:16:37 +00:00

267 lines
9.1 KiB
C++

/*
* Copyright (c) 2022 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/pacing/prioritized_packet_queue.h"
#include <utility>
#include "modules/rtp_rtcp/include/rtp_rtcp_defines.h"
#include "rtc_base/checks.h"
namespace webrtc {
namespace {
constexpr int kAudioPrioLevel = 0;
int GetPriorityForType(RtpPacketMediaType type) {
// Lower number takes priority over higher.
switch (type) {
case RtpPacketMediaType::kAudio:
// Audio is always prioritized over other packet types.
return kAudioPrioLevel;
case RtpPacketMediaType::kRetransmission:
// Send retransmissions before new media.
return kAudioPrioLevel + 1;
case RtpPacketMediaType::kVideo:
case RtpPacketMediaType::kForwardErrorCorrection:
// Video has "normal" priority, in the old speak.
// Send redundancy concurrently to video. If it is delayed it might have a
// lower chance of being useful.
return kAudioPrioLevel + 2;
case RtpPacketMediaType::kPadding:
// Packets that are in themselves likely useless, only sent to keep the
// BWE high.
return kAudioPrioLevel + 3;
}
RTC_CHECK_NOTREACHED();
}
} // namespace
DataSize PrioritizedPacketQueue::QueuedPacket::PacketSize() const {
return DataSize::Bytes(packet->payload_size() + packet->padding_size());
}
PrioritizedPacketQueue::StreamQueue::StreamQueue(Timestamp creation_time)
: last_enqueue_time_(creation_time) {}
bool PrioritizedPacketQueue::StreamQueue::EnqueuePacket(QueuedPacket packet,
int priority_level) {
bool first_packet_at_level = packets_[priority_level].empty();
packets_[priority_level].push_back(std::move(packet));
return first_packet_at_level;
}
PrioritizedPacketQueue::QueuedPacket
PrioritizedPacketQueue::StreamQueue::DequePacket(int priority_level) {
RTC_DCHECK(!packets_[priority_level].empty());
QueuedPacket packet = std::move(packets_[priority_level].front());
packets_[priority_level].pop_front();
return packet;
}
bool PrioritizedPacketQueue::StreamQueue::HasPacketsAtPrio(
int priority_level) const {
return !packets_[priority_level].empty();
}
bool PrioritizedPacketQueue::StreamQueue::IsEmpty() const {
for (const std::deque<QueuedPacket>& queue : packets_) {
if (!queue.empty()) {
return false;
}
}
return true;
}
Timestamp PrioritizedPacketQueue::StreamQueue::LeadingAudioPacketEnqueueTime()
const {
RTC_DCHECK(!packets_[kAudioPrioLevel].empty());
return packets_[kAudioPrioLevel].begin()->enqueue_time;
}
Timestamp PrioritizedPacketQueue::StreamQueue::LastEnqueueTime() const {
return last_enqueue_time_;
}
PrioritizedPacketQueue::PrioritizedPacketQueue(Timestamp creation_time)
: queue_time_sum_(TimeDelta::Zero()),
pause_time_sum_(TimeDelta::Zero()),
size_packets_(0),
size_packets_per_media_type_({}),
size_payload_(DataSize::Zero()),
last_update_time_(creation_time),
paused_(false),
last_culling_time_(creation_time),
top_active_prio_level_(-1) {}
void PrioritizedPacketQueue::Push(Timestamp enqueue_time,
std::unique_ptr<RtpPacketToSend> packet) {
StreamQueue* stream_queue;
auto [it, inserted] = streams_.emplace(packet->Ssrc(), nullptr);
if (inserted) {
it->second = std::make_unique<StreamQueue>(enqueue_time);
}
stream_queue = it->second.get();
auto enqueue_time_iterator =
enqueue_times_.insert(enqueue_times_.end(), enqueue_time);
RTC_DCHECK(packet->packet_type().has_value());
RtpPacketMediaType packet_type = packet->packet_type().value();
int prio_level = GetPriorityForType(packet_type);
RTC_DCHECK_GE(prio_level, 0);
RTC_DCHECK_LT(prio_level, kNumPriorityLevels);
QueuedPacket queued_packed = {.packet = std::move(packet),
.enqueue_time = enqueue_time,
.enqueue_time_iterator = enqueue_time_iterator};
// In order to figure out how much time a packet has spent in the queue
// while not in a paused state, we subtract the total amount of time the
// queue has been paused so far, and when the packet is popped we subtract
// the total amount of time the queue has been paused at that moment. This
// way we subtract the total amount of time the packet has spent in the
// queue while in a paused state.
UpdateAverageQueueTime(enqueue_time);
queued_packed.enqueue_time -= pause_time_sum_;
++size_packets_;
++size_packets_per_media_type_[static_cast<size_t>(packet_type)];
size_payload_ += queued_packed.PacketSize();
if (stream_queue->EnqueuePacket(std::move(queued_packed), prio_level)) {
// Number packets at `prio_level` for this steam is now non-zero.
streams_by_prio_[prio_level].push_back(stream_queue);
}
if (top_active_prio_level_ < 0 || prio_level < top_active_prio_level_) {
top_active_prio_level_ = prio_level;
}
static constexpr TimeDelta kTimeout = TimeDelta::Millis(500);
if (enqueue_time - last_culling_time_ > kTimeout) {
for (auto it = streams_.begin(); it != streams_.end();) {
if (it->second->IsEmpty() &&
it->second->LastEnqueueTime() + kTimeout < enqueue_time) {
streams_.erase(it++);
} else {
++it;
}
}
last_culling_time_ = enqueue_time;
}
}
std::unique_ptr<RtpPacketToSend> PrioritizedPacketQueue::Pop() {
if (size_packets_ == 0) {
return nullptr;
}
RTC_DCHECK_GE(top_active_prio_level_, 0);
StreamQueue& stream_queue = *streams_by_prio_[top_active_prio_level_].front();
QueuedPacket packet = stream_queue.DequePacket(top_active_prio_level_);
--size_packets_;
RTC_DCHECK(packet.packet->packet_type().has_value());
RtpPacketMediaType packet_type = packet.packet->packet_type().value();
--size_packets_per_media_type_[static_cast<size_t>(packet_type)];
RTC_DCHECK_GE(size_packets_per_media_type_[static_cast<size_t>(packet_type)],
0);
size_payload_ -= packet.PacketSize();
// Calculate the total amount of time spent by this packet in the queue
// while in a non-paused state. Note that the `pause_time_sum_ms_` was
// subtracted from `packet.enqueue_time_ms` when the packet was pushed, and
// by subtracting it now we effectively remove the time spent in in the
// queue while in a paused state.
TimeDelta time_in_non_paused_state =
last_update_time_ - packet.enqueue_time - pause_time_sum_;
queue_time_sum_ -= time_in_non_paused_state;
RTC_DCHECK(size_packets_ > 0 || queue_time_sum_ == TimeDelta::Zero());
RTC_CHECK(packet.enqueue_time_iterator != enqueue_times_.end());
enqueue_times_.erase(packet.enqueue_time_iterator);
// Remove StreamQueue from head of fifo-queue for this prio level, and
// and add it to the end if it still has packets.
streams_by_prio_[top_active_prio_level_].pop_front();
if (stream_queue.HasPacketsAtPrio(top_active_prio_level_)) {
streams_by_prio_[top_active_prio_level_].push_back(&stream_queue);
} else if (streams_by_prio_[top_active_prio_level_].empty()) {
// No stream queues have packets at this prio level, find top priority
// that is not empty.
if (size_packets_ == 0) {
top_active_prio_level_ = -1;
} else {
for (int i = 0; i < kNumPriorityLevels; ++i) {
if (!streams_by_prio_[i].empty()) {
top_active_prio_level_ = i;
break;
}
}
}
}
return std::move(packet.packet);
}
int PrioritizedPacketQueue::SizeInPackets() const {
return size_packets_;
}
DataSize PrioritizedPacketQueue::SizeInPayloadBytes() const {
return size_payload_;
}
const std::array<int, kNumMediaTypes>&
PrioritizedPacketQueue::SizeInPacketsPerRtpPacketMediaType() const {
return size_packets_per_media_type_;
}
Timestamp PrioritizedPacketQueue::LeadingAudioPacketEnqueueTime() const {
if (streams_by_prio_[kAudioPrioLevel].empty()) {
return Timestamp::MinusInfinity();
}
return streams_by_prio_[kAudioPrioLevel]
.front()
->LeadingAudioPacketEnqueueTime();
}
Timestamp PrioritizedPacketQueue::OldestEnqueueTime() const {
return enqueue_times_.empty() ? Timestamp::MinusInfinity()
: enqueue_times_.front();
}
TimeDelta PrioritizedPacketQueue::AverageQueueTime() const {
if (size_packets_ == 0) {
return TimeDelta::Zero();
}
return queue_time_sum_ / size_packets_;
}
void PrioritizedPacketQueue::UpdateAverageQueueTime(Timestamp now) {
RTC_CHECK_GE(now, last_update_time_);
if (now == last_update_time_) {
return;
}
TimeDelta delta = now - last_update_time_;
if (paused_) {
pause_time_sum_ += delta;
} else {
queue_time_sum_ += delta * size_packets_;
}
last_update_time_ = now;
}
void PrioritizedPacketQueue::SetPauseState(bool paused, Timestamp now) {
UpdateAverageQueueTime(now);
paused_ = paused;
}
} // namespace webrtc