mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-14 14:20:45 +01:00

See design doc at https://docs.google.com/a/chromium.org/document/d/1I6nmE9D_BmCY-IoV6MDPY2V6WYpEI-dg2apWXTfZyUI/edit?usp=sharing for more information. This CL was reviewed and approved in pieces in the following CLs: https://webrtc-codereview.appspot.com/24209004/ https://webrtc-codereview.appspot.com/24229004/ https://webrtc-codereview.appspot.com/24259004/ https://webrtc-codereview.appspot.com/25109004/ https://webrtc-codereview.appspot.com/26099004/ https://webrtc-codereview.appspot.com/27069004/ https://webrtc-codereview.appspot.com/27969004/ https://webrtc-codereview.appspot.com/27989004/ https://webrtc-codereview.appspot.com/29009004/ https://webrtc-codereview.appspot.com/30929004/ https://webrtc-codereview.appspot.com/30939004/ https://webrtc-codereview.appspot.com/31999004/ Committing as TBR to the original reviewers. BUG=chromium:81439 TEST=none TBR=pthatcher,henrik.lundin,tina.legrand,stefan,tkchin,glaznev,kjellander,perkj,mflodman,henrika,asapersson,niklas.enbom Review URL: https://webrtc-codereview.appspot.com/23129004 git-svn-id: http://webrtc.googlecode.com/svn/trunk@7726 4adac7df-926f-26a2-2b94-8c16560cd09d
826 lines
30 KiB
C++
826 lines
30 KiB
C++
/*
|
|
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include <list>
|
|
|
|
#include "testing/gmock/include/gmock/gmock.h"
|
|
#include "testing/gtest/include/gtest/gtest.h"
|
|
#include "webrtc/modules/pacing/include/paced_sender.h"
|
|
#include "webrtc/system_wrappers/interface/clock.h"
|
|
|
|
using testing::_;
|
|
using testing::Return;
|
|
|
|
namespace webrtc {
|
|
namespace test {
|
|
|
|
static const int kTargetBitrate = 800;
|
|
static const float kPaceMultiplier = 1.5f;
|
|
|
|
class MockPacedSenderCallback : public PacedSender::Callback {
|
|
public:
|
|
MOCK_METHOD4(TimeToSendPacket,
|
|
bool(uint32_t ssrc,
|
|
uint16_t sequence_number,
|
|
int64_t capture_time_ms,
|
|
bool retransmission));
|
|
MOCK_METHOD1(TimeToSendPadding,
|
|
size_t(size_t bytes));
|
|
};
|
|
|
|
class PacedSenderPadding : public PacedSender::Callback {
|
|
public:
|
|
PacedSenderPadding() : padding_sent_(0) {}
|
|
|
|
bool TimeToSendPacket(uint32_t ssrc,
|
|
uint16_t sequence_number,
|
|
int64_t capture_time_ms,
|
|
bool retransmission) {
|
|
return true;
|
|
}
|
|
|
|
size_t TimeToSendPadding(size_t bytes) {
|
|
const size_t kPaddingPacketSize = 224;
|
|
size_t num_packets = (bytes + kPaddingPacketSize - 1) / kPaddingPacketSize;
|
|
padding_sent_ += kPaddingPacketSize * num_packets;
|
|
return kPaddingPacketSize * num_packets;
|
|
}
|
|
|
|
size_t padding_sent() { return padding_sent_; }
|
|
|
|
private:
|
|
size_t padding_sent_;
|
|
};
|
|
|
|
class PacedSenderProbing : public PacedSender::Callback {
|
|
public:
|
|
PacedSenderProbing(const std::list<int>& expected_deltas, Clock* clock)
|
|
: prev_packet_time_ms_(-1),
|
|
expected_deltas_(expected_deltas),
|
|
packets_sent_(0),
|
|
clock_(clock) {}
|
|
|
|
bool TimeToSendPacket(uint32_t ssrc,
|
|
uint16_t sequence_number,
|
|
int64_t capture_time_ms,
|
|
bool retransmission) {
|
|
++packets_sent_;
|
|
EXPECT_FALSE(expected_deltas_.empty());
|
|
if (expected_deltas_.empty())
|
|
return false;
|
|
int64_t now_ms = clock_->TimeInMilliseconds();
|
|
if (prev_packet_time_ms_ >= 0) {
|
|
EXPECT_EQ(expected_deltas_.front(), now_ms - prev_packet_time_ms_);
|
|
expected_deltas_.pop_front();
|
|
}
|
|
prev_packet_time_ms_ = now_ms;
|
|
return true;
|
|
}
|
|
|
|
size_t TimeToSendPadding(size_t bytes) {
|
|
EXPECT_TRUE(false);
|
|
return bytes;
|
|
}
|
|
|
|
int packets_sent() const { return packets_sent_; }
|
|
|
|
private:
|
|
int64_t prev_packet_time_ms_;
|
|
std::list<int> expected_deltas_;
|
|
int packets_sent_;
|
|
Clock* clock_;
|
|
};
|
|
|
|
class PacedSenderTest : public ::testing::Test {
|
|
protected:
|
|
PacedSenderTest() : clock_(123456) {
|
|
srand(0);
|
|
// Need to initialize PacedSender after we initialize clock.
|
|
send_bucket_.reset(new PacedSender(&clock_,
|
|
&callback_,
|
|
kTargetBitrate,
|
|
kPaceMultiplier * kTargetBitrate,
|
|
0));
|
|
}
|
|
|
|
void SendAndExpectPacket(PacedSender::Priority priority,
|
|
uint32_t ssrc,
|
|
uint16_t sequence_number,
|
|
int64_t capture_time_ms,
|
|
size_t size,
|
|
bool retransmission) {
|
|
EXPECT_FALSE(send_bucket_->SendPacket(priority, ssrc,
|
|
sequence_number, capture_time_ms, size, retransmission));
|
|
EXPECT_CALL(callback_,
|
|
TimeToSendPacket(ssrc, sequence_number, capture_time_ms, false))
|
|
.Times(1)
|
|
.WillRepeatedly(Return(true));
|
|
}
|
|
|
|
SimulatedClock clock_;
|
|
MockPacedSenderCallback callback_;
|
|
scoped_ptr<PacedSender> send_bucket_;
|
|
};
|
|
|
|
TEST_F(PacedSenderTest, QueuePacket) {
|
|
uint32_t ssrc = 12345;
|
|
uint16_t sequence_number = 1234;
|
|
// Due to the multiplicative factor we can send 3 packets not 2 packets.
|
|
SendAndExpectPacket(PacedSender::kNormalPriority,
|
|
ssrc,
|
|
sequence_number++,
|
|
clock_.TimeInMilliseconds(),
|
|
250,
|
|
false);
|
|
SendAndExpectPacket(PacedSender::kNormalPriority,
|
|
ssrc,
|
|
sequence_number++,
|
|
clock_.TimeInMilliseconds(),
|
|
250,
|
|
false);
|
|
SendAndExpectPacket(PacedSender::kNormalPriority,
|
|
ssrc,
|
|
sequence_number++,
|
|
clock_.TimeInMilliseconds(),
|
|
250,
|
|
false);
|
|
int64_t queued_packet_timestamp = clock_.TimeInMilliseconds();
|
|
EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority, ssrc,
|
|
sequence_number, queued_packet_timestamp, 250, false));
|
|
send_bucket_->Process();
|
|
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
|
|
EXPECT_CALL(callback_, TimeToSendPadding(_)).Times(0);
|
|
clock_.AdvanceTimeMilliseconds(4);
|
|
EXPECT_EQ(1, send_bucket_->TimeUntilNextProcess());
|
|
clock_.AdvanceTimeMilliseconds(1);
|
|
EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
|
|
EXPECT_CALL(
|
|
callback_,
|
|
TimeToSendPacket(ssrc, sequence_number++, queued_packet_timestamp, false))
|
|
.Times(1)
|
|
.WillRepeatedly(Return(true));
|
|
send_bucket_->Process();
|
|
sequence_number++;
|
|
SendAndExpectPacket(PacedSender::kNormalPriority,
|
|
ssrc,
|
|
sequence_number++,
|
|
clock_.TimeInMilliseconds(),
|
|
250,
|
|
false);
|
|
SendAndExpectPacket(PacedSender::kNormalPriority,
|
|
ssrc,
|
|
sequence_number++,
|
|
clock_.TimeInMilliseconds(),
|
|
250,
|
|
false);
|
|
EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority, ssrc,
|
|
sequence_number++, clock_.TimeInMilliseconds(), 250, false));
|
|
send_bucket_->Process();
|
|
}
|
|
|
|
TEST_F(PacedSenderTest, PaceQueuedPackets) {
|
|
uint32_t ssrc = 12345;
|
|
uint16_t sequence_number = 1234;
|
|
|
|
// Due to the multiplicative factor we can send 3 packets not 2 packets.
|
|
for (int i = 0; i < 3; ++i) {
|
|
SendAndExpectPacket(PacedSender::kNormalPriority,
|
|
ssrc,
|
|
sequence_number++,
|
|
clock_.TimeInMilliseconds(),
|
|
250,
|
|
false);
|
|
}
|
|
for (int j = 0; j < 30; ++j) {
|
|
EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority, ssrc,
|
|
sequence_number++, clock_.TimeInMilliseconds(), 250, false));
|
|
}
|
|
send_bucket_->Process();
|
|
EXPECT_CALL(callback_, TimeToSendPadding(_)).Times(0);
|
|
for (int k = 0; k < 10; ++k) {
|
|
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
EXPECT_CALL(callback_, TimeToSendPacket(ssrc, _, _, false))
|
|
.Times(3)
|
|
.WillRepeatedly(Return(true));
|
|
EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
|
|
EXPECT_EQ(0, send_bucket_->Process());
|
|
}
|
|
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
|
|
EXPECT_EQ(0, send_bucket_->Process());
|
|
SendAndExpectPacket(PacedSender::kNormalPriority,
|
|
ssrc,
|
|
sequence_number++,
|
|
clock_.TimeInMilliseconds(),
|
|
250,
|
|
false);
|
|
SendAndExpectPacket(PacedSender::kNormalPriority,
|
|
ssrc,
|
|
sequence_number++,
|
|
clock_.TimeInMilliseconds(),
|
|
250,
|
|
false);
|
|
SendAndExpectPacket(PacedSender::kNormalPriority,
|
|
ssrc,
|
|
sequence_number++,
|
|
clock_.TimeInMilliseconds(),
|
|
250,
|
|
false);
|
|
EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority, ssrc,
|
|
sequence_number, clock_.TimeInMilliseconds(), 250, false));
|
|
send_bucket_->Process();
|
|
}
|
|
|
|
TEST_F(PacedSenderTest, PaceQueuedPacketsWithDuplicates) {
|
|
uint32_t ssrc = 12345;
|
|
uint16_t sequence_number = 1234;
|
|
uint16_t queued_sequence_number;
|
|
|
|
// Due to the multiplicative factor we can send 3 packets not 2 packets.
|
|
for (int i = 0; i < 3; ++i) {
|
|
SendAndExpectPacket(PacedSender::kNormalPriority,
|
|
ssrc,
|
|
sequence_number++,
|
|
clock_.TimeInMilliseconds(),
|
|
250,
|
|
false);
|
|
}
|
|
queued_sequence_number = sequence_number;
|
|
|
|
for (int j = 0; j < 30; ++j) {
|
|
// Send in duplicate packets.
|
|
EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority, ssrc,
|
|
sequence_number, clock_.TimeInMilliseconds(), 250, false));
|
|
EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority, ssrc,
|
|
sequence_number++, clock_.TimeInMilliseconds(), 250, false));
|
|
}
|
|
EXPECT_CALL(callback_, TimeToSendPadding(_)).Times(0);
|
|
send_bucket_->Process();
|
|
for (int k = 0; k < 10; ++k) {
|
|
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
|
|
for (int i = 0; i < 3; ++i) {
|
|
EXPECT_CALL(callback_,
|
|
TimeToSendPacket(ssrc, queued_sequence_number++, _, false))
|
|
.Times(1)
|
|
.WillRepeatedly(Return(true));
|
|
}
|
|
EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
|
|
EXPECT_EQ(0, send_bucket_->Process());
|
|
}
|
|
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
|
|
EXPECT_EQ(0, send_bucket_->Process());
|
|
SendAndExpectPacket(PacedSender::kNormalPriority,
|
|
ssrc,
|
|
sequence_number++,
|
|
clock_.TimeInMilliseconds(),
|
|
250,
|
|
false);
|
|
SendAndExpectPacket(PacedSender::kNormalPriority,
|
|
ssrc,
|
|
sequence_number++,
|
|
clock_.TimeInMilliseconds(),
|
|
250,
|
|
false);
|
|
SendAndExpectPacket(PacedSender::kNormalPriority,
|
|
ssrc,
|
|
sequence_number++,
|
|
clock_.TimeInMilliseconds(),
|
|
250,
|
|
false);
|
|
EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority, ssrc,
|
|
sequence_number++, clock_.TimeInMilliseconds(), 250, false));
|
|
send_bucket_->Process();
|
|
}
|
|
|
|
TEST_F(PacedSenderTest, CanQueuePacketsWithSameSequenceNumberOnDifferentSsrcs) {
|
|
uint32_t ssrc = 12345;
|
|
uint16_t sequence_number = 1234;
|
|
|
|
SendAndExpectPacket(PacedSender::kNormalPriority,
|
|
ssrc,
|
|
sequence_number,
|
|
clock_.TimeInMilliseconds(),
|
|
250,
|
|
false);
|
|
|
|
// Expect packet on second ssrc to be queued and sent as well.
|
|
SendAndExpectPacket(PacedSender::kNormalPriority,
|
|
ssrc + 1,
|
|
sequence_number,
|
|
clock_.TimeInMilliseconds(),
|
|
250,
|
|
false);
|
|
|
|
clock_.AdvanceTimeMilliseconds(1000);
|
|
send_bucket_->Process();
|
|
}
|
|
|
|
TEST_F(PacedSenderTest, Padding) {
|
|
uint32_t ssrc = 12345;
|
|
uint16_t sequence_number = 1234;
|
|
|
|
send_bucket_->UpdateBitrate(
|
|
kTargetBitrate, kPaceMultiplier * kTargetBitrate, kTargetBitrate);
|
|
// Due to the multiplicative factor we can send 3 packets not 2 packets.
|
|
SendAndExpectPacket(PacedSender::kNormalPriority,
|
|
ssrc,
|
|
sequence_number++,
|
|
clock_.TimeInMilliseconds(),
|
|
250,
|
|
false);
|
|
SendAndExpectPacket(PacedSender::kNormalPriority,
|
|
ssrc,
|
|
sequence_number++,
|
|
clock_.TimeInMilliseconds(),
|
|
250,
|
|
false);
|
|
SendAndExpectPacket(PacedSender::kNormalPriority,
|
|
ssrc,
|
|
sequence_number++,
|
|
clock_.TimeInMilliseconds(),
|
|
250,
|
|
false);
|
|
// No padding is expected since we have sent too much already.
|
|
EXPECT_CALL(callback_, TimeToSendPadding(_)).Times(0);
|
|
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
|
|
EXPECT_EQ(0, send_bucket_->Process());
|
|
|
|
// 5 milliseconds later we have enough budget to send some padding.
|
|
EXPECT_CALL(callback_, TimeToSendPadding(250)).Times(1).
|
|
WillOnce(Return(250));
|
|
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
|
|
EXPECT_EQ(0, send_bucket_->Process());
|
|
}
|
|
|
|
TEST_F(PacedSenderTest, NoPaddingWhenDisabled) {
|
|
send_bucket_->SetStatus(false);
|
|
send_bucket_->UpdateBitrate(
|
|
kTargetBitrate, kPaceMultiplier * kTargetBitrate, kTargetBitrate);
|
|
// No padding is expected since the pacer is disabled.
|
|
EXPECT_CALL(callback_, TimeToSendPadding(_)).Times(0);
|
|
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
|
|
EXPECT_EQ(0, send_bucket_->Process());
|
|
EXPECT_CALL(callback_, TimeToSendPadding(_)).Times(0);
|
|
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
|
|
EXPECT_EQ(0, send_bucket_->Process());
|
|
}
|
|
|
|
TEST_F(PacedSenderTest, VerifyPaddingUpToBitrate) {
|
|
uint32_t ssrc = 12345;
|
|
uint16_t sequence_number = 1234;
|
|
int64_t capture_time_ms = 56789;
|
|
const int kTimeStep = 5;
|
|
const int64_t kBitrateWindow = 100;
|
|
send_bucket_->UpdateBitrate(
|
|
kTargetBitrate, kPaceMultiplier * kTargetBitrate, kTargetBitrate);
|
|
int64_t start_time = clock_.TimeInMilliseconds();
|
|
while (clock_.TimeInMilliseconds() - start_time < kBitrateWindow) {
|
|
SendAndExpectPacket(PacedSender::kNormalPriority,
|
|
ssrc,
|
|
sequence_number++,
|
|
capture_time_ms,
|
|
250,
|
|
false);
|
|
clock_.AdvanceTimeMilliseconds(kTimeStep);
|
|
EXPECT_CALL(callback_, TimeToSendPadding(250)).Times(1).
|
|
WillOnce(Return(250));
|
|
send_bucket_->Process();
|
|
}
|
|
}
|
|
|
|
TEST_F(PacedSenderTest, VerifyAverageBitrateVaryingMediaPayload) {
|
|
uint32_t ssrc = 12345;
|
|
uint16_t sequence_number = 1234;
|
|
int64_t capture_time_ms = 56789;
|
|
const int kTimeStep = 5;
|
|
const int64_t kBitrateWindow = 10000;
|
|
PacedSenderPadding callback;
|
|
send_bucket_.reset(new PacedSender(
|
|
&clock_, &callback, kTargetBitrate, kPaceMultiplier * kTargetBitrate, 0));
|
|
send_bucket_->UpdateBitrate(
|
|
kTargetBitrate, kPaceMultiplier * kTargetBitrate, kTargetBitrate);
|
|
int64_t start_time = clock_.TimeInMilliseconds();
|
|
size_t media_bytes = 0;
|
|
while (clock_.TimeInMilliseconds() - start_time < kBitrateWindow) {
|
|
size_t media_payload = rand() % 100 + 200; // [200, 300] bytes.
|
|
EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority, ssrc,
|
|
sequence_number++, capture_time_ms,
|
|
media_payload, false));
|
|
media_bytes += media_payload;
|
|
clock_.AdvanceTimeMilliseconds(kTimeStep);
|
|
send_bucket_->Process();
|
|
}
|
|
EXPECT_NEAR(kTargetBitrate,
|
|
static_cast<int>(8 * (media_bytes + callback.padding_sent()) /
|
|
kBitrateWindow), 1);
|
|
}
|
|
|
|
TEST_F(PacedSenderTest, Priority) {
|
|
uint32_t ssrc_low_priority = 12345;
|
|
uint32_t ssrc = 12346;
|
|
uint16_t sequence_number = 1234;
|
|
int64_t capture_time_ms = 56789;
|
|
int64_t capture_time_ms_low_priority = 1234567;
|
|
|
|
// Due to the multiplicative factor we can send 3 packets not 2 packets.
|
|
SendAndExpectPacket(PacedSender::kLowPriority,
|
|
ssrc,
|
|
sequence_number++,
|
|
capture_time_ms,
|
|
250,
|
|
false);
|
|
SendAndExpectPacket(PacedSender::kNormalPriority,
|
|
ssrc,
|
|
sequence_number++,
|
|
capture_time_ms,
|
|
250,
|
|
false);
|
|
SendAndExpectPacket(PacedSender::kNormalPriority,
|
|
ssrc,
|
|
sequence_number++,
|
|
capture_time_ms,
|
|
250,
|
|
false);
|
|
send_bucket_->Process();
|
|
|
|
// Expect normal and low priority to be queued and high to pass through.
|
|
EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kLowPriority,
|
|
ssrc_low_priority, sequence_number++, capture_time_ms_low_priority, 250,
|
|
false));
|
|
EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority,
|
|
ssrc, sequence_number++, capture_time_ms, 250, false));
|
|
EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority,
|
|
ssrc, sequence_number++, capture_time_ms, 250, false));
|
|
EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kHighPriority,
|
|
ssrc, sequence_number++, capture_time_ms, 250, false));
|
|
|
|
// Expect all high and normal priority to be sent out first.
|
|
EXPECT_CALL(callback_, TimeToSendPadding(_)).Times(0);
|
|
EXPECT_CALL(callback_, TimeToSendPacket(ssrc, _, capture_time_ms, false))
|
|
.Times(3)
|
|
.WillRepeatedly(Return(true));
|
|
|
|
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
|
|
EXPECT_EQ(0, send_bucket_->Process());
|
|
|
|
EXPECT_CALL(callback_,
|
|
TimeToSendPacket(
|
|
ssrc_low_priority, _, capture_time_ms_low_priority, false))
|
|
.Times(1)
|
|
.WillRepeatedly(Return(true));
|
|
|
|
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
|
|
EXPECT_EQ(0, send_bucket_->Process());
|
|
}
|
|
|
|
TEST_F(PacedSenderTest, Pause) {
|
|
uint32_t ssrc_low_priority = 12345;
|
|
uint32_t ssrc = 12346;
|
|
uint16_t sequence_number = 1234;
|
|
int64_t capture_time_ms = clock_.TimeInMilliseconds();
|
|
|
|
EXPECT_EQ(0, send_bucket_->QueueInMs());
|
|
|
|
// Due to the multiplicative factor we can send 3 packets not 2 packets.
|
|
SendAndExpectPacket(PacedSender::kLowPriority,
|
|
ssrc,
|
|
sequence_number++,
|
|
capture_time_ms,
|
|
250,
|
|
false);
|
|
SendAndExpectPacket(PacedSender::kNormalPriority,
|
|
ssrc,
|
|
sequence_number++,
|
|
capture_time_ms,
|
|
250,
|
|
false);
|
|
SendAndExpectPacket(PacedSender::kNormalPriority,
|
|
ssrc,
|
|
sequence_number++,
|
|
capture_time_ms,
|
|
250,
|
|
false);
|
|
send_bucket_->Process();
|
|
|
|
send_bucket_->Pause();
|
|
|
|
EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority,
|
|
ssrc, sequence_number++, capture_time_ms, 250, false));
|
|
EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority,
|
|
ssrc, sequence_number++, capture_time_ms, 250, false));
|
|
EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kHighPriority,
|
|
ssrc, sequence_number++, capture_time_ms, 250, false));
|
|
|
|
clock_.AdvanceTimeMilliseconds(10000);
|
|
int64_t second_capture_time_ms = clock_.TimeInMilliseconds();
|
|
|
|
// Expect everything to be queued.
|
|
EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kLowPriority,
|
|
ssrc_low_priority, sequence_number++, second_capture_time_ms, 250,
|
|
false));
|
|
|
|
EXPECT_EQ(clock_.TimeInMilliseconds() - capture_time_ms,
|
|
send_bucket_->QueueInMs());
|
|
|
|
// Expect no packet to come out while paused.
|
|
EXPECT_CALL(callback_, TimeToSendPadding(_)).Times(0);
|
|
EXPECT_CALL(callback_, TimeToSendPacket(_, _, _, _)).Times(0);
|
|
|
|
for (int i = 0; i < 10; ++i) {
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
|
|
EXPECT_EQ(0, send_bucket_->Process());
|
|
}
|
|
// Expect high prio packets to come out first followed by all packets in the
|
|
// way they were added.
|
|
EXPECT_CALL(callback_, TimeToSendPacket(_, _, capture_time_ms, false))
|
|
.Times(3)
|
|
.WillRepeatedly(Return(true));
|
|
send_bucket_->Resume();
|
|
|
|
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
|
|
EXPECT_EQ(0, send_bucket_->Process());
|
|
|
|
EXPECT_CALL(callback_, TimeToSendPacket(_, _, second_capture_time_ms, false))
|
|
.Times(1)
|
|
.WillRepeatedly(Return(true));
|
|
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
|
|
EXPECT_EQ(0, send_bucket_->Process());
|
|
EXPECT_EQ(0, send_bucket_->QueueInMs());
|
|
}
|
|
|
|
TEST_F(PacedSenderTest, ResendPacket) {
|
|
uint32_t ssrc = 12346;
|
|
uint16_t sequence_number = 1234;
|
|
int64_t capture_time_ms = clock_.TimeInMilliseconds();
|
|
EXPECT_EQ(0, send_bucket_->QueueInMs());
|
|
|
|
EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority,
|
|
ssrc,
|
|
sequence_number,
|
|
capture_time_ms,
|
|
250,
|
|
false));
|
|
clock_.AdvanceTimeMilliseconds(1);
|
|
EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority,
|
|
ssrc,
|
|
sequence_number + 1,
|
|
capture_time_ms + 1,
|
|
250,
|
|
false));
|
|
clock_.AdvanceTimeMilliseconds(9999);
|
|
EXPECT_EQ(clock_.TimeInMilliseconds() - capture_time_ms,
|
|
send_bucket_->QueueInMs());
|
|
// Fails to send first packet so only one call.
|
|
EXPECT_CALL(callback_,
|
|
TimeToSendPacket(ssrc, sequence_number, capture_time_ms, false))
|
|
.Times(1)
|
|
.WillOnce(Return(false));
|
|
clock_.AdvanceTimeMilliseconds(10000);
|
|
send_bucket_->Process();
|
|
|
|
// Queue remains unchanged.
|
|
EXPECT_EQ(clock_.TimeInMilliseconds() - capture_time_ms,
|
|
send_bucket_->QueueInMs());
|
|
|
|
// Fails to send second packet.
|
|
EXPECT_CALL(callback_,
|
|
TimeToSendPacket(ssrc, sequence_number, capture_time_ms, false))
|
|
.Times(1)
|
|
.WillOnce(Return(true));
|
|
EXPECT_CALL(
|
|
callback_,
|
|
TimeToSendPacket(ssrc, sequence_number + 1, capture_time_ms + 1, false))
|
|
.Times(1)
|
|
.WillOnce(Return(false));
|
|
clock_.AdvanceTimeMilliseconds(10000);
|
|
send_bucket_->Process();
|
|
|
|
// Queue is reduced by 1 packet.
|
|
EXPECT_EQ(clock_.TimeInMilliseconds() - capture_time_ms - 1,
|
|
send_bucket_->QueueInMs());
|
|
|
|
// Send second packet and queue becomes empty.
|
|
EXPECT_CALL(
|
|
callback_,
|
|
TimeToSendPacket(ssrc, sequence_number + 1, capture_time_ms + 1, false))
|
|
.Times(1)
|
|
.WillOnce(Return(true));
|
|
clock_.AdvanceTimeMilliseconds(10000);
|
|
send_bucket_->Process();
|
|
EXPECT_EQ(0, send_bucket_->QueueInMs());
|
|
}
|
|
|
|
TEST_F(PacedSenderTest, ExpectedQueueTimeMs) {
|
|
uint32_t ssrc = 12346;
|
|
uint16_t sequence_number = 1234;
|
|
const size_t kNumPackets = 60;
|
|
const size_t kPacketSize = 1200;
|
|
const int32_t kMaxBitrate = kPaceMultiplier * 30;
|
|
EXPECT_EQ(0, send_bucket_->ExpectedQueueTimeMs());
|
|
|
|
send_bucket_->UpdateBitrate(30, kMaxBitrate, 0);
|
|
for (size_t i = 0; i < kNumPackets; ++i) {
|
|
SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), kPacketSize, false);
|
|
}
|
|
|
|
// Queue in ms = 1000 * (bytes in queue) / (kbit per second * 1000 / 8)
|
|
int64_t queue_in_ms =
|
|
static_cast<int64_t>(kNumPackets * kPacketSize * 8 / kMaxBitrate);
|
|
EXPECT_EQ(queue_in_ms, send_bucket_->ExpectedQueueTimeMs());
|
|
|
|
int64_t time_start = clock_.TimeInMilliseconds();
|
|
while (send_bucket_->QueueSizePackets() > 0) {
|
|
int time_until_process = send_bucket_->TimeUntilNextProcess();
|
|
if (time_until_process <= 0) {
|
|
send_bucket_->Process();
|
|
} else {
|
|
clock_.AdvanceTimeMilliseconds(time_until_process);
|
|
}
|
|
}
|
|
int64_t duration = clock_.TimeInMilliseconds() - time_start;
|
|
|
|
EXPECT_EQ(0, send_bucket_->ExpectedQueueTimeMs());
|
|
|
|
// Allow for aliasing, duration should be in [expected(n - 1), expected(n)].
|
|
EXPECT_LE(duration, queue_in_ms);
|
|
EXPECT_GE(duration,
|
|
queue_in_ms - static_cast<int64_t>(kPacketSize * 8 / kMaxBitrate));
|
|
}
|
|
|
|
TEST_F(PacedSenderTest, QueueTimeGrowsOverTime) {
|
|
uint32_t ssrc = 12346;
|
|
uint16_t sequence_number = 1234;
|
|
EXPECT_EQ(0, send_bucket_->QueueInMs());
|
|
|
|
send_bucket_->UpdateBitrate(30, kPaceMultiplier * 30, 0);
|
|
SendAndExpectPacket(PacedSender::kNormalPriority,
|
|
ssrc,
|
|
sequence_number,
|
|
clock_.TimeInMilliseconds(),
|
|
1200,
|
|
false);
|
|
|
|
clock_.AdvanceTimeMilliseconds(500);
|
|
EXPECT_EQ(500, send_bucket_->QueueInMs());
|
|
send_bucket_->Process();
|
|
EXPECT_EQ(0, send_bucket_->QueueInMs());
|
|
}
|
|
|
|
class ProbingPacedSender : public PacedSender {
|
|
public:
|
|
ProbingPacedSender(Clock* clock,
|
|
Callback* callback,
|
|
int bitrate_kbps,
|
|
int max_bitrate_kbps,
|
|
int min_bitrate_kbps)
|
|
: PacedSender(clock,
|
|
callback,
|
|
bitrate_kbps,
|
|
max_bitrate_kbps,
|
|
min_bitrate_kbps) {}
|
|
|
|
virtual bool ProbingExperimentIsEnabled() const OVERRIDE { return true; }
|
|
};
|
|
|
|
TEST_F(PacedSenderTest, ProbingWithInitialFrame) {
|
|
const int kNumPackets = 11;
|
|
const int kNumDeltas = kNumPackets - 1;
|
|
const size_t kPacketSize = 1200;
|
|
const int kInitialBitrateKbps = 300;
|
|
uint32_t ssrc = 12346;
|
|
uint16_t sequence_number = 1234;
|
|
const int expected_deltas[kNumDeltas] = {
|
|
10, 10, 10, 10, 10, 5, 5, 5, 5, 5};
|
|
std::list<int> expected_deltas_list(expected_deltas,
|
|
expected_deltas + kNumPackets - 1);
|
|
PacedSenderProbing callback(expected_deltas_list, &clock_);
|
|
send_bucket_.reset(
|
|
new ProbingPacedSender(&clock_,
|
|
&callback,
|
|
kInitialBitrateKbps,
|
|
kPaceMultiplier * kInitialBitrateKbps,
|
|
0));
|
|
for (int i = 0; i < kNumPackets; ++i) {
|
|
EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority,
|
|
ssrc,
|
|
sequence_number++,
|
|
clock_.TimeInMilliseconds(),
|
|
kPacketSize,
|
|
false));
|
|
}
|
|
while (callback.packets_sent() < kNumPackets) {
|
|
int time_until_process = send_bucket_->TimeUntilNextProcess();
|
|
if (time_until_process <= 0) {
|
|
send_bucket_->Process();
|
|
} else {
|
|
clock_.AdvanceTimeMilliseconds(time_until_process);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_F(PacedSenderTest, PriorityInversion) {
|
|
uint32_t ssrc = 12346;
|
|
uint16_t sequence_number = 1234;
|
|
const size_t kPacketSize = 1200;
|
|
|
|
EXPECT_FALSE(send_bucket_->SendPacket(
|
|
PacedSender::kHighPriority, ssrc, sequence_number + 3,
|
|
clock_.TimeInMilliseconds() + 33, kPacketSize, true));
|
|
|
|
EXPECT_FALSE(send_bucket_->SendPacket(
|
|
PacedSender::kHighPriority, ssrc, sequence_number + 2,
|
|
clock_.TimeInMilliseconds() + 33, kPacketSize, true));
|
|
|
|
EXPECT_FALSE(send_bucket_->SendPacket(
|
|
PacedSender::kHighPriority, ssrc, sequence_number,
|
|
clock_.TimeInMilliseconds(), kPacketSize, true));
|
|
|
|
EXPECT_FALSE(send_bucket_->SendPacket(
|
|
PacedSender::kHighPriority, ssrc, sequence_number + 1,
|
|
clock_.TimeInMilliseconds(), kPacketSize, true));
|
|
|
|
// Packets from earlier frames should be sent first.
|
|
{
|
|
::testing::InSequence sequence;
|
|
EXPECT_CALL(callback_, TimeToSendPacket(ssrc, sequence_number,
|
|
clock_.TimeInMilliseconds(), true))
|
|
.WillOnce(Return(true));
|
|
EXPECT_CALL(callback_, TimeToSendPacket(ssrc, sequence_number + 1,
|
|
clock_.TimeInMilliseconds(), true))
|
|
.WillOnce(Return(true));
|
|
EXPECT_CALL(callback_, TimeToSendPacket(ssrc, sequence_number + 3,
|
|
clock_.TimeInMilliseconds() + 33,
|
|
true)).WillOnce(Return(true));
|
|
EXPECT_CALL(callback_, TimeToSendPacket(ssrc, sequence_number + 2,
|
|
clock_.TimeInMilliseconds() + 33,
|
|
true)).WillOnce(Return(true));
|
|
|
|
while (send_bucket_->QueueSizePackets() > 0) {
|
|
int time_until_process = send_bucket_->TimeUntilNextProcess();
|
|
if (time_until_process <= 0) {
|
|
send_bucket_->Process();
|
|
} else {
|
|
clock_.AdvanceTimeMilliseconds(time_until_process);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_F(PacedSenderTest, PaddingOveruse) {
|
|
uint32_t ssrc = 12346;
|
|
uint16_t sequence_number = 1234;
|
|
const size_t kPacketSize = 1200;
|
|
|
|
// Min bitrate 0 => no padding, padding budget will stay at 0.
|
|
send_bucket_->UpdateBitrate(60, 90, 0);
|
|
SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), kPacketSize, false);
|
|
send_bucket_->Process();
|
|
|
|
// Add 30kbit padding. When increasing budget, media budget will increase from
|
|
// negative (overuse) while padding budget will increase form 0.
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
send_bucket_->UpdateBitrate(60, 90, 30);
|
|
|
|
EXPECT_FALSE(send_bucket_->SendPacket(
|
|
PacedSender::kHighPriority, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), kPacketSize, false));
|
|
|
|
// Don't send padding if queue is non-empty, even if padding budget > 0.
|
|
EXPECT_CALL(callback_, TimeToSendPadding(_)).Times(0);
|
|
send_bucket_->Process();
|
|
}
|
|
|
|
} // namespace test
|
|
} // namespace webrtc
|