mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-13 13:50:40 +01:00

Add implementation of RTC_DCHECK_NOTREACHED equal to the RTC_NOTREACHED. The new macros will replace the old one when old one's usage will be removed. The idea of the renaming to provide a clear signal that this is debug build only macros and will be stripped in the production build. Bug: webrtc:9065 Change-Id: I4c35d8b03e74a4b3fd1ae75dba2f9c05643101db Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/237802 Reviewed-by: Harald Alvestrand <hta@webrtc.org> Commit-Queue: Artem Titov <titovartem@webrtc.org> Cr-Commit-Position: refs/heads/main@{#35348}
788 lines
27 KiB
C++
788 lines
27 KiB
C++
/*
|
|
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/video_coding/codecs/vp8/screenshare_layers.h"
|
|
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include <cstdint>
|
|
#include <memory>
|
|
#include <vector>
|
|
|
|
#include "api/video_codecs/vp8_frame_config.h"
|
|
#include "modules/video_coding/codecs/interface/common_constants.h"
|
|
#include "modules/video_coding/codecs/vp8/libvpx_vp8_encoder.h"
|
|
#include "modules/video_coding/include/video_codec_interface.h"
|
|
#include "rtc_base/checks.h"
|
|
#include "rtc_base/fake_clock.h"
|
|
#include "system_wrappers/include/metrics.h"
|
|
#include "test/gmock.h"
|
|
#include "test/gtest.h"
|
|
#include "vpx/vp8cx.h"
|
|
|
|
using ::testing::_;
|
|
using ::testing::ElementsAre;
|
|
using ::testing::NiceMock;
|
|
|
|
namespace webrtc {
|
|
namespace {
|
|
// 5 frames per second at 90 kHz.
|
|
const uint32_t kTimestampDelta5Fps = 90000 / 5;
|
|
const int kDefaultQp = 54;
|
|
const int kDefaultTl0BitrateKbps = 200;
|
|
const int kDefaultTl1BitrateKbps = 2000;
|
|
const int kFrameRate = 5;
|
|
const int kSyncPeriodSeconds = 2;
|
|
const int kMaxSyncPeriodSeconds = 4;
|
|
|
|
// Expected flags for corresponding temporal layers.
|
|
const int kTl0Flags = VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF |
|
|
VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF;
|
|
const int kTl1Flags =
|
|
VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST;
|
|
const int kTl1SyncFlags = VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_REF_GF |
|
|
VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST;
|
|
const std::vector<uint32_t> kDefault2TlBitratesBps = {
|
|
kDefaultTl0BitrateKbps * 1000,
|
|
(kDefaultTl1BitrateKbps - kDefaultTl0BitrateKbps) * 1000};
|
|
|
|
} // namespace
|
|
|
|
class ScreenshareLayerTest : public ::testing::Test {
|
|
protected:
|
|
ScreenshareLayerTest()
|
|
: min_qp_(2),
|
|
max_qp_(kDefaultQp),
|
|
frame_size_(-1),
|
|
timestamp_(90),
|
|
config_updated_(false) {}
|
|
virtual ~ScreenshareLayerTest() {}
|
|
|
|
void SetUp() override {
|
|
layers_.reset(new ScreenshareLayers(2));
|
|
cfg_ = ConfigureBitrates();
|
|
}
|
|
|
|
int EncodeFrame(bool base_sync, CodecSpecificInfo* info = nullptr) {
|
|
CodecSpecificInfo ignored_info;
|
|
if (!info) {
|
|
info = &ignored_info;
|
|
}
|
|
|
|
int flags = ConfigureFrame(base_sync);
|
|
if (flags != -1)
|
|
layers_->OnEncodeDone(0, timestamp_, frame_size_, base_sync, kDefaultQp,
|
|
info);
|
|
return flags;
|
|
}
|
|
|
|
int ConfigureFrame(bool key_frame) {
|
|
tl_config_ = NextFrameConfig(0, timestamp_);
|
|
EXPECT_EQ(0, tl_config_.encoder_layer_id)
|
|
<< "ScreenshareLayers always encodes using the bitrate allocator for "
|
|
"layer 0, but may reference different buffers and packetize "
|
|
"differently.";
|
|
if (tl_config_.drop_frame) {
|
|
return -1;
|
|
}
|
|
const uint32_t prev_rc_target_bitrate = cfg_.rc_target_bitrate.value_or(-1);
|
|
const uint32_t prev_rc_max_quantizer = cfg_.rc_max_quantizer.value_or(-1);
|
|
|
|
cfg_ = layers_->UpdateConfiguration(0);
|
|
|
|
config_updated_ =
|
|
cfg_.temporal_layer_config.has_value() ||
|
|
(cfg_.rc_target_bitrate.has_value() &&
|
|
cfg_.rc_target_bitrate.value() != prev_rc_target_bitrate) ||
|
|
(cfg_.rc_max_quantizer.has_value() &&
|
|
cfg_.rc_max_quantizer.value() != prev_rc_max_quantizer) ||
|
|
cfg_.g_error_resilient.has_value();
|
|
|
|
int flags = LibvpxVp8Encoder::EncodeFlags(tl_config_);
|
|
EXPECT_NE(-1, frame_size_);
|
|
return flags;
|
|
}
|
|
|
|
Vp8FrameConfig NextFrameConfig(size_t stream_index, uint32_t timestamp) {
|
|
int64_t timestamp_ms = timestamp / 90;
|
|
clock_.AdvanceTime(TimeDelta::Millis(timestamp_ms - rtc::TimeMillis()));
|
|
return layers_->NextFrameConfig(stream_index, timestamp);
|
|
}
|
|
|
|
int FrameSizeForBitrate(int bitrate_kbps) {
|
|
return ((bitrate_kbps * 1000) / 8) / kFrameRate;
|
|
}
|
|
|
|
Vp8EncoderConfig ConfigureBitrates() {
|
|
layers_->SetQpLimits(0, min_qp_, max_qp_);
|
|
layers_->OnRatesUpdated(0, kDefault2TlBitratesBps, kFrameRate);
|
|
const Vp8EncoderConfig vp8_cfg = layers_->UpdateConfiguration(0);
|
|
EXPECT_TRUE(vp8_cfg.rc_target_bitrate.has_value());
|
|
frame_size_ = FrameSizeForBitrate(vp8_cfg.rc_target_bitrate.value());
|
|
return vp8_cfg;
|
|
}
|
|
|
|
void WithQpLimits(int min_qp, int max_qp) {
|
|
min_qp_ = min_qp;
|
|
max_qp_ = max_qp;
|
|
}
|
|
|
|
// Runs a few initial frames and makes sure we have seen frames on both
|
|
// temporal layers, including sync and non-sync frames.
|
|
bool RunGracePeriod() {
|
|
bool got_tl0 = false;
|
|
bool got_tl1 = false;
|
|
bool got_tl1_sync = false;
|
|
for (int i = 0; i < 10; ++i) {
|
|
CodecSpecificInfo info;
|
|
EXPECT_NE(-1, EncodeFrame(false, &info));
|
|
timestamp_ += kTimestampDelta5Fps;
|
|
if (info.codecSpecific.VP8.temporalIdx == 0) {
|
|
got_tl0 = true;
|
|
} else if (info.codecSpecific.VP8.layerSync) {
|
|
got_tl1_sync = true;
|
|
} else {
|
|
got_tl1 = true;
|
|
}
|
|
if (got_tl0 && got_tl1 && got_tl1_sync)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Adds frames until we get one in the specified temporal layer. The last
|
|
// FrameEncoded() call will be omitted and needs to be done by the caller.
|
|
// Returns the flags for the last frame.
|
|
int SkipUntilTl(int layer) {
|
|
return SkipUntilTlAndSync(layer, absl::nullopt);
|
|
}
|
|
|
|
// Same as SkipUntilTl, but also waits until the sync bit condition is met.
|
|
int SkipUntilTlAndSync(int layer, absl::optional<bool> sync) {
|
|
int flags = 0;
|
|
const int kMaxFramesToSkip =
|
|
1 + (sync.value_or(false) ? kMaxSyncPeriodSeconds : 1) * kFrameRate;
|
|
for (int i = 0; i < kMaxFramesToSkip; ++i) {
|
|
flags = ConfigureFrame(false);
|
|
if (tl_config_.packetizer_temporal_idx != layer ||
|
|
(sync && *sync != tl_config_.layer_sync)) {
|
|
if (flags != -1) {
|
|
// If flags do not request a frame drop, report some default values
|
|
// for frame size etc.
|
|
CodecSpecificInfo info;
|
|
layers_->OnEncodeDone(0, timestamp_, frame_size_, false, kDefaultQp,
|
|
&info);
|
|
}
|
|
timestamp_ += kTimestampDelta5Fps;
|
|
} else {
|
|
// Found frame from sought after layer.
|
|
return flags;
|
|
}
|
|
}
|
|
ADD_FAILURE() << "Did not get a frame of TL" << layer << " in time.";
|
|
return -1;
|
|
}
|
|
|
|
int min_qp_;
|
|
uint32_t max_qp_;
|
|
int frame_size_;
|
|
rtc::ScopedFakeClock clock_;
|
|
std::unique_ptr<ScreenshareLayers> layers_;
|
|
|
|
uint32_t timestamp_;
|
|
Vp8FrameConfig tl_config_;
|
|
Vp8EncoderConfig cfg_;
|
|
bool config_updated_;
|
|
|
|
CodecSpecificInfo* IgnoredCodecSpecificInfo() {
|
|
ignored_codec_specific_info_ = std::make_unique<CodecSpecificInfo>();
|
|
return ignored_codec_specific_info_.get();
|
|
}
|
|
|
|
private:
|
|
std::unique_ptr<CodecSpecificInfo> ignored_codec_specific_info_;
|
|
};
|
|
|
|
TEST_F(ScreenshareLayerTest, 1Layer) {
|
|
layers_.reset(new ScreenshareLayers(1));
|
|
ConfigureBitrates();
|
|
// One layer screenshare should not use the frame dropper as all frames will
|
|
// belong to the base layer.
|
|
const int kSingleLayerFlags = 0;
|
|
auto info = std::make_unique<CodecSpecificInfo>();
|
|
int flags = EncodeFrame(/*base_sync=*/false, info.get());
|
|
timestamp_ += kTimestampDelta5Fps;
|
|
EXPECT_EQ(static_cast<uint8_t>(kNoTemporalIdx),
|
|
info->codecSpecific.VP8.temporalIdx);
|
|
EXPECT_FALSE(info->codecSpecific.VP8.layerSync);
|
|
EXPECT_EQ(info->generic_frame_info->temporal_id, 0);
|
|
|
|
info = std::make_unique<CodecSpecificInfo>();
|
|
flags = EncodeFrame(/*base_sync=*/false, info.get());
|
|
EXPECT_EQ(kSingleLayerFlags, flags);
|
|
EXPECT_EQ(static_cast<uint8_t>(kNoTemporalIdx),
|
|
info->codecSpecific.VP8.temporalIdx);
|
|
EXPECT_FALSE(info->codecSpecific.VP8.layerSync);
|
|
EXPECT_EQ(info->generic_frame_info->temporal_id, 0);
|
|
}
|
|
|
|
TEST_F(ScreenshareLayerTest, 2LayersPeriodicSync) {
|
|
std::vector<int> sync_times;
|
|
const int kNumFrames = kSyncPeriodSeconds * kFrameRate * 2 - 1;
|
|
for (int i = 0; i < kNumFrames; ++i) {
|
|
CodecSpecificInfo info;
|
|
EncodeFrame(false, &info);
|
|
timestamp_ += kTimestampDelta5Fps;
|
|
if (info.codecSpecific.VP8.temporalIdx == 1 &&
|
|
info.codecSpecific.VP8.layerSync) {
|
|
sync_times.push_back(timestamp_);
|
|
}
|
|
}
|
|
|
|
ASSERT_EQ(2u, sync_times.size());
|
|
EXPECT_GE(sync_times[1] - sync_times[0], 90000 * kSyncPeriodSeconds);
|
|
}
|
|
|
|
TEST_F(ScreenshareLayerTest, 2LayersSyncAfterTimeout) {
|
|
std::vector<int> sync_times;
|
|
const int kNumFrames = kMaxSyncPeriodSeconds * kFrameRate * 2 - 1;
|
|
for (int i = 0; i < kNumFrames; ++i) {
|
|
CodecSpecificInfo info;
|
|
|
|
tl_config_ = NextFrameConfig(0, timestamp_);
|
|
cfg_ = layers_->UpdateConfiguration(0);
|
|
|
|
// Simulate TL1 being at least 8 qp steps better.
|
|
if (tl_config_.packetizer_temporal_idx == 0) {
|
|
layers_->OnEncodeDone(0, timestamp_, frame_size_, false, kDefaultQp,
|
|
&info);
|
|
} else {
|
|
layers_->OnEncodeDone(0, timestamp_, frame_size_, false, kDefaultQp - 8,
|
|
&info);
|
|
}
|
|
|
|
if (info.codecSpecific.VP8.temporalIdx == 1 &&
|
|
info.codecSpecific.VP8.layerSync)
|
|
sync_times.push_back(timestamp_);
|
|
|
|
timestamp_ += kTimestampDelta5Fps;
|
|
}
|
|
|
|
ASSERT_EQ(2u, sync_times.size());
|
|
EXPECT_GE(sync_times[1] - sync_times[0], 90000 * kMaxSyncPeriodSeconds);
|
|
}
|
|
|
|
TEST_F(ScreenshareLayerTest, 2LayersSyncAfterSimilarQP) {
|
|
std::vector<int> sync_times;
|
|
|
|
const int kNumFrames = (kSyncPeriodSeconds +
|
|
((kMaxSyncPeriodSeconds - kSyncPeriodSeconds) / 2)) *
|
|
kFrameRate;
|
|
for (int i = 0; i < kNumFrames; ++i) {
|
|
CodecSpecificInfo info;
|
|
|
|
ConfigureFrame(false);
|
|
|
|
// Simulate TL1 being at least 8 qp steps better.
|
|
if (tl_config_.packetizer_temporal_idx == 0) {
|
|
layers_->OnEncodeDone(0, timestamp_, frame_size_, false, kDefaultQp,
|
|
&info);
|
|
} else {
|
|
layers_->OnEncodeDone(0, timestamp_, frame_size_, false, kDefaultQp - 8,
|
|
&info);
|
|
}
|
|
|
|
if (info.codecSpecific.VP8.temporalIdx == 1 &&
|
|
info.codecSpecific.VP8.layerSync)
|
|
sync_times.push_back(timestamp_);
|
|
|
|
timestamp_ += kTimestampDelta5Fps;
|
|
}
|
|
|
|
ASSERT_EQ(1u, sync_times.size());
|
|
|
|
bool bumped_tl0_quality = false;
|
|
for (int i = 0; i < 3; ++i) {
|
|
CodecSpecificInfo info;
|
|
|
|
int flags = ConfigureFrame(false);
|
|
layers_->OnEncodeDone(0, timestamp_, frame_size_, false, kDefaultQp - 8,
|
|
&info);
|
|
if (info.codecSpecific.VP8.temporalIdx == 0) {
|
|
// Bump TL0 to same quality as TL1.
|
|
bumped_tl0_quality = true;
|
|
} else {
|
|
if (bumped_tl0_quality) {
|
|
EXPECT_TRUE(info.codecSpecific.VP8.layerSync);
|
|
EXPECT_EQ(kTl1SyncFlags, flags);
|
|
return;
|
|
}
|
|
}
|
|
timestamp_ += kTimestampDelta5Fps;
|
|
}
|
|
ADD_FAILURE() << "No TL1 frame arrived within time limit.";
|
|
}
|
|
|
|
TEST_F(ScreenshareLayerTest, 2LayersToggling) {
|
|
EXPECT_TRUE(RunGracePeriod());
|
|
|
|
// Insert 50 frames. 2/5 should be TL0.
|
|
int tl0_frames = 0;
|
|
int tl1_frames = 0;
|
|
for (int i = 0; i < 50; ++i) {
|
|
CodecSpecificInfo info;
|
|
EncodeFrame(/*base_sync=*/false, &info);
|
|
EXPECT_EQ(info.codecSpecific.VP8.temporalIdx,
|
|
info.generic_frame_info->temporal_id);
|
|
timestamp_ += kTimestampDelta5Fps;
|
|
switch (info.codecSpecific.VP8.temporalIdx) {
|
|
case 0:
|
|
++tl0_frames;
|
|
break;
|
|
case 1:
|
|
++tl1_frames;
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
}
|
|
EXPECT_EQ(20, tl0_frames);
|
|
EXPECT_EQ(30, tl1_frames);
|
|
}
|
|
|
|
TEST_F(ScreenshareLayerTest, AllFitsLayer0) {
|
|
frame_size_ = FrameSizeForBitrate(kDefaultTl0BitrateKbps);
|
|
|
|
// Insert 50 frames, small enough that all fits in TL0.
|
|
for (int i = 0; i < 50; ++i) {
|
|
CodecSpecificInfo info;
|
|
int flags = EncodeFrame(false, &info);
|
|
timestamp_ += kTimestampDelta5Fps;
|
|
EXPECT_EQ(kTl0Flags, flags);
|
|
EXPECT_EQ(0, info.codecSpecific.VP8.temporalIdx);
|
|
}
|
|
}
|
|
|
|
TEST_F(ScreenshareLayerTest, TooHighBitrate) {
|
|
frame_size_ = 2 * FrameSizeForBitrate(kDefaultTl1BitrateKbps);
|
|
|
|
// Insert 100 frames. Half should be dropped.
|
|
int tl0_frames = 0;
|
|
int tl1_frames = 0;
|
|
int dropped_frames = 0;
|
|
for (int i = 0; i < 100; ++i) {
|
|
CodecSpecificInfo info;
|
|
int flags = EncodeFrame(false, &info);
|
|
timestamp_ += kTimestampDelta5Fps;
|
|
if (flags == -1) {
|
|
++dropped_frames;
|
|
} else {
|
|
switch (info.codecSpecific.VP8.temporalIdx) {
|
|
case 0:
|
|
++tl0_frames;
|
|
break;
|
|
case 1:
|
|
++tl1_frames;
|
|
break;
|
|
default:
|
|
ADD_FAILURE() << "Unexpected temporal id";
|
|
}
|
|
}
|
|
}
|
|
|
|
EXPECT_NEAR(50, tl0_frames + tl1_frames, 1);
|
|
EXPECT_NEAR(50, dropped_frames, 1);
|
|
}
|
|
|
|
TEST_F(ScreenshareLayerTest, TargetBitrateCappedByTL0) {
|
|
const int kTl0_kbps = 100;
|
|
const int kTl1_kbps = 1000;
|
|
const std::vector<uint32_t> layer_rates = {kTl0_kbps * 1000,
|
|
(kTl1_kbps - kTl0_kbps) * 1000};
|
|
layers_->OnRatesUpdated(0, layer_rates, kFrameRate);
|
|
cfg_ = layers_->UpdateConfiguration(0);
|
|
|
|
EXPECT_EQ(static_cast<unsigned int>(
|
|
ScreenshareLayers::kMaxTL0FpsReduction * kTl0_kbps + 0.5),
|
|
cfg_.rc_target_bitrate);
|
|
}
|
|
|
|
TEST_F(ScreenshareLayerTest, TargetBitrateCappedByTL1) {
|
|
const int kTl0_kbps = 100;
|
|
const int kTl1_kbps = 450;
|
|
const std::vector<uint32_t> layer_rates = {kTl0_kbps * 1000,
|
|
(kTl1_kbps - kTl0_kbps) * 1000};
|
|
layers_->OnRatesUpdated(0, layer_rates, kFrameRate);
|
|
cfg_ = layers_->UpdateConfiguration(0);
|
|
|
|
EXPECT_EQ(static_cast<unsigned int>(
|
|
kTl1_kbps / ScreenshareLayers::kAcceptableTargetOvershoot),
|
|
cfg_.rc_target_bitrate);
|
|
}
|
|
|
|
TEST_F(ScreenshareLayerTest, TargetBitrateBelowTL0) {
|
|
const int kTl0_kbps = 100;
|
|
const std::vector<uint32_t> layer_rates = {kTl0_kbps * 1000};
|
|
layers_->OnRatesUpdated(0, layer_rates, kFrameRate);
|
|
cfg_ = layers_->UpdateConfiguration(0);
|
|
|
|
EXPECT_EQ(static_cast<uint32_t>(kTl0_kbps), cfg_.rc_target_bitrate);
|
|
}
|
|
|
|
TEST_F(ScreenshareLayerTest, EncoderDrop) {
|
|
EXPECT_TRUE(RunGracePeriod());
|
|
SkipUntilTl(0);
|
|
|
|
// Size 0 indicates dropped frame.
|
|
layers_->OnEncodeDone(0, timestamp_, 0, false, 0, IgnoredCodecSpecificInfo());
|
|
|
|
// Re-encode frame (so don't advance timestamp).
|
|
int flags = EncodeFrame(false);
|
|
timestamp_ += kTimestampDelta5Fps;
|
|
EXPECT_FALSE(config_updated_);
|
|
EXPECT_EQ(kTl0Flags, flags);
|
|
|
|
// Next frame should have boosted quality...
|
|
SkipUntilTl(0);
|
|
EXPECT_TRUE(config_updated_);
|
|
EXPECT_LT(cfg_.rc_max_quantizer, static_cast<unsigned int>(kDefaultQp));
|
|
layers_->OnEncodeDone(0, timestamp_, frame_size_, false, kDefaultQp,
|
|
IgnoredCodecSpecificInfo());
|
|
timestamp_ += kTimestampDelta5Fps;
|
|
|
|
// ...then back to standard setup.
|
|
SkipUntilTl(0);
|
|
layers_->OnEncodeDone(0, timestamp_, frame_size_, false, kDefaultQp,
|
|
IgnoredCodecSpecificInfo());
|
|
timestamp_ += kTimestampDelta5Fps;
|
|
EXPECT_EQ(cfg_.rc_max_quantizer, static_cast<unsigned int>(kDefaultQp));
|
|
|
|
// Next drop in TL1.
|
|
SkipUntilTl(1);
|
|
layers_->OnEncodeDone(0, timestamp_, 0, false, 0, IgnoredCodecSpecificInfo());
|
|
|
|
// Re-encode frame (so don't advance timestamp).
|
|
flags = EncodeFrame(false);
|
|
timestamp_ += kTimestampDelta5Fps;
|
|
EXPECT_FALSE(config_updated_);
|
|
EXPECT_EQ(kTl1Flags, flags);
|
|
|
|
// Next frame should have boosted QP.
|
|
SkipUntilTl(1);
|
|
EXPECT_TRUE(config_updated_);
|
|
EXPECT_LT(cfg_.rc_max_quantizer, static_cast<unsigned int>(kDefaultQp));
|
|
layers_->OnEncodeDone(0, timestamp_, frame_size_, false, kDefaultQp,
|
|
IgnoredCodecSpecificInfo());
|
|
timestamp_ += kTimestampDelta5Fps;
|
|
|
|
// ...and back to normal.
|
|
SkipUntilTl(1);
|
|
EXPECT_EQ(cfg_.rc_max_quantizer, static_cast<unsigned int>(kDefaultQp));
|
|
layers_->OnEncodeDone(0, timestamp_, frame_size_, false, kDefaultQp,
|
|
IgnoredCodecSpecificInfo());
|
|
timestamp_ += kTimestampDelta5Fps;
|
|
}
|
|
|
|
TEST_F(ScreenshareLayerTest, RespectsMaxIntervalBetweenFrames) {
|
|
const int kLowBitrateKbps = 50;
|
|
const int kLargeFrameSizeBytes = 100000;
|
|
const uint32_t kStartTimestamp = 1234;
|
|
|
|
const std::vector<uint32_t> layer_rates = {kLowBitrateKbps * 1000};
|
|
layers_->OnRatesUpdated(0, layer_rates, kFrameRate);
|
|
cfg_ = layers_->UpdateConfiguration(0);
|
|
|
|
EXPECT_EQ(kTl0Flags,
|
|
LibvpxVp8Encoder::EncodeFlags(NextFrameConfig(0, kStartTimestamp)));
|
|
layers_->OnEncodeDone(0, kStartTimestamp, kLargeFrameSizeBytes, false,
|
|
kDefaultQp, IgnoredCodecSpecificInfo());
|
|
|
|
const uint32_t kTwoSecondsLater =
|
|
kStartTimestamp + (ScreenshareLayers::kMaxFrameIntervalMs * 90);
|
|
|
|
// Sanity check, repayment time should exceed kMaxFrameIntervalMs.
|
|
ASSERT_GT(kStartTimestamp + 90 * (kLargeFrameSizeBytes * 8) / kLowBitrateKbps,
|
|
kStartTimestamp + (ScreenshareLayers::kMaxFrameIntervalMs * 90));
|
|
|
|
// Expect drop one frame interval before the two second timeout. If we try
|
|
// any later, the frame will be dropped anyway by the frame rate throttling
|
|
// logic.
|
|
EXPECT_TRUE(
|
|
NextFrameConfig(0, kTwoSecondsLater - kTimestampDelta5Fps).drop_frame);
|
|
|
|
// More than two seconds has passed since last frame, one should be emitted
|
|
// even if bitrate target is then exceeded.
|
|
EXPECT_EQ(kTl0Flags, LibvpxVp8Encoder::EncodeFlags(
|
|
NextFrameConfig(0, kTwoSecondsLater + 90)));
|
|
}
|
|
|
|
TEST_F(ScreenshareLayerTest, UpdatesHistograms) {
|
|
metrics::Reset();
|
|
bool trigger_drop = false;
|
|
bool dropped_frame = false;
|
|
bool overshoot = false;
|
|
const int kTl0Qp = 35;
|
|
const int kTl1Qp = 30;
|
|
for (int64_t timestamp = 0;
|
|
timestamp < kTimestampDelta5Fps * 5 * metrics::kMinRunTimeInSeconds;
|
|
timestamp += kTimestampDelta5Fps) {
|
|
tl_config_ = NextFrameConfig(0, timestamp);
|
|
if (tl_config_.drop_frame) {
|
|
dropped_frame = true;
|
|
continue;
|
|
}
|
|
int flags = LibvpxVp8Encoder::EncodeFlags(tl_config_);
|
|
if (flags != -1)
|
|
cfg_ = layers_->UpdateConfiguration(0);
|
|
|
|
if (timestamp >= kTimestampDelta5Fps * 5 && !overshoot && flags != -1) {
|
|
// Simulate one overshoot.
|
|
layers_->OnEncodeDone(0, timestamp, 0, false, 0, nullptr);
|
|
overshoot = true;
|
|
}
|
|
|
|
if (flags == kTl0Flags) {
|
|
if (timestamp >= kTimestampDelta5Fps * 20 && !trigger_drop) {
|
|
// Simulate a too large frame, to cause frame drop.
|
|
layers_->OnEncodeDone(0, timestamp, frame_size_ * 10, false, kTl0Qp,
|
|
IgnoredCodecSpecificInfo());
|
|
trigger_drop = true;
|
|
} else {
|
|
layers_->OnEncodeDone(0, timestamp, frame_size_, false, kTl0Qp,
|
|
IgnoredCodecSpecificInfo());
|
|
}
|
|
} else if (flags == kTl1Flags || flags == kTl1SyncFlags) {
|
|
layers_->OnEncodeDone(0, timestamp, frame_size_, false, kTl1Qp,
|
|
IgnoredCodecSpecificInfo());
|
|
} else if (flags == -1) {
|
|
dropped_frame = true;
|
|
} else {
|
|
RTC_DCHECK_NOTREACHED() << "Unexpected flags";
|
|
}
|
|
clock_.AdvanceTime(TimeDelta::Millis(1000 / 5));
|
|
}
|
|
|
|
EXPECT_TRUE(overshoot);
|
|
EXPECT_TRUE(dropped_frame);
|
|
|
|
layers_.reset(); // Histograms are reported on destruction.
|
|
|
|
EXPECT_METRIC_EQ(
|
|
1, metrics::NumSamples("WebRTC.Video.Screenshare.Layer0.FrameRate"));
|
|
EXPECT_METRIC_EQ(
|
|
1, metrics::NumSamples("WebRTC.Video.Screenshare.Layer1.FrameRate"));
|
|
EXPECT_METRIC_EQ(
|
|
1, metrics::NumSamples("WebRTC.Video.Screenshare.FramesPerDrop"));
|
|
EXPECT_METRIC_EQ(
|
|
1, metrics::NumSamples("WebRTC.Video.Screenshare.FramesPerOvershoot"));
|
|
EXPECT_METRIC_EQ(1,
|
|
metrics::NumSamples("WebRTC.Video.Screenshare.Layer0.Qp"));
|
|
EXPECT_METRIC_EQ(1,
|
|
metrics::NumSamples("WebRTC.Video.Screenshare.Layer1.Qp"));
|
|
EXPECT_METRIC_EQ(
|
|
1, metrics::NumSamples("WebRTC.Video.Screenshare.Layer0.TargetBitrate"));
|
|
EXPECT_METRIC_EQ(
|
|
1, metrics::NumSamples("WebRTC.Video.Screenshare.Layer1.TargetBitrate"));
|
|
|
|
EXPECT_METRIC_GT(
|
|
metrics::MinSample("WebRTC.Video.Screenshare.Layer0.FrameRate"), 1);
|
|
EXPECT_METRIC_GT(
|
|
metrics::MinSample("WebRTC.Video.Screenshare.Layer1.FrameRate"), 1);
|
|
EXPECT_METRIC_GT(metrics::MinSample("WebRTC.Video.Screenshare.FramesPerDrop"),
|
|
1);
|
|
EXPECT_METRIC_GT(
|
|
metrics::MinSample("WebRTC.Video.Screenshare.FramesPerOvershoot"), 1);
|
|
EXPECT_METRIC_EQ(
|
|
1, metrics::NumEvents("WebRTC.Video.Screenshare.Layer0.Qp", kTl0Qp));
|
|
EXPECT_METRIC_EQ(
|
|
1, metrics::NumEvents("WebRTC.Video.Screenshare.Layer1.Qp", kTl1Qp));
|
|
EXPECT_METRIC_EQ(
|
|
1, metrics::NumEvents("WebRTC.Video.Screenshare.Layer0.TargetBitrate",
|
|
kDefaultTl0BitrateKbps));
|
|
EXPECT_METRIC_EQ(
|
|
1, metrics::NumEvents("WebRTC.Video.Screenshare.Layer1.TargetBitrate",
|
|
kDefaultTl1BitrateKbps));
|
|
}
|
|
|
|
TEST_F(ScreenshareLayerTest, RespectsConfiguredFramerate) {
|
|
int64_t kTestSpanMs = 2000;
|
|
int64_t kFrameIntervalsMs = 1000 / kFrameRate;
|
|
|
|
uint32_t timestamp = 1234;
|
|
int num_input_frames = 0;
|
|
int num_discarded_frames = 0;
|
|
|
|
// Send at regular rate - no drops expected.
|
|
for (int64_t i = 0; i < kTestSpanMs; i += kFrameIntervalsMs) {
|
|
if (NextFrameConfig(0, timestamp).drop_frame) {
|
|
++num_discarded_frames;
|
|
} else {
|
|
size_t frame_size_bytes = kDefaultTl0BitrateKbps * kFrameIntervalsMs / 8;
|
|
layers_->OnEncodeDone(0, timestamp, frame_size_bytes, false, kDefaultQp,
|
|
IgnoredCodecSpecificInfo());
|
|
}
|
|
timestamp += kFrameIntervalsMs * 90;
|
|
clock_.AdvanceTime(TimeDelta::Millis(kFrameIntervalsMs));
|
|
|
|
++num_input_frames;
|
|
}
|
|
EXPECT_EQ(0, num_discarded_frames);
|
|
|
|
// Send at twice the configured rate - drop every other frame.
|
|
num_input_frames = 0;
|
|
num_discarded_frames = 0;
|
|
for (int64_t i = 0; i < kTestSpanMs; i += kFrameIntervalsMs / 2) {
|
|
if (NextFrameConfig(0, timestamp).drop_frame) {
|
|
++num_discarded_frames;
|
|
} else {
|
|
size_t frame_size_bytes = kDefaultTl0BitrateKbps * kFrameIntervalsMs / 8;
|
|
layers_->OnEncodeDone(0, timestamp, frame_size_bytes, false, kDefaultQp,
|
|
IgnoredCodecSpecificInfo());
|
|
}
|
|
timestamp += kFrameIntervalsMs * 90 / 2;
|
|
clock_.AdvanceTime(TimeDelta::Millis(kFrameIntervalsMs));
|
|
++num_input_frames;
|
|
}
|
|
|
|
// Allow for some rounding errors in the measurements.
|
|
EXPECT_NEAR(num_discarded_frames, num_input_frames / 2, 2);
|
|
}
|
|
|
|
TEST_F(ScreenshareLayerTest, 2LayersSyncAtOvershootDrop) {
|
|
// Run grace period so we have existing frames in both TL0 and Tl1.
|
|
EXPECT_TRUE(RunGracePeriod());
|
|
|
|
// Move ahead until we have a sync frame in TL1.
|
|
EXPECT_EQ(kTl1SyncFlags, SkipUntilTlAndSync(1, true));
|
|
ASSERT_TRUE(tl_config_.layer_sync);
|
|
|
|
// Simulate overshoot of this frame.
|
|
layers_->OnEncodeDone(0, timestamp_, 0, false, 0, nullptr);
|
|
|
|
cfg_ = layers_->UpdateConfiguration(0);
|
|
EXPECT_EQ(kTl1SyncFlags, LibvpxVp8Encoder::EncodeFlags(tl_config_));
|
|
|
|
CodecSpecificInfo new_info;
|
|
layers_->OnEncodeDone(0, timestamp_, frame_size_, false, kDefaultQp,
|
|
&new_info);
|
|
EXPECT_TRUE(new_info.codecSpecific.VP8.layerSync);
|
|
}
|
|
|
|
TEST_F(ScreenshareLayerTest, DropOnTooShortFrameInterval) {
|
|
// Run grace period so we have existing frames in both TL0 and Tl1.
|
|
EXPECT_TRUE(RunGracePeriod());
|
|
|
|
// Add a large gap, so there's plenty of room in the rate tracker.
|
|
timestamp_ += kTimestampDelta5Fps * 3;
|
|
EXPECT_FALSE(NextFrameConfig(0, timestamp_).drop_frame);
|
|
layers_->OnEncodeDone(0, timestamp_, frame_size_, false, kDefaultQp,
|
|
IgnoredCodecSpecificInfo());
|
|
|
|
// Frame interval below 90% if desired time is not allowed, try inserting
|
|
// frame just before this limit.
|
|
const int64_t kMinFrameInterval = (kTimestampDelta5Fps * 85) / 100;
|
|
timestamp_ += kMinFrameInterval - 90;
|
|
EXPECT_TRUE(NextFrameConfig(0, timestamp_).drop_frame);
|
|
|
|
// Try again at the limit, now it should pass.
|
|
timestamp_ += 90;
|
|
EXPECT_FALSE(NextFrameConfig(0, timestamp_).drop_frame);
|
|
}
|
|
|
|
TEST_F(ScreenshareLayerTest, AdjustsBitrateWhenDroppingFrames) {
|
|
const uint32_t kTimestampDelta10Fps = kTimestampDelta5Fps / 2;
|
|
const int kNumFrames = 30;
|
|
ASSERT_TRUE(cfg_.rc_target_bitrate.has_value());
|
|
const uint32_t default_bitrate = cfg_.rc_target_bitrate.value();
|
|
layers_->OnRatesUpdated(0, kDefault2TlBitratesBps, 10);
|
|
|
|
int num_dropped_frames = 0;
|
|
for (int i = 0; i < kNumFrames; ++i) {
|
|
if (EncodeFrame(false) == -1)
|
|
++num_dropped_frames;
|
|
timestamp_ += kTimestampDelta10Fps;
|
|
}
|
|
cfg_ = layers_->UpdateConfiguration(0);
|
|
|
|
EXPECT_EQ(num_dropped_frames, kNumFrames / 2);
|
|
EXPECT_EQ(cfg_.rc_target_bitrate, default_bitrate * 2);
|
|
}
|
|
|
|
TEST_F(ScreenshareLayerTest, UpdatesConfigurationAfterRateChange) {
|
|
// Set inital rate again, no need to update configuration.
|
|
layers_->OnRatesUpdated(0, kDefault2TlBitratesBps, kFrameRate);
|
|
cfg_ = layers_->UpdateConfiguration(0);
|
|
|
|
// Rate changed, now update config.
|
|
std::vector<uint32_t> bitrates = kDefault2TlBitratesBps;
|
|
bitrates[1] -= 100000;
|
|
layers_->OnRatesUpdated(0, bitrates, 5);
|
|
cfg_ = layers_->UpdateConfiguration(0);
|
|
|
|
// Changed rate, but then set changed rate again before trying to update
|
|
// configuration, update should still apply.
|
|
bitrates[1] -= 100000;
|
|
layers_->OnRatesUpdated(0, bitrates, 5);
|
|
layers_->OnRatesUpdated(0, bitrates, 5);
|
|
cfg_ = layers_->UpdateConfiguration(0);
|
|
}
|
|
|
|
TEST_F(ScreenshareLayerTest, MaxQpRestoredAfterDoubleDrop) {
|
|
// Run grace period so we have existing frames in both TL0 and Tl1.
|
|
EXPECT_TRUE(RunGracePeriod());
|
|
|
|
// Move ahead until we have a sync frame in TL1.
|
|
EXPECT_EQ(kTl1SyncFlags, SkipUntilTlAndSync(1, true));
|
|
ASSERT_TRUE(tl_config_.layer_sync);
|
|
|
|
// Simulate overshoot of this frame.
|
|
layers_->OnEncodeDone(0, timestamp_, 0, false, -1, nullptr);
|
|
|
|
// Simulate re-encoded frame.
|
|
layers_->OnEncodeDone(0, timestamp_, 1, false, max_qp_,
|
|
IgnoredCodecSpecificInfo());
|
|
|
|
// Next frame, expect boosted quality.
|
|
// Slightly alter bitrate between each frame.
|
|
std::vector<uint32_t> kDefault2TlBitratesBpsAlt = kDefault2TlBitratesBps;
|
|
kDefault2TlBitratesBpsAlt[1] += 4000;
|
|
layers_->OnRatesUpdated(0, kDefault2TlBitratesBpsAlt, kFrameRate);
|
|
EXPECT_EQ(kTl1Flags, SkipUntilTlAndSync(1, false));
|
|
EXPECT_TRUE(config_updated_);
|
|
EXPECT_LT(cfg_.rc_max_quantizer, max_qp_);
|
|
ASSERT_TRUE(cfg_.rc_max_quantizer.has_value());
|
|
const uint32_t adjusted_qp = cfg_.rc_max_quantizer.value();
|
|
|
|
// Simulate overshoot of this frame.
|
|
layers_->OnEncodeDone(0, timestamp_, 0, false, -1, nullptr);
|
|
|
|
// Simulate re-encoded frame.
|
|
layers_->OnEncodeDone(0, timestamp_, frame_size_, false, max_qp_,
|
|
IgnoredCodecSpecificInfo());
|
|
|
|
// A third frame, expect boosted quality.
|
|
layers_->OnRatesUpdated(0, kDefault2TlBitratesBps, kFrameRate);
|
|
EXPECT_EQ(kTl1Flags, SkipUntilTlAndSync(1, false));
|
|
EXPECT_TRUE(config_updated_);
|
|
EXPECT_LT(cfg_.rc_max_quantizer, max_qp_);
|
|
EXPECT_EQ(adjusted_qp, cfg_.rc_max_quantizer);
|
|
|
|
// Frame encoded.
|
|
layers_->OnEncodeDone(0, timestamp_, frame_size_, false, max_qp_,
|
|
IgnoredCodecSpecificInfo());
|
|
|
|
// A fourth frame, max qp should be restored.
|
|
layers_->OnRatesUpdated(0, kDefault2TlBitratesBpsAlt, kFrameRate);
|
|
EXPECT_EQ(kTl1Flags, SkipUntilTlAndSync(1, false));
|
|
EXPECT_EQ(cfg_.rc_max_quantizer, max_qp_);
|
|
}
|
|
|
|
} // namespace webrtc
|