webrtc/modules/pacing/prioritized_packet_queue_unittest.cc
Erik Språng c18a8fd8d1 Add field trial for fast retransmissions.
This adds a (default off) flag which makes retransmissions be processed
immediately, just like audio packets normally are.
This might increase send rates and thus losses in some cases, but will
also reduce retranmission delays especially when timer slack or bursting
is used. Usefuleness TBD via experiment.

Bug: chromium:1354491
Change-Id: Icaa83125bfb30826ce72e6e786963d411e05ea57
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/272483
Commit-Queue: Erik Språng <sprang@webrtc.org>
Reviewed-by: Henrik Boström <hbos@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#37926}
2022-08-29 11:52:14 +00:00

309 lines
12 KiB
C++

/*
* Copyright (c) 2022 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/pacing/prioritized_packet_queue.h"
#include <utility>
#include "api/units/time_delta.h"
#include "modules/rtp_rtcp/include/rtp_rtcp_defines.h"
#include "modules/rtp_rtcp/source/rtp_packet_to_send.h"
#include "rtc_base/checks.h"
#include "test/gmock.h"
#include "test/gtest.h"
namespace webrtc {
namespace {
constexpr uint32_t kDefaultSsrc = 123;
constexpr int kDefaultPayloadSize = 789;
std::unique_ptr<RtpPacketToSend> CreatePacket(RtpPacketMediaType type,
uint16_t sequence_number,
uint32_t ssrc = kDefaultSsrc) {
auto packet = std::make_unique<RtpPacketToSend>(/*extensions=*/nullptr);
packet->set_packet_type(type);
packet->SetSsrc(ssrc);
packet->SetSequenceNumber(sequence_number);
packet->SetPayloadSize(kDefaultPayloadSize);
return packet;
}
} // namespace
TEST(PrioritizedPacketQueue, ReturnsPacketsInPrioritizedOrder) {
Timestamp now = Timestamp::Zero();
PrioritizedPacketQueue queue(now);
// Add packets in low to high packet order.
queue.Push(now, CreatePacket(RtpPacketMediaType::kPadding, /*seq=*/1));
queue.Push(now, CreatePacket(RtpPacketMediaType::kVideo, /*seq=*/2));
queue.Push(now, CreatePacket(RtpPacketMediaType::kForwardErrorCorrection,
/*seq=*/3));
queue.Push(now, CreatePacket(RtpPacketMediaType::kRetransmission, /*seq=*/4));
queue.Push(now, CreatePacket(RtpPacketMediaType::kAudio, /*seq=*/5));
// Packets should be returned in high to low order.
EXPECT_EQ(queue.Pop()->SequenceNumber(), 5);
EXPECT_EQ(queue.Pop()->SequenceNumber(), 4);
// Video and FEC prioritized equally - but video was enqueued first.
EXPECT_EQ(queue.Pop()->SequenceNumber(), 2);
EXPECT_EQ(queue.Pop()->SequenceNumber(), 3);
EXPECT_EQ(queue.Pop()->SequenceNumber(), 1);
}
TEST(PrioritizedPacketQueue, ReturnsEqualPrioPacketsInRoundRobinOrder) {
Timestamp now = Timestamp::Zero();
PrioritizedPacketQueue queue(now);
// Insert video packets (prioritized equally), simulating a simulcast-type use
// case.
queue.Push(now,
CreatePacket(RtpPacketMediaType::kVideo, /*seq=*/1, /*ssrc=*/100));
queue.Push(now,
CreatePacket(RtpPacketMediaType::kVideo, /*seq=*/2, /*ssrc=*/101));
queue.Push(now,
CreatePacket(RtpPacketMediaType::kVideo, /*seq=*/3, /*ssrc=*/101));
queue.Push(now,
CreatePacket(RtpPacketMediaType::kVideo, /*seq=*/4, /*ssrc=*/102));
queue.Push(now,
CreatePacket(RtpPacketMediaType::kVideo, /*seq=*/5, /*ssrc=*/102));
queue.Push(now,
CreatePacket(RtpPacketMediaType::kVideo, /*seq=*/6, /*ssrc=*/102));
queue.Push(now,
CreatePacket(RtpPacketMediaType::kVideo, /*seq=*/7, /*ssrc=*/102));
// First packet from each SSRC.
EXPECT_EQ(queue.Pop()->SequenceNumber(), 1);
EXPECT_EQ(queue.Pop()->SequenceNumber(), 2);
EXPECT_EQ(queue.Pop()->SequenceNumber(), 4);
// Second packets from streams that have packets left.
EXPECT_EQ(queue.Pop()->SequenceNumber(), 3);
EXPECT_EQ(queue.Pop()->SequenceNumber(), 5);
// Only packets from last stream remaining.
EXPECT_EQ(queue.Pop()->SequenceNumber(), 6);
EXPECT_EQ(queue.Pop()->SequenceNumber(), 7);
}
TEST(PrioritizedPacketQueue, ReportsSizeInPackets) {
PrioritizedPacketQueue queue(/*creation_time=*/Timestamp::Zero());
EXPECT_EQ(queue.SizeInPackets(), 0);
queue.Push(/*enqueue_time=*/Timestamp::Zero(),
CreatePacket(RtpPacketMediaType::kVideo,
/*seq_no=*/1));
EXPECT_EQ(queue.SizeInPackets(), 1);
queue.Pop();
EXPECT_EQ(queue.SizeInPackets(), 0);
}
TEST(PrioritizedPacketQueue, ReportsPayloadSize) {
PrioritizedPacketQueue queue(/*creation_time=*/Timestamp::Zero());
EXPECT_EQ(queue.SizeInPayloadBytes(), DataSize::Zero());
queue.Push(/*enqueue_time=*/Timestamp::Zero(),
CreatePacket(RtpPacketMediaType::kVideo,
/*seq_no=*/1));
EXPECT_EQ(queue.SizeInPayloadBytes(), DataSize::Bytes(kDefaultPayloadSize));
queue.Pop();
EXPECT_EQ(queue.SizeInPayloadBytes(), DataSize::Zero());
}
TEST(PrioritizedPacketQueue, ReportsPaddingSize) {
PrioritizedPacketQueue queue(/*creation_time=*/Timestamp::Zero());
EXPECT_EQ(queue.SizeInPayloadBytes(), DataSize::Zero());
static constexpr DataSize kPaddingSize = DataSize::Bytes(190);
auto packet = std::make_unique<RtpPacketToSend>(/*extensions=*/nullptr);
packet->set_packet_type(RtpPacketMediaType::kPadding);
packet->SetSsrc(kDefaultSsrc);
packet->SetSequenceNumber(/*seq=*/1);
packet->SetPadding(kPaddingSize.bytes());
queue.Push(/*enqueue_time=*/Timestamp::Zero(), std::move(packet));
EXPECT_EQ(queue.SizeInPayloadBytes(), kPaddingSize);
queue.Pop();
EXPECT_EQ(queue.SizeInPayloadBytes(), DataSize::Zero());
}
TEST(PrioritizedPacketQueue, ReportsOldestEnqueueTime) {
PrioritizedPacketQueue queue(/*creation_time=*/Timestamp::Zero());
EXPECT_EQ(queue.OldestEnqueueTime(), Timestamp::MinusInfinity());
// Add three packets, with the middle packet having higher prio.
queue.Push(Timestamp::Millis(10),
CreatePacket(RtpPacketMediaType::kPadding, /*seq=*/1));
queue.Push(Timestamp::Millis(20),
CreatePacket(RtpPacketMediaType::kVideo, /*seq=*/2));
queue.Push(Timestamp::Millis(30),
CreatePacket(RtpPacketMediaType::kPadding, /*seq=*/3));
EXPECT_EQ(queue.OldestEnqueueTime(), Timestamp::Millis(10));
queue.Pop(); // Pop packet with enqueue time 20.
EXPECT_EQ(queue.OldestEnqueueTime(), Timestamp::Millis(10));
queue.Pop(); // Pop packet with enqueue time 10.
EXPECT_EQ(queue.OldestEnqueueTime(), Timestamp::Millis(30));
queue.Pop(); // Pop packet with enqueue time 30, queue empty again.
EXPECT_EQ(queue.OldestEnqueueTime(), Timestamp::MinusInfinity());
}
TEST(PrioritizedPacketQueue, ReportsAverageQueueTime) {
PrioritizedPacketQueue queue(/*creation_time=*/Timestamp::Zero());
EXPECT_EQ(queue.AverageQueueTime(), TimeDelta::Zero());
// Add three packets, with the middle packet having higher prio.
queue.Push(Timestamp::Millis(10),
CreatePacket(RtpPacketMediaType::kPadding, /*seq=*/1));
queue.Push(Timestamp::Millis(20),
CreatePacket(RtpPacketMediaType::kVideo, /*seq=*/2));
queue.Push(Timestamp::Millis(30),
CreatePacket(RtpPacketMediaType::kPadding, /*seq=*/3));
queue.UpdateAverageQueueTime(Timestamp::Millis(40));
// Packets have waited 30, 20, 10 ms -> average = 20ms.
EXPECT_EQ(queue.AverageQueueTime(), TimeDelta::Millis(20));
queue.Pop(); // Pop packet with enqueue time 20.
EXPECT_EQ(queue.AverageQueueTime(), TimeDelta::Millis(20));
queue.Pop(); // Pop packet with enqueue time 10.
EXPECT_EQ(queue.AverageQueueTime(), TimeDelta::Millis(10));
queue.Pop(); // Pop packet with enqueue time 30, queue empty again.
EXPECT_EQ(queue.AverageQueueTime(), TimeDelta::Zero());
}
TEST(PrioritizedPacketQueue, SubtractsPusedTimeFromAverageQueueTime) {
PrioritizedPacketQueue queue(/*creation_time=*/Timestamp::Zero());
EXPECT_EQ(queue.AverageQueueTime(), TimeDelta::Zero());
// Add a packet and then enable paused state.
queue.Push(Timestamp::Millis(100),
CreatePacket(RtpPacketMediaType::kPadding, /*seq=*/1));
queue.SetPauseState(true, Timestamp::Millis(600));
EXPECT_EQ(queue.AverageQueueTime(), TimeDelta::Millis(500));
// Enqueue a packet 500ms into the paused state. Queue time of
// original packet is still seen as 500ms and new one has 0ms giving
// an average of 250ms.
queue.Push(Timestamp::Millis(1100),
CreatePacket(RtpPacketMediaType::kVideo, /*seq=*/2));
EXPECT_EQ(queue.AverageQueueTime(), TimeDelta::Millis(250));
// Unpause some time later, queue time still unchanged.
queue.SetPauseState(false, Timestamp::Millis(1600));
EXPECT_EQ(queue.AverageQueueTime(), TimeDelta::Millis(250));
// Update queue time 500ms after pause state ended.
queue.UpdateAverageQueueTime(Timestamp::Millis(2100));
EXPECT_EQ(queue.AverageQueueTime(), TimeDelta::Millis(750));
}
TEST(PrioritizedPacketQueue, ReportsLeadingPacketEnqueueTime) {
PrioritizedPacketQueue queue(/*creation_time=*/Timestamp::Zero());
EXPECT_EQ(queue.LeadingPacketEnqueueTime(RtpPacketMediaType::kAudio),
Timestamp::MinusInfinity());
EXPECT_EQ(queue.LeadingPacketEnqueueTime(RtpPacketMediaType::kVideo),
Timestamp::MinusInfinity());
queue.Push(Timestamp::Millis(10),
CreatePacket(RtpPacketMediaType::kVideo, /*seq=*/1));
EXPECT_EQ(queue.LeadingPacketEnqueueTime(RtpPacketMediaType::kAudio),
Timestamp::MinusInfinity());
EXPECT_EQ(queue.LeadingPacketEnqueueTime(RtpPacketMediaType::kVideo),
Timestamp::Millis(10));
queue.Push(Timestamp::Millis(20),
CreatePacket(RtpPacketMediaType::kAudio, /*seq=*/2));
EXPECT_EQ(queue.LeadingPacketEnqueueTime(RtpPacketMediaType::kAudio),
Timestamp::Millis(20));
EXPECT_EQ(queue.LeadingPacketEnqueueTime(RtpPacketMediaType::kVideo),
Timestamp::Millis(10));
queue.Pop(); // Pop audio packet.
EXPECT_EQ(queue.LeadingPacketEnqueueTime(RtpPacketMediaType::kAudio),
Timestamp::MinusInfinity());
EXPECT_EQ(queue.LeadingPacketEnqueueTime(RtpPacketMediaType::kVideo),
Timestamp::Millis(10));
queue.Pop(); // Pop video packet.
EXPECT_EQ(queue.LeadingPacketEnqueueTime(RtpPacketMediaType::kAudio),
Timestamp::MinusInfinity());
EXPECT_EQ(queue.LeadingPacketEnqueueTime(RtpPacketMediaType::kVideo),
Timestamp::MinusInfinity());
}
TEST(PrioritizedPacketQueue,
PushAndPopUpdatesSizeInPacketsPerRtpPacketMediaType) {
Timestamp now = Timestamp::Zero();
PrioritizedPacketQueue queue(now);
// Initially all sizes are zero.
for (size_t i = 0; i < kNumMediaTypes; ++i) {
EXPECT_EQ(queue.SizeInPacketsPerRtpPacketMediaType()[i], 0);
}
// Push packets.
queue.Push(now, CreatePacket(RtpPacketMediaType::kAudio, 1));
EXPECT_EQ(queue.SizeInPacketsPerRtpPacketMediaType()[static_cast<size_t>(
RtpPacketMediaType::kAudio)],
1);
queue.Push(now, CreatePacket(RtpPacketMediaType::kVideo, 2));
EXPECT_EQ(queue.SizeInPacketsPerRtpPacketMediaType()[static_cast<size_t>(
RtpPacketMediaType::kVideo)],
1);
queue.Push(now, CreatePacket(RtpPacketMediaType::kRetransmission, 3));
EXPECT_EQ(queue.SizeInPacketsPerRtpPacketMediaType()[static_cast<size_t>(
RtpPacketMediaType::kRetransmission)],
1);
queue.Push(now, CreatePacket(RtpPacketMediaType::kForwardErrorCorrection, 4));
EXPECT_EQ(queue.SizeInPacketsPerRtpPacketMediaType()[static_cast<size_t>(
RtpPacketMediaType::kForwardErrorCorrection)],
1);
queue.Push(now, CreatePacket(RtpPacketMediaType::kPadding, 5));
EXPECT_EQ(queue.SizeInPacketsPerRtpPacketMediaType()[static_cast<size_t>(
RtpPacketMediaType::kPadding)],
1);
// Now all sizes are 1.
for (size_t i = 0; i < kNumMediaTypes; ++i) {
EXPECT_EQ(queue.SizeInPacketsPerRtpPacketMediaType()[i], 1);
}
// Popping happens in a priority order based on media type. This test does not
// assert what this order is, only that the counter for the popped packet's
// media type is decremented.
for (size_t i = 0; i < kNumMediaTypes; ++i) {
auto popped_packet = queue.Pop();
EXPECT_EQ(queue.SizeInPacketsPerRtpPacketMediaType()[static_cast<size_t>(
popped_packet->packet_type().value())],
0);
}
// We've popped all packets, so all sizes are zero.
for (size_t i = 0; i < kNumMediaTypes; ++i) {
EXPECT_EQ(queue.SizeInPacketsPerRtpPacketMediaType()[i], 0);
}
}
} // namespace webrtc