mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-13 22:00:47 +01:00

Bug: webrtc:11152 Change-Id: I09824b97506a11f917cd71f2f0d30306538eee13 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/163023 Reviewed-by: Markus Handell <handellm@webrtc.org> Commit-Queue: Danil Chapovalov <danilchap@webrtc.org> Cr-Commit-Position: refs/heads/master@{#30178}
878 lines
34 KiB
C++
878 lines
34 KiB
C++
/*
|
|
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/rtp_rtcp/source/rtp_format_h264.h"
|
|
|
|
#include <memory>
|
|
#include <vector>
|
|
|
|
#include "api/array_view.h"
|
|
#include "common_video/h264/h264_common.h"
|
|
#include "modules/include/module_common_types.h"
|
|
#include "modules/rtp_rtcp/mocks/mock_rtp_rtcp.h"
|
|
#include "modules/rtp_rtcp/source/byte_io.h"
|
|
#include "modules/rtp_rtcp/source/rtp_packet_to_send.h"
|
|
#include "test/gmock.h"
|
|
#include "test/gtest.h"
|
|
|
|
namespace webrtc {
|
|
namespace {
|
|
|
|
using ::testing::Each;
|
|
using ::testing::ElementsAre;
|
|
using ::testing::ElementsAreArray;
|
|
using ::testing::Eq;
|
|
using ::testing::IsEmpty;
|
|
using ::testing::SizeIs;
|
|
|
|
constexpr RtpPacketToSend::ExtensionManager* kNoExtensions = nullptr;
|
|
constexpr size_t kMaxPayloadSize = 1200;
|
|
constexpr size_t kLengthFieldLength = 2;
|
|
constexpr RtpPacketizer::PayloadSizeLimits kNoLimits;
|
|
|
|
enum Nalu {
|
|
kSlice = 1,
|
|
kIdr = 5,
|
|
kSei = 6,
|
|
kSps = 7,
|
|
kPps = 8,
|
|
kStapA = 24,
|
|
kFuA = 28
|
|
};
|
|
|
|
static const size_t kNalHeaderSize = 1;
|
|
static const size_t kFuAHeaderSize = 2;
|
|
|
|
// Bit masks for FU (A and B) indicators.
|
|
enum NalDefs { kFBit = 0x80, kNriMask = 0x60, kTypeMask = 0x1F };
|
|
|
|
// Bit masks for FU (A and B) headers.
|
|
enum FuDefs { kSBit = 0x80, kEBit = 0x40, kRBit = 0x20 };
|
|
|
|
RTPFragmentationHeader CreateFragmentation(rtc::ArrayView<const size_t> sizes) {
|
|
RTPFragmentationHeader fragmentation;
|
|
fragmentation.VerifyAndAllocateFragmentationHeader(sizes.size());
|
|
size_t offset = 0;
|
|
for (size_t i = 0; i < sizes.size(); ++i) {
|
|
fragmentation.fragmentationOffset[i] = offset;
|
|
fragmentation.fragmentationLength[i] = sizes[i];
|
|
offset += sizes[i];
|
|
}
|
|
return fragmentation;
|
|
}
|
|
|
|
// Create fragmentation with single fragment of same size as |frame|
|
|
RTPFragmentationHeader NoFragmentation(rtc::ArrayView<const uint8_t> frame) {
|
|
size_t frame_size[] = {frame.size()};
|
|
return CreateFragmentation(frame_size);
|
|
}
|
|
|
|
// Create frame of given size.
|
|
rtc::Buffer CreateFrame(size_t frame_size) {
|
|
rtc::Buffer frame(frame_size);
|
|
// Set some valid header.
|
|
frame[0] = 0x01;
|
|
// Generate payload to detect when shifted payload was put into a packet.
|
|
for (size_t i = 1; i < frame_size; ++i)
|
|
frame[i] = static_cast<uint8_t>(i);
|
|
return frame;
|
|
}
|
|
|
|
// Create frame with size deduced from fragmentation.
|
|
rtc::Buffer CreateFrame(const RTPFragmentationHeader& fragmentation) {
|
|
size_t last_frame_index = fragmentation.fragmentationVectorSize - 1;
|
|
size_t frame_size = fragmentation.fragmentationOffset[last_frame_index] +
|
|
fragmentation.fragmentationLength[last_frame_index];
|
|
rtc::Buffer frame = CreateFrame(frame_size);
|
|
// Set some headers.
|
|
// Tests can expect those are valid but shouln't rely on actual values.
|
|
for (size_t i = 0; i <= last_frame_index; ++i) {
|
|
frame[fragmentation.fragmentationOffset[i]] = i + 1;
|
|
}
|
|
return frame;
|
|
}
|
|
|
|
std::vector<RtpPacketToSend> FetchAllPackets(RtpPacketizerH264* packetizer) {
|
|
std::vector<RtpPacketToSend> result;
|
|
size_t num_packets = packetizer->NumPackets();
|
|
result.reserve(num_packets);
|
|
RtpPacketToSend packet(kNoExtensions);
|
|
while (packetizer->NextPacket(&packet)) {
|
|
result.push_back(packet);
|
|
}
|
|
EXPECT_THAT(result, SizeIs(num_packets));
|
|
return result;
|
|
}
|
|
|
|
// Tests that should work with both packetization mode 0 and
|
|
// packetization mode 1.
|
|
class RtpPacketizerH264ModeTest
|
|
: public ::testing::TestWithParam<H264PacketizationMode> {};
|
|
|
|
TEST_P(RtpPacketizerH264ModeTest, SingleNalu) {
|
|
const uint8_t frame[2] = {kIdr, 0xFF};
|
|
|
|
RtpPacketizerH264 packetizer(frame, kNoLimits, GetParam(),
|
|
NoFragmentation(frame));
|
|
std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer);
|
|
|
|
ASSERT_THAT(packets, SizeIs(1));
|
|
EXPECT_THAT(packets[0].payload(), ElementsAreArray(frame));
|
|
}
|
|
|
|
TEST_P(RtpPacketizerH264ModeTest, SingleNaluTwoPackets) {
|
|
RtpPacketizer::PayloadSizeLimits limits;
|
|
limits.max_payload_len = kMaxPayloadSize;
|
|
const size_t fragment_sizes[] = {kMaxPayloadSize, 100};
|
|
RTPFragmentationHeader fragmentation = CreateFragmentation(fragment_sizes);
|
|
rtc::Buffer frame = CreateFrame(fragmentation);
|
|
|
|
RtpPacketizerH264 packetizer(frame, limits, GetParam(), fragmentation);
|
|
std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer);
|
|
|
|
ASSERT_THAT(packets, SizeIs(2));
|
|
EXPECT_THAT(packets[0].payload(),
|
|
ElementsAreArray(frame.data(), kMaxPayloadSize));
|
|
EXPECT_THAT(packets[1].payload(),
|
|
ElementsAreArray(frame.data() + kMaxPayloadSize, 100));
|
|
}
|
|
|
|
TEST_P(RtpPacketizerH264ModeTest,
|
|
SingleNaluFirstPacketReductionAppliesOnlyToFirstFragment) {
|
|
RtpPacketizer::PayloadSizeLimits limits;
|
|
limits.max_payload_len = 200;
|
|
limits.first_packet_reduction_len = 5;
|
|
const size_t fragments[] = {195, 200, 200};
|
|
|
|
RTPFragmentationHeader fragmentation = CreateFragmentation(fragments);
|
|
rtc::Buffer frame = CreateFrame(fragmentation);
|
|
|
|
RtpPacketizerH264 packetizer(frame, limits, GetParam(), fragmentation);
|
|
std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer);
|
|
|
|
ASSERT_THAT(packets, SizeIs(3));
|
|
const uint8_t* next_fragment = frame.data();
|
|
EXPECT_THAT(packets[0].payload(), ElementsAreArray(next_fragment, 195));
|
|
next_fragment += 195;
|
|
EXPECT_THAT(packets[1].payload(), ElementsAreArray(next_fragment, 200));
|
|
next_fragment += 200;
|
|
EXPECT_THAT(packets[2].payload(), ElementsAreArray(next_fragment, 200));
|
|
}
|
|
|
|
TEST_P(RtpPacketizerH264ModeTest,
|
|
SingleNaluLastPacketReductionAppliesOnlyToLastFragment) {
|
|
RtpPacketizer::PayloadSizeLimits limits;
|
|
limits.max_payload_len = 200;
|
|
limits.last_packet_reduction_len = 5;
|
|
const size_t fragments[] = {200, 200, 195};
|
|
|
|
RTPFragmentationHeader fragmentation = CreateFragmentation(fragments);
|
|
rtc::Buffer frame = CreateFrame(fragmentation);
|
|
|
|
RtpPacketizerH264 packetizer(frame, limits, GetParam(), fragmentation);
|
|
std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer);
|
|
|
|
ASSERT_THAT(packets, SizeIs(3));
|
|
const uint8_t* next_fragment = frame.data();
|
|
EXPECT_THAT(packets[0].payload(), ElementsAreArray(next_fragment, 200));
|
|
next_fragment += 200;
|
|
EXPECT_THAT(packets[1].payload(), ElementsAreArray(next_fragment, 200));
|
|
next_fragment += 200;
|
|
EXPECT_THAT(packets[2].payload(), ElementsAreArray(next_fragment, 195));
|
|
}
|
|
|
|
TEST_P(RtpPacketizerH264ModeTest,
|
|
SingleNaluFirstAndLastPacketReductionSumsForSinglePacket) {
|
|
RtpPacketizer::PayloadSizeLimits limits;
|
|
limits.max_payload_len = 200;
|
|
limits.first_packet_reduction_len = 20;
|
|
limits.last_packet_reduction_len = 30;
|
|
rtc::Buffer frame = CreateFrame(150);
|
|
|
|
RtpPacketizerH264 packetizer(frame, limits, GetParam(),
|
|
NoFragmentation(frame));
|
|
std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer);
|
|
|
|
EXPECT_THAT(packets, SizeIs(1));
|
|
}
|
|
|
|
INSTANTIATE_TEST_SUITE_P(
|
|
PacketMode,
|
|
RtpPacketizerH264ModeTest,
|
|
::testing::Values(H264PacketizationMode::SingleNalUnit,
|
|
H264PacketizationMode::NonInterleaved));
|
|
|
|
// Aggregation tests.
|
|
TEST(RtpPacketizerH264Test, StapA) {
|
|
size_t fragments[] = {2, 2, 0x123};
|
|
|
|
RTPFragmentationHeader fragmentation = CreateFragmentation(fragments);
|
|
rtc::Buffer frame = CreateFrame(fragmentation);
|
|
|
|
RtpPacketizerH264 packetizer(
|
|
frame, kNoLimits, H264PacketizationMode::NonInterleaved, fragmentation);
|
|
std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer);
|
|
|
|
ASSERT_THAT(packets, SizeIs(1));
|
|
auto payload = packets[0].payload();
|
|
EXPECT_EQ(payload.size(),
|
|
kNalHeaderSize + 3 * kLengthFieldLength + frame.size());
|
|
|
|
EXPECT_EQ(payload[0], kStapA);
|
|
payload = payload.subview(kNalHeaderSize);
|
|
// 1st fragment.
|
|
EXPECT_THAT(payload.subview(0, kLengthFieldLength),
|
|
ElementsAre(0, 2)); // Size.
|
|
EXPECT_THAT(payload.subview(kLengthFieldLength, 2),
|
|
ElementsAreArray(frame.data(), 2));
|
|
payload = payload.subview(kLengthFieldLength + 2);
|
|
// 2nd fragment.
|
|
EXPECT_THAT(payload.subview(0, kLengthFieldLength),
|
|
ElementsAre(0, 2)); // Size.
|
|
EXPECT_THAT(payload.subview(kLengthFieldLength, 2),
|
|
ElementsAreArray(frame.data() + 2, 2));
|
|
payload = payload.subview(kLengthFieldLength + 2);
|
|
// 3rd fragment.
|
|
EXPECT_THAT(payload.subview(0, kLengthFieldLength),
|
|
ElementsAre(0x1, 0x23)); // Size.
|
|
EXPECT_THAT(payload.subview(kLengthFieldLength),
|
|
ElementsAreArray(frame.data() + 4, 0x123));
|
|
}
|
|
|
|
TEST(RtpPacketizerH264Test, SingleNalUnitModeHasNoStapA) {
|
|
// This is the same setup as for the StapA test.
|
|
size_t fragments[] = {2, 2, 0x123};
|
|
RTPFragmentationHeader fragmentation = CreateFragmentation(fragments);
|
|
rtc::Buffer frame = CreateFrame(fragmentation);
|
|
|
|
RtpPacketizerH264 packetizer(
|
|
frame, kNoLimits, H264PacketizationMode::SingleNalUnit, fragmentation);
|
|
std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer);
|
|
|
|
// The three fragments should be returned as three packets.
|
|
ASSERT_THAT(packets, SizeIs(3));
|
|
EXPECT_EQ(packets[0].payload_size(), 2u);
|
|
EXPECT_EQ(packets[1].payload_size(), 2u);
|
|
EXPECT_EQ(packets[2].payload_size(), 0x123u);
|
|
}
|
|
|
|
TEST(RtpPacketizerH264Test, StapARespectsFirstPacketReduction) {
|
|
RtpPacketizer::PayloadSizeLimits limits;
|
|
limits.max_payload_len = 1000;
|
|
limits.first_packet_reduction_len = 100;
|
|
const size_t kFirstFragmentSize =
|
|
limits.max_payload_len - limits.first_packet_reduction_len;
|
|
size_t fragments[] = {kFirstFragmentSize, 2, 2};
|
|
RTPFragmentationHeader fragmentation = CreateFragmentation(fragments);
|
|
rtc::Buffer frame = CreateFrame(fragmentation);
|
|
|
|
RtpPacketizerH264 packetizer(
|
|
frame, limits, H264PacketizationMode::NonInterleaved, fragmentation);
|
|
std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer);
|
|
|
|
ASSERT_THAT(packets, SizeIs(2));
|
|
// Expect 1st packet is single nalu.
|
|
EXPECT_THAT(packets[0].payload(),
|
|
ElementsAreArray(frame.data(), kFirstFragmentSize));
|
|
// Expect 2nd packet is aggregate of last two fragments.
|
|
const uint8_t* tail = frame.data() + kFirstFragmentSize;
|
|
EXPECT_THAT(packets[1].payload(), ElementsAre(kStapA, //
|
|
0, 2, tail[0], tail[1], //
|
|
0, 2, tail[2], tail[3]));
|
|
}
|
|
|
|
TEST(RtpPacketizerH264Test, StapARespectsLastPacketReduction) {
|
|
RtpPacketizer::PayloadSizeLimits limits;
|
|
limits.max_payload_len = 1000;
|
|
limits.last_packet_reduction_len = 100;
|
|
const size_t kLastFragmentSize =
|
|
limits.max_payload_len - limits.last_packet_reduction_len;
|
|
size_t fragments[] = {2, 2, kLastFragmentSize};
|
|
RTPFragmentationHeader fragmentation = CreateFragmentation(fragments);
|
|
rtc::Buffer frame = CreateFrame(fragmentation);
|
|
|
|
RtpPacketizerH264 packetizer(
|
|
frame, limits, H264PacketizationMode::NonInterleaved, fragmentation);
|
|
std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer);
|
|
|
|
ASSERT_THAT(packets, SizeIs(2));
|
|
// Expect 1st packet is aggregate of 1st two fragments.
|
|
EXPECT_THAT(packets[0].payload(), ElementsAre(kStapA, //
|
|
0, 2, frame[0], frame[1], //
|
|
0, 2, frame[2], frame[3]));
|
|
// Expect 2nd packet is single nalu.
|
|
EXPECT_THAT(packets[1].payload(),
|
|
ElementsAreArray(frame.data() + 4, kLastFragmentSize));
|
|
}
|
|
|
|
TEST(RtpPacketizerH264Test, TooSmallForStapAHeaders) {
|
|
RtpPacketizer::PayloadSizeLimits limits;
|
|
limits.max_payload_len = 1000;
|
|
const size_t kLastFragmentSize =
|
|
limits.max_payload_len - 3 * kLengthFieldLength - 4;
|
|
size_t fragments[] = {2, 2, kLastFragmentSize};
|
|
RTPFragmentationHeader fragmentation = CreateFragmentation(fragments);
|
|
rtc::Buffer frame = CreateFrame(fragmentation);
|
|
|
|
RtpPacketizerH264 packetizer(
|
|
frame, limits, H264PacketizationMode::NonInterleaved, fragmentation);
|
|
std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer);
|
|
|
|
ASSERT_THAT(packets, SizeIs(2));
|
|
// Expect 1st packet is aggregate of 1st two fragments.
|
|
EXPECT_THAT(packets[0].payload(), ElementsAre(kStapA, //
|
|
0, 2, frame[0], frame[1], //
|
|
0, 2, frame[2], frame[3]));
|
|
// Expect 2nd packet is single nalu.
|
|
EXPECT_THAT(packets[1].payload(),
|
|
ElementsAreArray(frame.data() + 4, kLastFragmentSize));
|
|
}
|
|
|
|
// Fragmentation + aggregation.
|
|
TEST(RtpPacketizerH264Test, MixedStapAFUA) {
|
|
RtpPacketizer::PayloadSizeLimits limits;
|
|
limits.max_payload_len = 100;
|
|
const size_t kFuaPayloadSize = 70;
|
|
const size_t kFuaNaluSize = kNalHeaderSize + 2 * kFuaPayloadSize;
|
|
const size_t kStapANaluSize = 20;
|
|
size_t fragments[] = {kFuaNaluSize, kStapANaluSize, kStapANaluSize};
|
|
RTPFragmentationHeader fragmentation = CreateFragmentation(fragments);
|
|
rtc::Buffer frame = CreateFrame(fragmentation);
|
|
|
|
RtpPacketizerH264 packetizer(
|
|
frame, limits, H264PacketizationMode::NonInterleaved, fragmentation);
|
|
std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer);
|
|
|
|
ASSERT_THAT(packets, SizeIs(3));
|
|
const uint8_t* next_fragment = frame.data() + kNalHeaderSize;
|
|
// First expect two FU-A packets.
|
|
EXPECT_THAT(packets[0].payload().subview(0, kFuAHeaderSize),
|
|
ElementsAre(kFuA, FuDefs::kSBit | frame[0]));
|
|
EXPECT_THAT(packets[0].payload().subview(kFuAHeaderSize),
|
|
ElementsAreArray(next_fragment, kFuaPayloadSize));
|
|
next_fragment += kFuaPayloadSize;
|
|
|
|
EXPECT_THAT(packets[1].payload().subview(0, kFuAHeaderSize),
|
|
ElementsAre(kFuA, FuDefs::kEBit | frame[0]));
|
|
EXPECT_THAT(packets[1].payload().subview(kFuAHeaderSize),
|
|
ElementsAreArray(next_fragment, kFuaPayloadSize));
|
|
next_fragment += kFuaPayloadSize;
|
|
|
|
// Then expect one STAP-A packet with two nal units.
|
|
EXPECT_THAT(packets[2].payload()[0], kStapA);
|
|
auto payload = packets[2].payload().subview(kNalHeaderSize);
|
|
EXPECT_THAT(payload.subview(0, kLengthFieldLength),
|
|
ElementsAre(0, kStapANaluSize));
|
|
EXPECT_THAT(payload.subview(kLengthFieldLength, kStapANaluSize),
|
|
ElementsAreArray(next_fragment, kStapANaluSize));
|
|
payload = payload.subview(kLengthFieldLength + kStapANaluSize);
|
|
next_fragment += kStapANaluSize;
|
|
EXPECT_THAT(payload.subview(0, kLengthFieldLength),
|
|
ElementsAre(0, kStapANaluSize));
|
|
EXPECT_THAT(payload.subview(kLengthFieldLength),
|
|
ElementsAreArray(next_fragment, kStapANaluSize));
|
|
}
|
|
|
|
TEST(RtpPacketizerH264Test, LastFragmentFitsInSingleButNotLastPacket) {
|
|
RtpPacketizer::PayloadSizeLimits limits;
|
|
limits.max_payload_len = 1178;
|
|
limits.first_packet_reduction_len = 0;
|
|
limits.last_packet_reduction_len = 20;
|
|
limits.single_packet_reduction_len = 20;
|
|
// Actual sizes, which triggered this bug.
|
|
size_t fragments[] = {20, 8, 18, 1161};
|
|
RTPFragmentationHeader fragmentation = CreateFragmentation(fragments);
|
|
rtc::Buffer frame = CreateFrame(fragmentation);
|
|
|
|
RtpPacketizerH264 packetizer(
|
|
frame, limits, H264PacketizationMode::NonInterleaved, fragmentation);
|
|
std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer);
|
|
|
|
// Last packet has to be of correct size.
|
|
// Incorrect implementation might miss this constraint and not split the last
|
|
// fragment in two packets.
|
|
EXPECT_LE(static_cast<int>(packets.back().payload_size()),
|
|
limits.max_payload_len - limits.last_packet_reduction_len);
|
|
}
|
|
|
|
// Splits frame with payload size |frame_payload_size| without fragmentation,
|
|
// Returns sizes of the payloads excluding fua headers.
|
|
std::vector<int> TestFua(size_t frame_payload_size,
|
|
const RtpPacketizer::PayloadSizeLimits& limits) {
|
|
rtc::Buffer frame = CreateFrame(kNalHeaderSize + frame_payload_size);
|
|
|
|
RtpPacketizerH264 packetizer(frame, limits,
|
|
H264PacketizationMode::NonInterleaved,
|
|
NoFragmentation(frame));
|
|
std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer);
|
|
|
|
EXPECT_GE(packets.size(), 2u); // Single packet indicates it is not FuA.
|
|
std::vector<uint16_t> fua_header;
|
|
std::vector<int> payload_sizes;
|
|
|
|
for (const RtpPacketToSend& packet : packets) {
|
|
auto payload = packet.payload();
|
|
EXPECT_GT(payload.size(), kFuAHeaderSize);
|
|
fua_header.push_back((payload[0] << 8) | payload[1]);
|
|
payload_sizes.push_back(payload.size() - kFuAHeaderSize);
|
|
}
|
|
|
|
EXPECT_TRUE(fua_header.front() & FuDefs::kSBit);
|
|
EXPECT_TRUE(fua_header.back() & FuDefs::kEBit);
|
|
// Clear S and E bits before testing all are duplicating same original header.
|
|
fua_header.front() &= ~FuDefs::kSBit;
|
|
fua_header.back() &= ~FuDefs::kEBit;
|
|
EXPECT_THAT(fua_header, Each(Eq((kFuA << 8) | frame[0])));
|
|
|
|
return payload_sizes;
|
|
}
|
|
|
|
// Fragmentation tests.
|
|
TEST(RtpPacketizerH264Test, FUAOddSize) {
|
|
RtpPacketizer::PayloadSizeLimits limits;
|
|
limits.max_payload_len = 1200;
|
|
EXPECT_THAT(TestFua(1200, limits), ElementsAre(600, 600));
|
|
}
|
|
|
|
TEST(RtpPacketizerH264Test, FUAWithFirstPacketReduction) {
|
|
RtpPacketizer::PayloadSizeLimits limits;
|
|
limits.max_payload_len = 1200;
|
|
limits.first_packet_reduction_len = 4;
|
|
limits.single_packet_reduction_len = 4;
|
|
EXPECT_THAT(TestFua(1198, limits), ElementsAre(597, 601));
|
|
}
|
|
|
|
TEST(RtpPacketizerH264Test, FUAWithLastPacketReduction) {
|
|
RtpPacketizer::PayloadSizeLimits limits;
|
|
limits.max_payload_len = 1200;
|
|
limits.last_packet_reduction_len = 4;
|
|
limits.single_packet_reduction_len = 4;
|
|
EXPECT_THAT(TestFua(1198, limits), ElementsAre(601, 597));
|
|
}
|
|
|
|
TEST(RtpPacketizerH264Test, FUAWithSinglePacketReduction) {
|
|
RtpPacketizer::PayloadSizeLimits limits;
|
|
limits.max_payload_len = 1199;
|
|
limits.single_packet_reduction_len = 200;
|
|
EXPECT_THAT(TestFua(1000, limits), ElementsAre(500, 500));
|
|
}
|
|
|
|
TEST(RtpPacketizerH264Test, FUAEvenSize) {
|
|
RtpPacketizer::PayloadSizeLimits limits;
|
|
limits.max_payload_len = 1200;
|
|
EXPECT_THAT(TestFua(1201, limits), ElementsAre(600, 601));
|
|
}
|
|
|
|
TEST(RtpPacketizerH264Test, FUARounding) {
|
|
RtpPacketizer::PayloadSizeLimits limits;
|
|
limits.max_payload_len = 1448;
|
|
EXPECT_THAT(TestFua(10123, limits),
|
|
ElementsAre(1265, 1265, 1265, 1265, 1265, 1266, 1266, 1266));
|
|
}
|
|
|
|
TEST(RtpPacketizerH264Test, FUABig) {
|
|
RtpPacketizer::PayloadSizeLimits limits;
|
|
limits.max_payload_len = 1200;
|
|
// Generate 10 full sized packets, leave room for FU-A headers.
|
|
EXPECT_THAT(
|
|
TestFua(10 * (1200 - kFuAHeaderSize), limits),
|
|
ElementsAre(1198, 1198, 1198, 1198, 1198, 1198, 1198, 1198, 1198, 1198));
|
|
}
|
|
|
|
TEST(RtpPacketizerH264Test, RejectsOverlongDataInPacketizationMode0) {
|
|
RtpPacketizer::PayloadSizeLimits limits;
|
|
rtc::Buffer frame = CreateFrame(kMaxPayloadSize + 1);
|
|
RTPFragmentationHeader fragmentation = NoFragmentation(frame);
|
|
|
|
RtpPacketizerH264 packetizer(
|
|
frame, limits, H264PacketizationMode::SingleNalUnit, fragmentation);
|
|
std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer);
|
|
|
|
EXPECT_THAT(packets, IsEmpty());
|
|
}
|
|
|
|
const uint8_t kOriginalSps[] = {kSps, 0x00, 0x00, 0x03, 0x03,
|
|
0xF4, 0x05, 0x03, 0xC7, 0xC0};
|
|
const uint8_t kRewrittenSps[] = {kSps, 0x00, 0x00, 0x03, 0x03, 0xF4, 0x05, 0x03,
|
|
0xC7, 0xE0, 0x1B, 0x41, 0x10, 0x8D, 0x00};
|
|
const uint8_t kIdrOne[] = {kIdr, 0xFF, 0x00, 0x00, 0x04};
|
|
const uint8_t kIdrTwo[] = {kIdr, 0xFF, 0x00, 0x11};
|
|
|
|
struct H264ParsedPayload : public RtpDepacketizer::ParsedPayload {
|
|
RTPVideoHeaderH264& h264() {
|
|
return absl::get<RTPVideoHeaderH264>(video.video_type_header);
|
|
}
|
|
};
|
|
|
|
class RtpDepacketizerH264Test : public ::testing::Test {
|
|
protected:
|
|
RtpDepacketizerH264Test()
|
|
: depacketizer_(std::make_unique<RtpDepacketizerH264>()) {}
|
|
|
|
void ExpectPacket(H264ParsedPayload* parsed_payload,
|
|
const uint8_t* data,
|
|
size_t length) {
|
|
ASSERT_TRUE(parsed_payload != NULL);
|
|
EXPECT_THAT(std::vector<uint8_t>(
|
|
parsed_payload->payload,
|
|
parsed_payload->payload + parsed_payload->payload_length),
|
|
::testing::ElementsAreArray(data, length));
|
|
}
|
|
|
|
std::unique_ptr<RtpDepacketizer> depacketizer_;
|
|
};
|
|
|
|
TEST_F(RtpDepacketizerH264Test, TestSingleNalu) {
|
|
uint8_t packet[2] = {0x05, 0xFF}; // F=0, NRI=0, Type=5 (IDR).
|
|
H264ParsedPayload payload;
|
|
|
|
ASSERT_TRUE(depacketizer_->Parse(&payload, packet, sizeof(packet)));
|
|
ExpectPacket(&payload, packet, sizeof(packet));
|
|
EXPECT_EQ(VideoFrameType::kVideoFrameKey, payload.video_header().frame_type);
|
|
EXPECT_EQ(kVideoCodecH264, payload.video_header().codec);
|
|
EXPECT_TRUE(payload.video_header().is_first_packet_in_frame);
|
|
EXPECT_EQ(kH264SingleNalu, payload.h264().packetization_type);
|
|
EXPECT_EQ(kIdr, payload.h264().nalu_type);
|
|
}
|
|
|
|
TEST_F(RtpDepacketizerH264Test, TestSingleNaluSpsWithResolution) {
|
|
uint8_t packet[] = {kSps, 0x7A, 0x00, 0x1F, 0xBC, 0xD9, 0x40, 0x50,
|
|
0x05, 0xBA, 0x10, 0x00, 0x00, 0x03, 0x00, 0xC0,
|
|
0x00, 0x00, 0x03, 0x2A, 0xE0, 0xF1, 0x83, 0x25};
|
|
H264ParsedPayload payload;
|
|
|
|
ASSERT_TRUE(depacketizer_->Parse(&payload, packet, sizeof(packet)));
|
|
ExpectPacket(&payload, packet, sizeof(packet));
|
|
EXPECT_EQ(VideoFrameType::kVideoFrameKey, payload.video_header().frame_type);
|
|
EXPECT_EQ(kVideoCodecH264, payload.video_header().codec);
|
|
EXPECT_TRUE(payload.video_header().is_first_packet_in_frame);
|
|
EXPECT_EQ(kH264SingleNalu, payload.h264().packetization_type);
|
|
EXPECT_EQ(1280u, payload.video_header().width);
|
|
EXPECT_EQ(720u, payload.video_header().height);
|
|
}
|
|
|
|
TEST_F(RtpDepacketizerH264Test, TestStapAKey) {
|
|
// clang-format off
|
|
const NaluInfo kExpectedNalus[] = { {H264::kSps, 0, -1},
|
|
{H264::kPps, 1, 2},
|
|
{H264::kIdr, -1, 0} };
|
|
uint8_t packet[] = {kStapA, // F=0, NRI=0, Type=24.
|
|
// Length, nal header, payload.
|
|
0, 0x18, kExpectedNalus[0].type,
|
|
0x7A, 0x00, 0x1F, 0xBC, 0xD9, 0x40, 0x50, 0x05, 0xBA,
|
|
0x10, 0x00, 0x00, 0x03, 0x00, 0xC0, 0x00, 0x00, 0x03,
|
|
0x2A, 0xE0, 0xF1, 0x83, 0x25,
|
|
0, 0xD, kExpectedNalus[1].type,
|
|
0x69, 0xFC, 0x0, 0x0, 0x3, 0x0, 0x7, 0xFF, 0xFF, 0xFF,
|
|
0xF6, 0x40,
|
|
0, 0xB, kExpectedNalus[2].type,
|
|
0x85, 0xB8, 0x0, 0x4, 0x0, 0x0, 0x13, 0x93, 0x12, 0x0};
|
|
// clang-format on
|
|
|
|
H264ParsedPayload payload;
|
|
ASSERT_TRUE(depacketizer_->Parse(&payload, packet, sizeof(packet)));
|
|
ExpectPacket(&payload, packet, sizeof(packet));
|
|
EXPECT_EQ(VideoFrameType::kVideoFrameKey, payload.video_header().frame_type);
|
|
EXPECT_EQ(kVideoCodecH264, payload.video_header().codec);
|
|
EXPECT_TRUE(payload.video_header().is_first_packet_in_frame);
|
|
const RTPVideoHeaderH264& h264 = payload.h264();
|
|
EXPECT_EQ(kH264StapA, h264.packetization_type);
|
|
// NALU type for aggregated packets is the type of the first packet only.
|
|
EXPECT_EQ(kSps, h264.nalu_type);
|
|
ASSERT_EQ(3u, h264.nalus_length);
|
|
for (size_t i = 0; i < h264.nalus_length; ++i) {
|
|
EXPECT_EQ(kExpectedNalus[i].type, h264.nalus[i].type)
|
|
<< "Failed parsing nalu " << i;
|
|
EXPECT_EQ(kExpectedNalus[i].sps_id, h264.nalus[i].sps_id)
|
|
<< "Failed parsing nalu " << i;
|
|
EXPECT_EQ(kExpectedNalus[i].pps_id, h264.nalus[i].pps_id)
|
|
<< "Failed parsing nalu " << i;
|
|
}
|
|
}
|
|
|
|
TEST_F(RtpDepacketizerH264Test, TestStapANaluSpsWithResolution) {
|
|
uint8_t packet[] = {kStapA, // F=0, NRI=0, Type=24.
|
|
// Length (2 bytes), nal header, payload.
|
|
0x00, 0x19, kSps, 0x7A, 0x00, 0x1F, 0xBC, 0xD9, 0x40,
|
|
0x50, 0x05, 0xBA, 0x10, 0x00, 0x00, 0x03, 0x00, 0xC0,
|
|
0x00, 0x00, 0x03, 0x2A, 0xE0, 0xF1, 0x83, 0x25, 0x80,
|
|
0x00, 0x03, kIdr, 0xFF, 0x00, 0x00, 0x04, kIdr, 0xFF,
|
|
0x00, 0x11};
|
|
|
|
H264ParsedPayload payload;
|
|
|
|
ASSERT_TRUE(depacketizer_->Parse(&payload, packet, sizeof(packet)));
|
|
ExpectPacket(&payload, packet, sizeof(packet));
|
|
EXPECT_EQ(VideoFrameType::kVideoFrameKey, payload.video_header().frame_type);
|
|
EXPECT_EQ(kVideoCodecH264, payload.video_header().codec);
|
|
EXPECT_TRUE(payload.video_header().is_first_packet_in_frame);
|
|
EXPECT_EQ(kH264StapA, payload.h264().packetization_type);
|
|
EXPECT_EQ(1280u, payload.video_header().width);
|
|
EXPECT_EQ(720u, payload.video_header().height);
|
|
}
|
|
|
|
TEST_F(RtpDepacketizerH264Test, TestEmptyStapARejected) {
|
|
uint8_t lone_empty_packet[] = {kStapA, 0x00, 0x00};
|
|
|
|
uint8_t leading_empty_packet[] = {kStapA, 0x00, 0x00, 0x00, 0x04,
|
|
kIdr, 0xFF, 0x00, 0x11};
|
|
|
|
uint8_t middle_empty_packet[] = {kStapA, 0x00, 0x03, kIdr, 0xFF, 0x00, 0x00,
|
|
0x00, 0x00, 0x04, kIdr, 0xFF, 0x00, 0x11};
|
|
|
|
uint8_t trailing_empty_packet[] = {kStapA, 0x00, 0x03, kIdr,
|
|
0xFF, 0x00, 0x00, 0x00};
|
|
|
|
H264ParsedPayload payload;
|
|
|
|
EXPECT_FALSE(depacketizer_->Parse(&payload, lone_empty_packet,
|
|
sizeof(lone_empty_packet)));
|
|
EXPECT_FALSE(depacketizer_->Parse(&payload, leading_empty_packet,
|
|
sizeof(leading_empty_packet)));
|
|
EXPECT_FALSE(depacketizer_->Parse(&payload, middle_empty_packet,
|
|
sizeof(middle_empty_packet)));
|
|
EXPECT_FALSE(depacketizer_->Parse(&payload, trailing_empty_packet,
|
|
sizeof(trailing_empty_packet)));
|
|
}
|
|
|
|
TEST_F(RtpDepacketizerH264Test, DepacketizeWithRewriting) {
|
|
rtc::Buffer in_buffer;
|
|
rtc::Buffer out_buffer;
|
|
|
|
uint8_t kHeader[2] = {kStapA};
|
|
in_buffer.AppendData(kHeader, 1);
|
|
out_buffer.AppendData(kHeader, 1);
|
|
|
|
ByteWriter<uint16_t>::WriteBigEndian(kHeader, sizeof(kOriginalSps));
|
|
in_buffer.AppendData(kHeader, 2);
|
|
in_buffer.AppendData(kOriginalSps);
|
|
ByteWriter<uint16_t>::WriteBigEndian(kHeader, sizeof(kRewrittenSps));
|
|
out_buffer.AppendData(kHeader, 2);
|
|
out_buffer.AppendData(kRewrittenSps);
|
|
|
|
ByteWriter<uint16_t>::WriteBigEndian(kHeader, sizeof(kIdrOne));
|
|
in_buffer.AppendData(kHeader, 2);
|
|
in_buffer.AppendData(kIdrOne);
|
|
out_buffer.AppendData(kHeader, 2);
|
|
out_buffer.AppendData(kIdrOne);
|
|
|
|
ByteWriter<uint16_t>::WriteBigEndian(kHeader, sizeof(kIdrTwo));
|
|
in_buffer.AppendData(kHeader, 2);
|
|
in_buffer.AppendData(kIdrTwo);
|
|
out_buffer.AppendData(kHeader, 2);
|
|
out_buffer.AppendData(kIdrTwo);
|
|
|
|
H264ParsedPayload payload;
|
|
EXPECT_TRUE(
|
|
depacketizer_->Parse(&payload, in_buffer.data(), in_buffer.size()));
|
|
|
|
std::vector<uint8_t> expected_packet_payload(
|
|
out_buffer.data(), &out_buffer.data()[out_buffer.size()]);
|
|
|
|
EXPECT_THAT(
|
|
expected_packet_payload,
|
|
::testing::ElementsAreArray(payload.payload, payload.payload_length));
|
|
}
|
|
|
|
TEST_F(RtpDepacketizerH264Test, DepacketizeWithDoubleRewriting) {
|
|
rtc::Buffer in_buffer;
|
|
rtc::Buffer out_buffer;
|
|
|
|
uint8_t kHeader[2] = {kStapA};
|
|
in_buffer.AppendData(kHeader, 1);
|
|
out_buffer.AppendData(kHeader, 1);
|
|
|
|
// First SPS will be kept...
|
|
ByteWriter<uint16_t>::WriteBigEndian(kHeader, sizeof(kOriginalSps));
|
|
in_buffer.AppendData(kHeader, 2);
|
|
in_buffer.AppendData(kOriginalSps);
|
|
out_buffer.AppendData(kHeader, 2);
|
|
out_buffer.AppendData(kOriginalSps);
|
|
|
|
// ...only the second one will be rewritten.
|
|
ByteWriter<uint16_t>::WriteBigEndian(kHeader, sizeof(kOriginalSps));
|
|
in_buffer.AppendData(kHeader, 2);
|
|
in_buffer.AppendData(kOriginalSps);
|
|
ByteWriter<uint16_t>::WriteBigEndian(kHeader, sizeof(kRewrittenSps));
|
|
out_buffer.AppendData(kHeader, 2);
|
|
out_buffer.AppendData(kRewrittenSps);
|
|
|
|
ByteWriter<uint16_t>::WriteBigEndian(kHeader, sizeof(kIdrOne));
|
|
in_buffer.AppendData(kHeader, 2);
|
|
in_buffer.AppendData(kIdrOne);
|
|
out_buffer.AppendData(kHeader, 2);
|
|
out_buffer.AppendData(kIdrOne);
|
|
|
|
ByteWriter<uint16_t>::WriteBigEndian(kHeader, sizeof(kIdrTwo));
|
|
in_buffer.AppendData(kHeader, 2);
|
|
in_buffer.AppendData(kIdrTwo);
|
|
out_buffer.AppendData(kHeader, 2);
|
|
out_buffer.AppendData(kIdrTwo);
|
|
|
|
H264ParsedPayload payload;
|
|
EXPECT_TRUE(
|
|
depacketizer_->Parse(&payload, in_buffer.data(), in_buffer.size()));
|
|
|
|
std::vector<uint8_t> expected_packet_payload(
|
|
out_buffer.data(), &out_buffer.data()[out_buffer.size()]);
|
|
|
|
EXPECT_THAT(
|
|
expected_packet_payload,
|
|
::testing::ElementsAreArray(payload.payload, payload.payload_length));
|
|
}
|
|
|
|
TEST_F(RtpDepacketizerH264Test, TestStapADelta) {
|
|
uint8_t packet[16] = {kStapA, // F=0, NRI=0, Type=24.
|
|
// Length, nal header, payload.
|
|
0, 0x02, kSlice, 0xFF, 0, 0x03, kSlice, 0xFF, 0x00, 0,
|
|
0x04, kSlice, 0xFF, 0x00, 0x11};
|
|
H264ParsedPayload payload;
|
|
|
|
ASSERT_TRUE(depacketizer_->Parse(&payload, packet, sizeof(packet)));
|
|
ExpectPacket(&payload, packet, sizeof(packet));
|
|
EXPECT_EQ(VideoFrameType::kVideoFrameDelta,
|
|
payload.video_header().frame_type);
|
|
EXPECT_EQ(kVideoCodecH264, payload.video_header().codec);
|
|
EXPECT_TRUE(payload.video_header().is_first_packet_in_frame);
|
|
EXPECT_EQ(kH264StapA, payload.h264().packetization_type);
|
|
// NALU type for aggregated packets is the type of the first packet only.
|
|
EXPECT_EQ(kSlice, payload.h264().nalu_type);
|
|
}
|
|
|
|
TEST_F(RtpDepacketizerH264Test, TestFuA) {
|
|
// clang-format off
|
|
uint8_t packet1[] = {
|
|
kFuA, // F=0, NRI=0, Type=28.
|
|
kSBit | kIdr, // FU header.
|
|
0x85, 0xB8, 0x0, 0x4, 0x0, 0x0, 0x13, 0x93, 0x12, 0x0 // Payload.
|
|
};
|
|
// clang-format on
|
|
const uint8_t kExpected1[] = {kIdr, 0x85, 0xB8, 0x0, 0x4, 0x0,
|
|
0x0, 0x13, 0x93, 0x12, 0x0};
|
|
|
|
uint8_t packet2[] = {
|
|
kFuA, // F=0, NRI=0, Type=28.
|
|
kIdr, // FU header.
|
|
0x02 // Payload.
|
|
};
|
|
const uint8_t kExpected2[] = {0x02};
|
|
|
|
uint8_t packet3[] = {
|
|
kFuA, // F=0, NRI=0, Type=28.
|
|
kEBit | kIdr, // FU header.
|
|
0x03 // Payload.
|
|
};
|
|
const uint8_t kExpected3[] = {0x03};
|
|
|
|
H264ParsedPayload payload;
|
|
|
|
// We expect that the first packet is one byte shorter since the FU-A header
|
|
// has been replaced by the original nal header.
|
|
ASSERT_TRUE(depacketizer_->Parse(&payload, packet1, sizeof(packet1)));
|
|
ExpectPacket(&payload, kExpected1, sizeof(kExpected1));
|
|
EXPECT_EQ(VideoFrameType::kVideoFrameKey, payload.video_header().frame_type);
|
|
EXPECT_EQ(kVideoCodecH264, payload.video_header().codec);
|
|
EXPECT_TRUE(payload.video_header().is_first_packet_in_frame);
|
|
const RTPVideoHeaderH264& h264 = payload.h264();
|
|
EXPECT_EQ(kH264FuA, h264.packetization_type);
|
|
EXPECT_EQ(kIdr, h264.nalu_type);
|
|
ASSERT_EQ(1u, h264.nalus_length);
|
|
EXPECT_EQ(static_cast<H264::NaluType>(kIdr), h264.nalus[0].type);
|
|
EXPECT_EQ(-1, h264.nalus[0].sps_id);
|
|
EXPECT_EQ(0, h264.nalus[0].pps_id);
|
|
|
|
// Following packets will be 2 bytes shorter since they will only be appended
|
|
// onto the first packet.
|
|
payload = H264ParsedPayload();
|
|
ASSERT_TRUE(depacketizer_->Parse(&payload, packet2, sizeof(packet2)));
|
|
ExpectPacket(&payload, kExpected2, sizeof(kExpected2));
|
|
EXPECT_EQ(VideoFrameType::kVideoFrameKey, payload.video_header().frame_type);
|
|
EXPECT_EQ(kVideoCodecH264, payload.video_header().codec);
|
|
EXPECT_FALSE(payload.video_header().is_first_packet_in_frame);
|
|
{
|
|
const RTPVideoHeaderH264& h264 = payload.h264();
|
|
EXPECT_EQ(kH264FuA, h264.packetization_type);
|
|
EXPECT_EQ(kIdr, h264.nalu_type);
|
|
// NALU info is only expected for the first FU-A packet.
|
|
EXPECT_EQ(0u, h264.nalus_length);
|
|
}
|
|
|
|
payload = H264ParsedPayload();
|
|
ASSERT_TRUE(depacketizer_->Parse(&payload, packet3, sizeof(packet3)));
|
|
ExpectPacket(&payload, kExpected3, sizeof(kExpected3));
|
|
EXPECT_EQ(VideoFrameType::kVideoFrameKey, payload.video_header().frame_type);
|
|
EXPECT_EQ(kVideoCodecH264, payload.video_header().codec);
|
|
EXPECT_FALSE(payload.video_header().is_first_packet_in_frame);
|
|
{
|
|
const RTPVideoHeaderH264& h264 = payload.h264();
|
|
EXPECT_EQ(kH264FuA, h264.packetization_type);
|
|
EXPECT_EQ(kIdr, h264.nalu_type);
|
|
// NALU info is only expected for the first FU-A packet.
|
|
ASSERT_EQ(0u, h264.nalus_length);
|
|
}
|
|
}
|
|
|
|
TEST_F(RtpDepacketizerH264Test, TestEmptyPayload) {
|
|
// Using a wild pointer to crash on accesses from inside the depacketizer.
|
|
uint8_t* garbage_ptr = reinterpret_cast<uint8_t*>(0x4711);
|
|
H264ParsedPayload payload;
|
|
EXPECT_FALSE(depacketizer_->Parse(&payload, garbage_ptr, 0));
|
|
}
|
|
|
|
TEST_F(RtpDepacketizerH264Test, TestTruncatedFuaNalu) {
|
|
const uint8_t kPayload[] = {0x9c};
|
|
H264ParsedPayload payload;
|
|
EXPECT_FALSE(depacketizer_->Parse(&payload, kPayload, sizeof(kPayload)));
|
|
}
|
|
|
|
TEST_F(RtpDepacketizerH264Test, TestTruncatedSingleStapANalu) {
|
|
const uint8_t kPayload[] = {0xd8, 0x27};
|
|
H264ParsedPayload payload;
|
|
EXPECT_FALSE(depacketizer_->Parse(&payload, kPayload, sizeof(kPayload)));
|
|
}
|
|
|
|
TEST_F(RtpDepacketizerH264Test, TestStapAPacketWithTruncatedNalUnits) {
|
|
const uint8_t kPayload[] = {0x58, 0xCB, 0xED, 0xDF};
|
|
H264ParsedPayload payload;
|
|
EXPECT_FALSE(depacketizer_->Parse(&payload, kPayload, sizeof(kPayload)));
|
|
}
|
|
|
|
TEST_F(RtpDepacketizerH264Test, TestTruncationJustAfterSingleStapANalu) {
|
|
const uint8_t kPayload[] = {0x38, 0x27, 0x27};
|
|
H264ParsedPayload payload;
|
|
EXPECT_FALSE(depacketizer_->Parse(&payload, kPayload, sizeof(kPayload)));
|
|
}
|
|
|
|
TEST_F(RtpDepacketizerH264Test, TestShortSpsPacket) {
|
|
const uint8_t kPayload[] = {0x27, 0x80, 0x00};
|
|
H264ParsedPayload payload;
|
|
EXPECT_TRUE(depacketizer_->Parse(&payload, kPayload, sizeof(kPayload)));
|
|
}
|
|
|
|
TEST_F(RtpDepacketizerH264Test, TestSeiPacket) {
|
|
const uint8_t kPayload[] = {
|
|
kSei, // F=0, NRI=0, Type=6.
|
|
0x03, 0x03, 0x03, 0x03 // Payload.
|
|
};
|
|
H264ParsedPayload payload;
|
|
ASSERT_TRUE(depacketizer_->Parse(&payload, kPayload, sizeof(kPayload)));
|
|
const RTPVideoHeaderH264& h264 = payload.h264();
|
|
EXPECT_EQ(VideoFrameType::kVideoFrameDelta,
|
|
payload.video_header().frame_type);
|
|
EXPECT_EQ(kH264SingleNalu, h264.packetization_type);
|
|
EXPECT_EQ(kSei, h264.nalu_type);
|
|
ASSERT_EQ(1u, h264.nalus_length);
|
|
EXPECT_EQ(static_cast<H264::NaluType>(kSei), h264.nalus[0].type);
|
|
EXPECT_EQ(-1, h264.nalus[0].sps_id);
|
|
EXPECT_EQ(-1, h264.nalus[0].pps_id);
|
|
}
|
|
|
|
} // namespace
|
|
} // namespace webrtc
|